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Why is Security Important?

(to Architects and Compiler Designers)

o Hardware and system-level solutions are needed to protect
software and intellectual property (IP)

n Hardware and low-level software support improves speed and
quality of cryptography

o Hardware and system-level software support can most
effectively seal up security vulnerabilities

o Hardware and system-level software vulnerabilities enable
security attacks




Why is Security So Hard to Get Right?

o Industry is based on a patch-based approach
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o Leads to an endless security arms race

o Every second Tuesday, patch and pray...
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The Security Arms Race
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Today’s Security Strateqy Favors the Attacker
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Why Do Attackers Attack?

o To gain control of machines, e.g., BotNets

o To gain access to private information, e.g., credit card numbers
o To punish/embarrass individuals and institutions, e.g., Sony

o To educate and advocate, e.g., FireSheep

o To earn reputation in the cracking community, e.g., hackers vs. script
kiddies

o Efc...



The Ultimate Goal of the Designer

o Win the bear race...

Attackers Someone more You
valuable

? »&

n Value = f(easy of attack, population, loot therein, goodwill, etc...)




Tutorial Outline

o Security Basics

o Security Exploit Prevention Techniques

o Side-Channel Attacks and Protections

o Hardware for Secure Computing

o Security Vulnerability Analysis
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Security Basics

o Cryptography
0 Symmetric key cryptography
o Asymmetric key cryptography
0 Secure sockets layer (SSL) overview
0 Streaming ciphers
o Cryptographic Hashes

o Security Attacks

o Buffer overflow attacks

0 Heap spray attacks

0 Return-oriented programming attacks
0 Hardware-based security attacks

o Discussion Points
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Symmetric Key Cryptography

plaintext  wjp |15 = Ciphertext = =p plaintext
Privat@iK ey Privataiiiey

o Sender and receiver share a private key

o Anyone who knows the private key can listen in
o Often called a “private-key cipher”

o Examples: AES, DES, Blowfish
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Block Cipher
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Computer Architects, Ruby Lee
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Block Cipher Operation Modes
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Original ECB Encrypted CBC Encrypted
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Asymmetric Key Cryptography

plaintext  wp = Ciphertext - | =p plaintext
Publicif ey PrivatgiK ey

o Sender has the receiver’s public key, receiver has the private key

o Anyone can encrypt a message with the public key, only the
holder of the private key can decrypt the message

o Allows sharing of private information with no initial shared secret

o The reverse path also works: everyone can decrypt a message
that was encrypted by the holder of the private key

o Often called a “public-key cipher”
o Examples: RSA, Diffie-Hellman i



RSA Authentication

o Client sends a unique message to
server

| Private K
o Server encrypts unique message (c%je ey = Public Key

(e;n)

with private key

o Client decrypts the message with

public key and verifies it is the same

Authentication: only server could
return private-key encrypted unique
message
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Symmetric vs. Asymmetric Ciphers

o Symmetric Ciphers

0 Fastto compute
o0 Require prior shared knowledge to establish private communication

o Asymmetric Ciphers

o Orders of magnitude slower to compute
0 No shared secrets required to establish private communication

o Individual benefits create a need for both types of cryptography
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Secure Sockets Layer (SSL) Overvie

Encrypt client
symmetric key

with server
public key
client server
authenticate Decrypt with
_ server private key
public , to get symmetric key,
y return “finished”
Decrypt with | message encrypted
symmetric key htips get by symmetric key
to ensure ?
authentication \
successful ‘httpsy
private
Clos/
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Verifying Integrity: Hash Functions

Arbitrary-length Fixed-length

message m message digest y

Il'r;( "".,;,.;ﬁ
| SHAKESPEARE |

»  Oxdeadbeefbaadf00d

Cryptographic hash
Function, h

Goal: provide a (nearly) unique “fingerprint” of the message

Hash function for L-bit hash must demonstrate three properties:

1. Fastto compute y from m.
2. One-way: given y = h(m), can’t find m’ satisfying h(m’) = y without O(2") search
3. Strongly collision-free: For m, !=m,, we find h(m,)=h(m.,) with probability 1/2-

Widely useful tool, e.g., Has this web page changed?
Examples: MD5 (cryptographically broken), SHA-1, SHA-2
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Hash Application: Password Storage

o Never store passwords as plain text

o If your machine is compromised, so too are all the user passwords

o E.g., Gawker.com attack in 2010

o Why protect passwords on a compromised machine?

