On the Rules of Low-Power Design (and Why You Should Break Them)

Prof. Todd Austin

University of Michigan austin@umich.edu

A long time ago, in a not so far away place...

The "Rules" of Low-Power Design

$P = aCV^2f + VI_{leak}$

- **1.** Minimize switching activity
- **2.** Design for lower load capacitance
- **3.** Reduce frequency
- 4. Reduce leakage

and the most important of all: **5.** Decrease supply voltage!

1.2v Noise margin Ambient margin Process margin **0.8v** V_{th} **Critical voltage** (determined by critical path)

Goals of This Presentation

Review some of the rules of low-power design

Show how clever designs can break these rules

- Razor resilient circuits
- Subliminal subthreshold voltage processor

Highlight the benefits of taking a rule-breaking approach to technical research

Overclockers Break the Rules

Investigating Overclocking

Two Slow Pipelines Check a Fast Pipeline

Discovery: Voltage Margins Are Plentiful

Margin grows if a few (~1%) errors can be tolerated

Razor Resilient Circuits [MICRO'03]

- Double-sampling metastability tolerant latches detect timing errors
 - Second sample is correct-by-design
- Microarchitectural support restores program state
 Timing errors treated like branch mispredictions

Distributed Pipeline Recovery

Builds on existing branch prediction framework
 Multiple cycle penalty for timing failure
 Scalable design as all communication is local

Razor-Based Dynamic Voltage Scaling

Current design utilizes a very simple proportional control function

Control algorithm implemented in software

Effects of Razor Voltage Scaling

Razor (and Razor-like) Prototypes

How Razor Breaks the Rules

 Traditional worst-case design techniques observe margin rules for reliable operation

 Incorporating timing-error correction mechanisms allow margins to be erased

 Infrequent use of critical paths allow for even deeper cuts in V_{dd}

What I Really Learned...

A rule-breaking approach to technical research is effective and engaging

You will often find yourself on very fertile ground
 The "rules" create artificial barriers that hide good ideas

You will more fully engage your community
 One half will think your crazy idea will never work
 One half will be intrigued (with your crazy idea)

Back to the "Rules"

$P = aCV^2f + VI_{leak}$

- **1.** Minimize switching activity
- **2.** Design for lower load capacitance
- **3.** Reduce frequency
- 4. Reduce leakage

and the most important of all: **5.** Decrease supply voltage!

Noise margin margin **0.8v** $\mathsf{V}_{\mathsf{th}'}$ **Critical voltage** (determined by critical path)

1.2v

Subthreshold Circuits Break The Rules

Static logic still works below V_{th}
 Differences in I_{leak} continue to (dis)charge outputs
 But diminished I_{on}/I_{off} ratio results in big delays

The Basics of Subthreshold Circuit Operation

A Short Animation by Leyla Nazhandali @ Virginia Tech

Episode 1: Inverter operation in superthreshold domain

Episode 2: Inverter operation in subthreshold domain

Subthreshold

Subthreshold

(Not Too Demanding) Sensing Applications

Sensor Processing Data Rates

Phenomena	Sample Rate	Sample Precision		
Low Frequency Band (< 100 Hz)				
Ambient light level	0.017 - 1 Hz	16 bits		
Atmospheric temperature	0.017 - 1 Hz	16 bits		
Body temperature ·	0.1 - 1 Hz	8 bits		
Natural seismic vibration	0.2 - 100 Hz	8 bits		
Heart rate	0.8 - 3.2 Hz	1 bit		
Wind speed	1 - 10 Hz	16 bits		
Oral-nasal airflow	16 - 25 Hz	8 bits		
Blood pressure	50 - 100 Hz	8 bits		
Mid Frequency Band (100 Hz - 1 kHz)				
Engine temperature and pressure	100 - 150 Hz	16 bits		
EOG (eyeball electrical activity)	100 - 200 Hz	16 bits		
ECG (heart electrical activity)	100 - 250 Hz	8 bits		
High Frequency Band (> 1 kHz)				
EMG (skeletal muscle activity)	100 - 5 kHz	8 bits		
Audio (human hearing range)	$15~\mathrm{Hz}$ - $44~\mathrm{kHz}$	16 bits		

Sensing Performance Demands are Low

Fast Growing Leakage Complicates Design

Cycles per Instruction

Energy per Instruction

Energy per Cycle

$$E_{cycle} = \frac{1}{2}\alpha C_{s} V_{dd}^{2} + V_{dd} I_{leak} t_{clk}$$

Activity factor - average number of transistor switches per transistor per cycle

Supply Voltage

Clock period

Leakage current

Total circuit capacitance

Fast Growing Leakage Complicates Design

 $E_{cycle} = \frac{1}{2} \alpha C_s V_{dd}^2 + V_{dd} I_{leak} t_{clk}$

Activity factor - average number of transistor switches per transistor per cycle

Supply Voltage

Tension

Clock period

Leakage current

Total circuit capacitance

Impact of voltage reduction					
	l _{leak}	t _{clk}	E _{leak}	E _{dyn}	E _{cycle}
Superthreshold	↓ linear	 	~const.	↓ quad.	↓ quad.
Subthreshold	↓ linear	Π̂ exp.	☐ ~exp.	🚽 quad.	???
					$\langle \rangle$

Fast Growing Leakage Complicates Design

Impact of voltage reduction

	l _{leak}	t _{clk}	E _{leak}	E _{dyn}	E _{cycle}
Superthreshold	↓ linear	 	∼const.	↓ quad.	↓ quad.
Subthreshold	↓ linear	Π̂ exp.	exp.	🚽 quad.	???

Lessons from Architectural Studies [ISCA'05]

To minimize energy at subthreshold voltages, architects must:

Minimize area		To reduce leakage energy per cycle
Maximize Transistor utility	⇒	To reduce V_{min} and energy per cycle
Minimize CPI		To reduce Energy per instruction

- Winning designs tend to be compromising designs that balance area, transistor utility and CPI
- Memory comprises the largest leakage energy, therefore, efficient designs must minimize storage

Subliminal Architecture Overview

First Subliminal Chip [JSSC'08]

Pareto Analysis of Sensor Network Processors

How Subliminal Breaks the Rules

 Traditional circuit design relies an transistor switching to perform computation

 Static logic circuits continue to operate below V_{th} by modulating leakage currents

 Approach lends itself to low-demand sensor apps, as long as care is taken to build an efficient processor

More Thoughts on Research...

A rule-breaking approach is more prone to failure
 "If you're not failing every now and again, it's a sign you're not doing anything very innovative." -Woody Allen

Getting the word out is critical to an idea's success
 Be an evangelist for your project
 Name your project so the community can talk about it

Building H/W (ASICs) is a double-edged sword
+ Sometimes you can't be convincing w/o a physical demo
+ If you build it, they (i.e., industry) will come
- ASICs are hungry: they eat money, time people, opportunity
- Often physical demos render limited insights

Concluding Thoughts

The "rules" of low-power design guide much of the work in academia and industry today

Breaking these rules, can lead to significant benefits

- Razor resilient circuits use resiliency mechanisms to eliminate voltage margins
- Subliminal subthreshold voltage processor minimizes energy by deftly operating below the threshold voltage

To me, research is all about breaking the "rules", perhaps you too might find it a great way to identify new and exciting opportunities

