
Building Secure Hardware and Software

Todd Austin
University of Michigan

Two Day Tutorial



Why is Security Important?
(to Architects and Compiler Designers)

 Hardware and system-level solutions are needed to protect 

software and intellectual property (IP)

 Hardware and low-level software support improves speed and 

quality of cryptography

 Hardware and system-level software support can most 

effectively seal up security vulnerabilities

 Hardware and system-level software vulnerabilities enable 

security attacks
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 Industry is based on a patch-based approach 
to security
 Find and fix vulnerabilities (i.e., bugs in S/W that can be 

exploited)

 S/W and H/W complexity growth massively outstrips 
security bug verification capabilities

 Manual verification is fallible, formal methods fall short 
when proving something CANNOT happen

 Key unaddressed challenge: how do we 
protect against unknown (0-day) attacks?
 Known vulnerabilities that have not found and as yet 

unknown vulnerabilities

 Leads to an endless security arms race
 Every second Tuesday, patch and pray…
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Why is Security So Hard to Get Right?

Out-of-Core
Accelerators

Maltiel estimates Our estimates
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The Security Arms Race

Develop/Debug
Applications

and Platforms

Deploy
Counter-
measures

Attackers
Hack Customers
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 Attacking is fundamentally easier than 
protecting against attacks

 Attacking requires one vulnerability

 Protecting requires 100% coverage
of all vulnerabilities (impractical to
achieve)

 Related software growth rates:

 Protections: ~2x LoC every 2 years

 Attacks: ~1.4x LoC in 30 years

 As a result, vulnerabilities are on the rise

 And, rate of attacks is exploding
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Today’s Security Strategy Favors the Attacker



Why Do Attackers Attack?

 To gain control of machines, e.g., BotNets

 To gain access to private information, e.g., credit card numbers

 To punish/embarrass individuals and institutions, e.g., Sony

 To educate and advocate, e.g., FireSheep

 To earn reputation in the cracking community, e.g., hackers vs. script 

kiddies

 Etc…
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The Ultimate Goal of the Designer

 Win the bear race…

 Value = f(easy of attack, population, loot therein, goodwill, etc…)

Attackers Someone more
valuable

You
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Tutorial Outline
 Security Basics

 Security Exploit Prevention Techniques

 Side-Channel Attacks and Protections

 Hardware for Secure Computing

 Security Vulnerability Analysis
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Security Basics
 Cryptography

 Symmetric key cryptography

 Asymmetric key cryptography

 Secure sockets layer (SSL) overview

 Streaming ciphers

 Cryptographic Hashes

 Security Attacks

 Buffer overflow attacks

 Heap spray attacks

 Return-oriented programming attacks

 Hardware-based security attacks

 Discussion Points
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Symmetric Key Cryptography

 Sender and receiver share a private key

 Anyone who knows the private key can listen in

 Often called a “private-key cipher”

 Examples: AES, DES, Blowfish

plaintext g(x) g(x)ciphertext plaintext

Private Key Private Key
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Block Cipher

encrypting each block separately not secure:  
identical plaintext blocks --> identical cipher 

text blocks

Image from: Security Basics for
Computer Architects, Ruby Lee
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Block Cipher Operation Modes

Ek

Cipher Block 
Chaining

(CBC)

Counter Mode
(CTR)

Images from: Security Basics for
Computer Architects, Ruby Lee 13



ECB vs. CBC Streaming Modes

Original ECB Encrypted CBC Encrypted
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Asymmetric Key Cryptography
plaintext ciphertext plaintextf(x) g(x)

Public Key Private Key

 Sender has the receiver’s public key, receiver has the private key

 Anyone can encrypt a message with the public key, only the 

holder of the private key can decrypt the message

 Allows sharing of private information with no initial shared secret

 The reverse path also works: everyone can decrypt a message 

that was encrypted by the holder of the private key

 Often called a “public-key cipher”

 Examples: RSA, Diffie-Hellman 15



RSA Authentication

 Client sends a unique message to 

server

 Server encrypts unique message 

with private key

 Client decrypts the message with 

public key and verifies it is the same

 Authentication: only server could 

return private-key encrypted unique 

message

Public Key
(e,n)

Private Key
(d,n)

m

s m
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Symmetric vs. Asymmetric Ciphers

 Symmetric Ciphers

 Fast to compute

 Require prior shared knowledge to establish private communication

 Asymmetric Ciphers

 Orders of magnitude slower to compute

 No shared secrets required to establish private communication

 Individual benefits create a need for both types of cryptography
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Secure Sockets Layer (SSL) Overview

authenticate

private key

serverclient

https get

public

.

.

.

https recv

close

private

Encrypt client
symmetric key

with server
public key

Decrypt with
server private key

to get symmetric key,
return “finished”

message encrypted
by symmetric key

Decrypt with
symmetric key

to ensure
authentication

successful
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Verifying Integrity: Hash Functions

 Goal: provide a (nearly) unique “fingerprint” of the message
 Hash function for L-bit hash must demonstrate three properties:

1. Fast to compute y from m.
2. One-way: given y = h(m), can’t find m’ satisfying h(m’) = y without O(2L) search
3. Strongly collision-free: For m1 != m2, we find h(m1)=h(m2) with probability 1/2L

 Widely useful tool, e.g., Has this web page changed?
 Examples: MD5 (cryptographically broken), SHA-1, SHA-2

Cryptographic hash 
Function, h

Arbitrary-length
message m

0xdeadbeefbaadf00d

Fixed-length
message digest y
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Hash Application: Password Storage

 Never store passwords as plain text

 If your machine is compromised, so too are all the user passwords

 E.g., Gawker.com attack in 2010

 Why protect passwords on a compromised machine?