o Instead, store a cryptographic hash of the password

o Even with a compromised password file, the passwords are still unknown

0 Use “salt” to eliminate the use of “rainbow tables”

4 N

vivek:$13fnfffcSpGteyHdicpGOffiXX4ow#5:13064:0:99999:7:::

User Hashed Password

- /




Security Vulnerabilities are Everywhered{s

o Most often born out of software bugs
o NIST estimates that S/W bugs cost U.S. $60B/year

o Many of these errors create security vulnerabilities

Microsoft Windows Server Service RPC Vulnerability
November 5th, 2008

Origin; Re nto hiiffoar ovrarflawr hiia hitac
Linu
-osted by Posted by Cowboyleal on Sat Aug 11, 2007 09:20 AM
from the never-too-careful dept.
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Buffer Overflow Attack

o Buffer overflows constitute a large class of security vulnerabilities

o Goal: inject code into an unsuspecting machine, and redirect control

void foo() New Return address

{

int local_variables;
int buffer[256];

buffer = read_input();

return;

}

I'4 194ng

If read_input() reads >256 ints




Escalate: No code allowed on stack

o Use a heap-spray attack

o Inject executable data into heap, oo

—————————————9
{— -Other structures— —

then do random stack smash . i

0 Requires a blended attack (stack Laning here

overflow plus heap spray) —_—

} nop + shellcode

o0 Example: generate many strings in
JavaScript that are also attack code 06300000 |

After spray

are easily found

Low address
to 0x00000000

o Generously large heap sprays ] i— ~Other structures— —

o Protections? Discuss!
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Escalate: No new code at all

n Use return-oriented programming

o Smash stack with many returns to the
tails of functions

o Returns stitch together new code (from
existing code) using tails of functions

o This form of code injection doesn't inject
new code, but reuses the code that is
already there!

stack

Y%orsp—»

P[EO gAl-i“g.

foo() {

v pop %rdi
ret
}

foo() {

™ pop %rsi
ret
}

foo() {

\‘ call write
ret

}
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New Threats: Hardware-Based Attacks

o 2008: Kris Kapersky announced the discovery of an OS-independent remote

code execution exploit based on an Intel CPU bug (not disclosed)

o 2008: UIUC researcher Sam King demonstrate that 1400 additional gates
added to a Leon SPARC processor creates an effective Linux backdoor

o 2008: Princeton researcher Ed Felten demonstrates that disk encryption keys
can be extraction after system shutdown from frozen DRAM chips

o 2010: Christopher Tarnovsky announced a successful hardware exploit of an
Infineon TPM chip

o 2011: Sturton/Hicks develop non-stealthy malicious circuits, provide plausible
deniability to rogue designers

o 2014: Rowhammer bug demonstrated, able to flip DRAM bits in adjacent rows
even without access permission

o 2018: Spectre/Meltdown and later attacks exploit speculation and caches



Security Basics: Discussion Points

o Does the security arms race ever end?

o How do | know that | have the server’s true public key?

o Can hardware-based security exploits be fixed?

o Do all security protocols and algorithms have a fixed shelf life?
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Security Exploit Prevention Techniquesi&)

x
e,

o No-Execute (NX) Stacks

o Address Space Layout Randomization (ASLR)
o Stack Canaries

o Encrypted Pointers

o Hardware-Based Buffer Overflow Protection

o Safe Languages

o Discussion Points
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No-Execute (NX) Stacks

o Eliminate stack code injection by
preventing code execution on stack

o Can be a problem for some safe
programs, e.g., JITs

o NX bit in newer x86 PTEs indicates
no-execute permission for pages

stack

unused

No Execute

Execute

29



. . . Random
o Atload time, insert random-sized Sized Padding

padding before all code, data, stack
stack sections of the program
unused
o Successfully implementing a buffer Random

o . . Sized Padding
overflow code injection requires

guessing the padding geometry on
the first try

Random

o Implemented in recent Windows, Sized Padding
Linux and MacOS kernels

30



Attacking ASLR

o ASLR make stack based code

injection difficult because the New Return address
injected return address is
different for each execution Sad Local variables

o A successful attack requires a
brute-force guess of an address
containing injected code on the
first try

4 1=4ng

o ASLR can be compromised with
heap-spray attacks 31



Escalate: No code allowed on stack

o Use a heap-spray attack

High address High address
to Ox7Ffref to Ox7Fffrff
|

I— —Other structures— =
|

Landing here
3c0dff7d

Landing here
3c0dff7d

} nop + shelicode

— 5 —»3
06ab0000 | 06ab0000

\— ~Other structures— —E
|
________________
Before spray the After spray the
heap heap
Low address Low address Createby Freedom
to 0x00000000 to 0x00000000  (http://sf-freedom. blogsplot.com)

June 26, 2006

o Inject executable data into heap, then perform random stack smash

o0 Example, generate many strings in Javascript that are also real code

o Generous heap sprays will likely be found by stack smash attack

32



Stack Canaries with StackGuard

o Implemented in compiler (GCC), runtime check of stack integrity

o Embed “canaries” in stack frame before the return address, in
function prologue, verify their integrity in function epilogue

o Canary is a per-instance random value that attacker must guess
on the first try for a successful attack

o About 10% overhead for typical programs

o Can be thwarted with overflow attacks on function pointers

Frame 2 Frame 1

to

canary Canary

stack

33



StackGuard Variant - ProPolice

o IBM enhancement of StackGuard, in GCC, deployed in OpenBSD

o Moves pointers in front of arrays, to protect from overflows

String _ } No arrays or pointers
e T
stack | - S

34



Encrypting Pointers with PointGuard (&

o Encrypt all pointers while in memory

o Using a per-instance random key, generated when program starts

o Each pointer is XOR'ed with this key (decrypted) when loaded from memory
to registers or when stored back into memory (encrypted)

o Pointers cannot be overwritten by buffer overflow while in registers

o Protects return addresses and function pointers

o Attackers must guess, on the first try, the random key to
implement a successful pointer attack

o Otherwise, when pointer is overwritten its XOR decrypted value will
dereference to a random memory address

o Very difficult to thwart, but pointer encryption/decryption can slow
programs by up to 20%



Normal Pointer Dereference

CPU
1. Fetch pointer value 2. Access data referenced by pointer
4
Point
Memory ox1234 Date
0x1234
CPU

2. Access attack code referenced

by corrupted pointer
1. Fetch pointer value

Corrupted pointer
Memory Data Attack
code
0x1234 0x1340
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PointGuard Dereference

Memory

Memory

CPU
1. Fetch pointer /; x1234 2. Access data referenced by pointer
value Decrypt

4

Encrypted pointer

0x7239 Data

0x1234
Decrypts to C P U
FERENT VELLE 2. Access random address;
0x9786 segmentation fault and crash
1. Fetch pointer
value Decrypt
Corrupfed pointer Date Attack T
code

0x1234 0x1340 0x9786

37



Sandboxing: Imprison Potential
Violators Early

Chrome NaCL Sandbox Architecture

o Often attackers will infiltrate one ——
program domain to attack another enager
0 E.g., inter-tab “man-in-the-browser” attacks ool |
o Sandboxes utilize virtual memory _: %
. . SHI I
system to contain potential damage oo Moo | 8
0 Programs inside sandbox run in NaCl mode Poy Engne
o External interactions require validation :
n Generally reliable but still attackable o
: Target g
0 Through missed external interactions e b e £
o Through bugs in the policy manager |
gh bug policy 9
o Through system-level bugs or external
38
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NaCL Native Execution:
The Rules of the Game

C1

C4

C5

C6

C7

Once loaded into the memory. the binary is not writable,
enforced by OS-level protection mechanisms during exect-
tion.

The binary is statically linked at a start address of zero, with
the first byte of text at 64K.

All indirect control transfers use a naclimp pseudo-
instruction {(defined below).

The binary is padded up to the nearest page with at least
one hlt instruction (Oxf4)

The binary contains no instructions or pseudo-instructions
overlapping a 32-byte boundary.

All valid instruction addresses are reachable by a fall-
through disassembly that starts at the load (base) address.
All direct control transfers target valid instructions.

Table 1: Constraints for NaCl binaries.

and $eax, Oxffffffel
mp *teax




Perhaps We Should Go to the Root of the
Problem

o Most buffer overflows occur due to memory access errors

o Spatial - Buffer overflow c l

char *c = malloc(100); a

c[1l01l] = ‘a’; 0 99

o Temporal - Dangling reference pl p2

char *pl =|malloc (100) ; \rx/

char *p2 = pl;
free (Pl) ; (T

99

p2[0] = ‘x’;

40



Safe Languages Prevent Many Attacks

o Runtime checks verify as the program runs that all accesses are in
the bounds of intended live storage

o Examples: Python, JavaScript, Java, Ruby, Go
0 Reduces the attack surface available to attackers

o Itis also possible to provide runtime checking in non-safe
languages, but at some cost

41



Are Safe Languages Safer?

o Qualys top 5 vulnerabilities for February 2016

1. Microsoft Internet Explorer Vulnerability

2. Oracle Java SE Critical Patch Update

3. Adobe Flash Player and AIR Multiple Vulnerabilities

4.  Microsoft.Net Framework Elevation of Privilege Vulnerability

5. Microsoft Windows Network Location Awareness Service Security Bypass

o Yes, but safe languages are not a panacea

o Buffer overflows still occur in the interpreter, JIT, runtime, OS, and drivers
o Doesn’t mitigate non-buffer overflow-based attacks, such as SQL injection
0 Not easily made available to legacy programs in unsafe languages

o But, if given a choice, why not choose a safer (and likely more
productive) language?
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Protecting Control Flow with Control-Data Isolation (CDI) (g%

Vulnerable Code

[Pls: Austin, Das]

Control-Data Isolated Code

}

Int foo() { Int bar() ({
/* fptr */ return; }
fptr = %ecx;
call *fptr; Int baz() {

Work: return; }

S

Int foo() {
/* fptr */
fptr = %cx;
if (*fptr==bar)
call bar;
Ret 1:
else if (*fptr==baz)
call baz;
Ret 2:
else
call InvalidCFG!
Work:

}

Int bar() {
if ([$sp] == Ret 1)
inc %sp;
jump Ret 1;
else
call InvalidCFG!;}

Int baz() {
if ([¥sp] == Ret 2)
inc %sp;
jump Ret 2;
else
call InvalidCFG!;}

- All indirection removed, use whitelisted direct jumps to thwart all code

injection

- Direct, as specified by programmer

- Validated, via whitelisting, before the transition occurs
- Complete, no jumps data segment, no instructions move data to PC

- System supports run-time code gen and dynamic libraries
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Architecture Optimized for CDI Execution

A3

) .
i,
18

[Pls: Austin, Das]

PC —> BTB —p»| Fetch |&————

Edge
GHR Cache | Squash,
with execute

<src,ta rget> Range Table sled

Commit

T Retire

- S/W-only CDI has19% worst-case slowdown (7% average)
- Due to indirect edge whitelist validation that occurs at all indirect jumps

- Edge cache memoizes edge validations, doubles as predictor
- With range table, 6kB edge cache reduces slowdowns to 0.3%
- Indirect target prediction cuts misprediction rate in half over simple BTB



Prevention: Discussion Points

o Are hardware-based security protection mechanisms worth the
silicon to manufacture them?

o Software-based protection mechanisms seem to be more
hardened than hardware-based techniques, why is this the case?
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Side-Channel Attacks and Protections

o Timing-Based Attacks

n Cache-Based Attacks

o Power Monitoring Attacks
o Fault-Based Attacks

o Discussion Points

47



Side-Channel Attacks

o Even carefully designed systems
leak info about internal computation

o E.g., safes can be cracked by carefully
listening to the tumblers )

n Clever attackers can utilize leaked
information to grain secrets v

o0 Generally not directly
o Use statistical methods over time

o These attacks are often considered
attacks on the implementation,
rather than the algorithm



Cache-Based Side-Channel Attack

0 Snoop on cache misses to
determine code and data
accesses

0 Second process can force
misses to DRAM

0 Reveals another process’
memory accesses

o Algorithms such as AES are
designed from the ground
up to thwart these attacks

MEMORY
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Cache-Based Side Channel Attacks

1. Resource sharing

Cache accesses observed by spy
process evicting cached data

2. Optimization features

Cache implemented to overcome
latency penalty

3. Increased visibility

Performance counters provide
accurate picture

MEMORY
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Hardware Design Techniques
Facilitate Side Channel Attacks

1. Resource sharing
0 Reduces hardware needed to implement design functionality
o0 Results in interaction and competition revealed in timing and power

2. Design optimizations
o Typical case optimized, thus the corner cases leak information

o Corner cases run slower and use different hardware leading to distinct
timing and power signatures

3. Increased visibility and functionality
0 Provides more information or introduces new interactions

o Facilitates observation of unique activities/interactions with unique timing
and power signatures



Speculative Covert Channel Attacks

o Spectre/Meltdown are speculative covert

communication channels

o0 Confused (speculating) deputy attack
0 Has generated intense interest in community

MELTDOWN

o Meltdown: read out kernel private data

1. Issues illegal load in the mispeculation stream - ™
2. Convert data bit to cache/BTB/FPU/etc. load flush_caches();
3. Time user-level reads to 0/1 addresses throw new someException();
unsigned val = kernelArr[index1];
o Meltdown/Spectre mitigations have arrived unsigned index2 = ((val&1)*0x100);
(do these mitigations work? Discuss!) \uns'gned valuez = userArindexz] -

0 Stop sharing in the caches (CAT, DAWG)

0 Remove precision from timing (NaCl, Timewarp)

o0 Add non-speculating branches (RETpoline, LFENCE)
o0 “Ghost” speculation (InvisiSpec)
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AES: 126‘3-bit‘secret key
unknown secret key brute force impossible

[s

- falof )
94§

........

P = S(K,®C)
E = HmW(P)

estimation

compare both and
key fragment guess ©-9- QU hoose key guess

brute fo with best match
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Power Analysis Example

o Unprotected ASIC AES b
with 128-bit datapath, key
scheduling

o Measurement: lpeak in round 11

o Estimation; HamDistance
of 8 internal bits

o Comparison: correlation

D Key oIS eaS”y found despite o o _ CCIe of |tert

' i i suppl current
algorithmic noise = HSY — mrt
1 1.525 WD Bl TR 4 36. ?ERESbng'
o 128-bit key under 3 min. U oy uusee TR
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Fault-Based Attack of RSA

Correct behavior: Private Key
(d,n)

0 Server challenge:

s=mYmodn

o Client verifies:

m=s¢emodn

(d,n)
Faulty Server: .

$I=mmodn




Fault-Based Attack of RSA

o The attacker collects the faulty signatures

Private Key —

i
o The private key is recovered one window at the time

o

o The attacker checks its guess against the collected signatures
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Retrieving the Private Key £

o The private key is recovered one window at the time, guessing

where and when the fault hits

d= ds X X

Already
known

Which Multiplication?

$ = (...(@16),7&@'2)22)2‘)md,)16md0

Value?

Which bit?

o Extend the window if no signature confirms value of guess

o7



Fault Injection Mechanisms

How to make hardware fail:

v Lower voltage causes signals to slow down, thus missing the deadline
iImposed by the system clock

o High temperatures increase signal propagation delays
o Over-clocking shortens the allowed time for traversing the logic cloud

o Natural particles cause internal signals to change value, causing errors

All these sources of errors can be controlled to tune the fault injection rate
and target some units in the design
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8,800 corrupted signatures
collected in 10 hours

RSA 102¢- bit prlvate key Ny -

Dlstrlbuted appllcatlon Wlth-81 machl'nes for offlme analysis

L. S, € 4 wese=.

Private key recovered in
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Cold-Boot Attacks are Hot Again

o Cold-boot attacks steal encryption keys

o Super-cool DRAM, rip it from running machine
0 Analyze it in a second machine without security

o Many modern DDR3+ interfaces utilize memory
scrambling

o Data to DRAM is encrypted with per-boot key
o Non-chained cipher, only 48 key expansions

o Recently, we cold-boot attacked a DDR3
interface with memory scrambling

o Used known plaintext to identify key expansions
0 Located TrueCrypt AES keytable, regen’ed key

[t S T

L

U
ol |
U |
£ Jela f f
| e
| LR Ml

CLIIR |
A | B! ]
o THEn

15
S
e
e
‘
.

o Developed a strongly encrypted DDR3+

o Encryption has zero exposed latency for DRAM row
buffer hits

: TR
interface '|||-!ﬁfﬁ}"‘| i
":! L i M
o Encryption uses counter-mode AES, it lacks correlation ;1% I":‘!:
that makes current CPUs attackable I é :
fiit!
I
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Security Implications of Approximate HW

ApPrXImate Mem9w _ Man-in-the-Middle Attack Scenario

Original connection ’
— > el
L8

MNew connection

Applicable to image processing, -
Machine Learning, Sensor Networks z

Observation:

1. Memory cells decay in order that is robust against environmental
conditions

2. Memory cells decay rate is largely due to manufacturing variances

Vulnerability:
De-anonymize approximate systems by using memory errors as a fingerprint
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Row Hammer Attack

o Attack flips bits in victim DRAM
row, without permission to access

0 Result of wordline crosstalk

0 Creates small pulses on adjacent
wordlines, increases bitcell leakage

o0 Hammer enough times (~400k) in
one refresh cycle (~64ms) and bits
will flip in victim row

o Typical protection requires
doubling the refresh rate

o Why doesn't this happen all the
time?

aggressor

o
/

— wordlines

crosstalk
channels

W
e
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ANVIL S/W-Based Rowhammer Protection

Hammer Minimum Number Time to
Technique of DRAM Row first
. Accesses bit flip

Single-Sided '_ .
s cLE s K 58 ms
Double-Sided

22 -
with CLFLUSH 22K 15ms
Double-Sided i

22 3 .
without CLFLUSH 220K 45 ms ‘/

- Rowhammer attack exposes memory

- “Hammering” adjacent DRAM rows flips bits
- Remedy: 2x refresh (32ms) or no CLFLUSH

- Current protections are easily broken
- With efficient CLFLUSH hammer or cache tricks
- We announced world-first CLFLUSH-free attack

- Developed ANVIL S/W protection

- HIW perf counters identify high-locality misses
- Refreshes potential victims, <1% slowdown

N -

/ Process Process Process
I
1 1 2 n
1 ] ]
I
I
I
I .
i
. Software <
N e ———— v g
TS5 |55
<ll53 |58
---------------------- v f==-}=.
’ =
ll *g Performance
I Processor < | Counters
: n
1
' 4
I
i
| Hardware DRAM
~

\_-----—,

———————————————————————————————
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Hardware Trojans

o Hardware-based back doors
inserted into the design by a
rogue engineer

o Typically coupled with a trigger
circuit that recognizes a code
or data sequence

o Implement with hash function

o Difficult to detect

o Given range of approaches

o0 Many points of entry in the design
process

Trusted -« - » l Idea ‘
‘ Malicious IP-Cores
Intentional mistakes - # I Specification }
v
Malicous Design F
Tampering Files ™ | Design (HDL) ‘ P
Cores
v I Synthesis J
I\Iauipulated_l ¢ -
Tools " | anflng |
A I Place & Route ‘

Tampering Files . ; Tampering Files
TR Config : Hardware s
File Layout
Manipulation v
While Loading y Production Manipulate Design
s | Loader | Process | 4~
Backdoors o L Attack IC
Ceom JFPGAE JASICE &
TTTT TTTT
Malicions V
External | Rosird

Components 1[:]:
LE _ 1
“lARE 42

Ll
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Processor Trojan Example

PC [ Branch Unit
I—cache REG — MEM
i SIGN EXT | " g
B 5 E 5
FE stgge| & ID_stage a8 EX_stage E_ MEM _stage E_ WB_stage
Trigger hash 1 privilege bit

o Processor updates privilege bit in EX stage

o |f code sequence precedes update (recognized by trigger hash)

o Privilege update is always “1” (enter privileged mode)

o Attack: 1) execute trigger code sequence, 2) own machine (as you now have
privilege mode access)



d

O

d

PC [ Branch Unit CE‘F
l—cache REG N MEM
—>Div0
et Ceis,
: ; : -
FE_stage| & 1Dsge: |9 EK stage [* | MEM_stage |2 | WB_stage
o >| privilege bit
OpenRISC with (A2) analog malicious circuit i

o Charge share with infrequent signals (e.g., Div0, Cs,) to charge up Igaky passive cap
o If cap charges up fully, CPU privilege bit is set

Attack: 1) frequently execute unlikely trigger code sequence, 2) own machine (as you now have privilege
mode access)

Taped out chip, attack sequence working in the lab, no false positives detected

o Malicious circuit is not detectable by current protections (i.e., lacks power/timing signature and it has no digital
representation)
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Side Channels: Discussion Points

o Is it possible to close a side channel completely?

o How much concern should we put on attacks that have
unrealistic/favorable pre-requisites, e.g., Bernstein’'s requirement
to control key and plaintext plus cycle-level timing, Austin’s
requirement to control server voltage
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Hardware for Secure Computing

o Secure boot — TPMs

o Generating True Random Numbers

o Crypto-engines — CryptoManiac

o Physical unclonable functions

o Chiplocking Technologies

o Secure Execution

o High-Bandwidth Digital Content Protection

o Discussion Points



Bootstrapping a typical PC

Bootloader Operating

System
BIOS

4 \ GRUB
Stage2

BIOS GRUB GRUB SELinux
INIT Extensmns Stage1. G Kernel

U A \Babatavy;

Flash memory Disk Disk

What can go wrong before the kernel runs?
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Secure Boot

o Goal of secure boot
o Ensure only a secure system is booted
0 Operating system that is bootstrapped is based on a untampered foundation

o Why is this useful?
o Ensure original integrity of system (i.e., no hacking)

o Protect internal intellectual property (i.e., IP)
o Examples: iPhone, Xbox 360, SELinux

o Implementation can only be guaranteed if-and-only-if:
0 Base layer is immutable (requires hardware support)
0 The integrity of the base layer is verified
o Transition to higher layer only occurs after valid verification



Trusted Platform Module (TPM)

Endorsement Platform Non-Volatile Storage

Key (EK) Configuration | Accepts only signed data
Immutable Register (PCR) (EK, AIK, SRK)

LPC bus

Random Secure

Key

Number Hash
Generator SHA-1

Generation
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Operating
System

—

=TT
SELinux
Kernel
#

Bootloader

I I
Flash memory Disk Disk
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Why Are Random Numbers Important? (&

o Generally, secret key == random number

o |f your random number generator is weak (i.e., guessable), then
your secret key are guessable

o Example: Early Netscape implementation seeded a pseudo-random
number generator with <time of day, process ID, parent process ID>

o Where can we find true random numbers?

o Random atomic or subatomic physical phenomenon whose unpredictability
can be traced to the laws of quantum mechanics (Best)

o0 Human behavior, e.g., moving a mouse (OK)



Intel Random Number Ge

Slow oscillator
samples fast one

Noise Voltage High-
N VAR AT M grslifiar ) Controlled Speed
;/' TR P Oscillator Oscillator
Johnson Thermal i i
Noise Source
(Res|slar) Voilal Variable-rate\ ~ SUPET L>*Von Neumann
random bit stream corrector removes
l bias
Stgfun:rlglég Digital Corrector

Bus

Figure 1: Block diagram of the Intel RNG

76



Metastability Based RNG

Cycle to cycle Lit generation

P em M Mm s En @ e En AR G W ER EE TR M A R wR R ST TR R AR e SR R A A G G MR me G A e Em R e W e

Metastable
circuit Start

Resolution ime based grading
and metastability control

P M e G e e e e e EE e Er s wm ee e e

: ! : So— | | J  tgTimeto E
l Charge ! ' - Digital -
' | control array ! b 04 Stop Converter !
E E : Random bit f
: i TTTTTTTTTTTTmmmmemmeseees , grade |bit E
! Statistical L :
| Control Analysis  [* tq N E
“""‘““"‘"‘“”""""'""-'_--: Qualifier — Memory E
Random Output :
..0100101..... * Qualty
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n SGI Lavarand — Lava lamp based random number generator

o US Patent #5732138 — hash the image of the lamp

o Provided an online source of random numbers, 1997-2001



CryptoManiac Crypto Processor

0 Goal - fast programmable private-key bulk cryptographic processing

o Fast . efficient execution of computationally intensive cryptographic workloads

o0 Programmable: support for algorithms within existing protocols, support for new
algorithms

o Motivation
o Cipher kernels have very domain specific characteristics

0 Solution - hardware/software co-design

o0 Software: crypto-specific ISA
0 Hardware: efficient co-processor implementation

0 Results

o0 More than 2 times faster than a high-end general purpose processor and orders of
magnitude less area and power
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CryptoManiac System Architecture [ISCA’01]

CM

/| Proc
In Q CM Out Q
Encrypt/decrypt §?§ %/ Proc Ciphertext/plaintext
requests J2e , results
e o
o 2

\ CM

o A highly specialized and efficient crypto-processor design
0 Specialized for performance-sensitive private-key cipher algorithms
o Chip-multiprocessor design extracting precious inter-session parallelism
o CP processors implement with 4-wide 32-bit VLIW processors
o0 Design employs crypto-specific architecture, ISA, compiler, and circuits
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CryptoManiac Processing Element (CM)

< IE > < ID/RE > ‘EX/MEM, < WB >
_’ T

I \ 4
—> M E— RF INQ/OutQ

E Interface

M

Data
4:‘ Mem > Keystore

Interface
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Crypto-Specific Instructions

o frequent SBOX substitutions Table Index

31 10 0 24 16 8 0
o X =sbox|[(y >> c) & 0xff]

o0 SBOX instruction U e opcode

0 Incorporates byte extract

00

0 Speeds address generation

through alignment restrictions
SBOX Table

0 4-cycle Alpha code sequence
becomes a single CryptoManiac
instruction

n SBOX caches provide a high-
bandwidth substitution
capability (4 SBOX's/cycle)



Crypto-Specific Instructions

o Ciphers often mix logical/arithmetic operation

o Excellent diffusion properties plus resistance to attacks

o |ISA supports instruction combining
o Logical + ALU op, ALU op + Logical
o Eliminates dangling XOR'’s

o Reduces kernel loop critical paths by nearly 25%

o Small (< 5%) increase in clock cycle time

Add-Xorr4,r1,r2, r3 r4 <- (r1+r2)®r3

And-Rot r4, r1, r2, r3 r4 <- (r1&&r2)<<<r3
And-Xor r4, r1,r2, r3 r4 <- (r1&&r2)®r3
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{long}
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Scheduling Example: Blowfish

SBOX

SBOX

SBOX

SBOX SBOX SBOX SBOX
Add-XOR Load

Add XOR

XOR-SignExt

Takes only 4 cycles per iteration
to execute!
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90.0

0C-12

O Alpha B ISA+
O I1SA++ O04WC

m3WC @DO2WC

OC-3

HDTV

Blowfish 3DES IDEA MARS

RC4

T-3

RC6 Rijndael  Twofish
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Crypto Support in Modern CPUs

o IBM Power7 and Power8: Implement multiple AES block cipher
operation modes entirely in hardware (AES-GCM, AES-CTR,
AES-CBC, AES-ECB)

0 Intel Westmere(32nm) and newer: implement AES block
cipher hardware accelerators; software implements

operation modes

AESENC. This instruction performs a single round of encryption.

AESENCLAST. Instruction for the last round of encryption.

AESDEC. Instruction for a single round of decryption

AESDECLAST. Performs last round of decryption.

AESKEYGENASSIST is used for generating the round keys used for encryption.
AESIMC is used for converting the encryption round keys to a form usable for decryption
using the Equivalent Inverse Cipher.
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Hardware for Per-IC Authentication

o How can we securely authenticate devices?

o Keycards, RFIDs, mobile phones

0 Genuine electronics vs. counterfeits

o0 Device allowed to display a purchased movie

o Ensure we are communicating with a specific server

o Each system must have a unique IC

0 Expensive to customize each manufactured IC

o Physical unclonable functions (PUFs) implement this very cheaply
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Physical Unclonable Functions (PUFs)

o Extract secrets from a complex physical system

o Because of random process variations, no two Integrated Circuits even with the same
layouts are identical

o Variation is inherent in fabrication process
0 Hard to remove or predict
0 Relative variation increases as the fabrication process advances

o Delay-Based Silicon PUF concept

0 Generate secret keys from unique delay characteristics
of each processor chip

Challenge

c-bits l

Combinatorial
1 ’ Circuit ~_[

Response time
—  n-bits
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Arbiter-Based Silicon PUF

c-bit 0 0 L
Challenge ‘ ‘ ‘ 1
D Q— 1 iftop
I path is
Rising faster,
Edge G else 0
Response

o Compare two paths with an identical delay in design

0 Random process variation determines which path is faster

o An arbiter outputs 1-bit digital response

o Multiple bits can be obtained by duplicating circuit or use different challenges

o0 Each challenge selects a unique pair of delay paths

90



XOM Secure Execution
JARN

IP Key

Decrypt with

XOM public key

Encrypt/Decrypt

Encrypted 1$ Encrypted D$

n Programs are encrypted with symmetric key

o XOM processor accesses encrypted program by decrypting IP
key with XOM public key

o XOM architecture implements secure and insecure domains,
with policies to move data between differing domains
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Hardware: Discussion Points

o What are the relative advantages and disadvantages of a crypto
engine implemented as an ASIC, for a specific cipher?

o Can PUFs be affected by extreme environmental changes and
silicon wearout can compromise PUF integrity?
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Where to Learn More...

o USENIX Security Conference, www.usenix.org

o |[EEE Symposium on Security and Privacy, http://www.ieee-
security.org/TC/SP-Index.html

o International Cryptology Conference, http://www.iacr.org
o Wikipedia, http://en.wikipedia.org/wiki/Computer_security
o Slashdot Security, http://slashdot.org/stories/security

o Schneier on Security, http://www.schneier.com/