 Instead, store a cryptographic hash of the password

 Even with a compromised password file, the passwords are still unknown

 Use “salt” to eliminate the use of “rainbow tables”

User Hashed Password



Security Vulnerabilities are Everywhere

 Most often born out of software bugs

 NIST estimates that S/W bugs cost U.S. $60B/year

 Many of these errors create security vulnerabilities
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Buffer Overflow Attack
 Buffer overflows constitute a large class of security vulnerabilities

 Goal: inject code into an unsuspecting machine, and redirect control

void foo()
{

int local_variables;
int buffer[256];
…
buffer = read_input();
…
return;

}

Return address

Local variables

buffer

B
u

ffe
r F

ill

New Return address

Bad Local variables

If read_input() reads 200 intsIf read_input() reads >256 ints

buffer
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Escalate: No code allowed on stack

 Use a heap-spray attack

 Inject executable data into heap, 

then do random stack smash

 Requires a blended attack (stack 
overflow plus heap spray)

 Example: generate many strings in 
JavaScript that are also attack code

 Generously large heap sprays 

are easily found 

 Protections? Discuss!
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Escalate: No new code at all

 Use return-oriented programming

 Smash stack with many returns to the 

tails of functions

 Returns stitch together new code (from 

existing code) using tails of functions

 This form of code injection doesn’t inject 

new code, but reuses the code that is 

already there!
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stack

foo() {
…
pop %rdi
ret

}

foo() {
…
pop %rsi
ret

}

foo() {
…
call write
ret

}

%rsp



New Threats: Hardware-Based Attacks
 2008: Kris Kapersky announced the discovery of an OS-independent remote 

code execution exploit based on an Intel CPU bug (not disclosed)

 2008: UIUC researcher Sam King demonstrate that 1400 additional gates 

added to a Leon SPARC processor creates an effective Linux backdoor

 2008: Princeton researcher Ed Felten demonstrates that disk encryption keys 

can be extraction after system shutdown from frozen DRAM chips

 2010: Christopher Tarnovsky announced a successful hardware exploit of an 

Infineon TPM chip

 2011: Sturton/Hicks develop non-stealthy malicious circuits, provide plausible 

deniability to rogue designers

 2014: Rowhammer bug demonstrated, able to flip DRAM bits in adjacent rows 

even without access permission

 2018: Spectre/Meltdown and later attacks exploit speculation and caches
25



Security Basics: Discussion Points

 Does the security arms race ever end?

 How do I know that I have the server’s true public key?

 Can hardware-based security exploits be fixed?

 Do all security protocols and algorithms have a fixed shelf life?
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Security Exploit Prevention Techniques

 No-Execute (NX) Stacks

 Address Space Layout Randomization (ASLR)

 Stack Canaries

 Encrypted Pointers

 Hardware-Based Buffer Overflow Protection

 Safe Languages

 Discussion Points
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No-Execute (NX) Stacks

 Eliminate stack code injection by 

preventing code execution on stack

 Can be a problem for some safe 

programs, e.g., JITs

 NX bit in newer x86 PTEs indicates 

no-execute permission for pages static

text

stack

heapheap

unused

Execute

No Execute
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Address Space Layout Randomization (ASLR)

 At load time, insert random-sized 

padding before all code, data, 

stack sections of the program

 Successfully implementing a buffer 

overflow code injection requires 

guessing the padding geometry on 

the first try

 Implemented in recent Windows, 

Linux and MacOS kernels

static

text

stack

heapheap

unused

Random
Sized Padding

Random
Sized Padding

Random
Sized Padding

Random
Sized Padding
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Attacking ASLR

 ASLR make stack based code 

injection difficult because the 

injected return address is 

different for each execution

 A successful attack requires a 

brute-force guess of an address 

containing injected code on the 

first try

 ASLR can be compromised with 

heap-spray attacks

Return address

Local variables

buffer

B
u

ffe
r F

ill

New Return address

Bad Local variables

buffer
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Escalate: No code allowed on stack
 Use a heap-spray attack

 Inject executable data into heap, then perform random stack smash

 Example, generate many strings in Javascript that are also real code

 Generous heap sprays will likely be found by stack smash attack
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Stack Canaries with StackGuard
 Implemented in compiler (GCC), runtime check of stack integrity

 Embed “canaries” in stack frame before the return address, in 

function prologue, verify their integrity in function epilogue

 Canary is a per-instance random value that attacker must guess 

on the first try for a successful attack

 About 10% overhead for typical programs

 Can be thwarted with overflow attacks on function pointers

strretsfplocal
top
of

stack
canarystrretsfplocal canary

Frame 1Frame 2
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StackGuard Variant - ProPolice

args

ret addr

SFP

CANARY

arrays

Local variables

Stack
Growth

No arrays or pointers

Ptrs, but no arrays

String
Growth

 IBM enhancement of StackGuard, in GCC, deployed in OpenBSD

 Moves pointers in front of arrays, to protect from overflows
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Encrypting Pointers with PointGuard

 Encrypt all pointers while in memory

 Using a per-instance random key, generated when program starts

 Each pointer is XOR’ed with this key (decrypted) when loaded from memory 
to registers or when stored back into memory (encrypted)

 Pointers cannot be overwritten by buffer overflow while in registers

 Protects return addresses and function pointers

 Attackers must guess, on the first try, the random key to 

implement a successful pointer attack

 Otherwise, when pointer is overwritten its XOR decrypted value will 
dereference to a random memory address

 Very difficult to thwart, but pointer encryption/decryption can slow 

programs by up to 20% 35



CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
by corrupted pointer

Attack
code
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CPU

Memory Encrypted pointer
0x7239 Data

1. Fetch pointer 
value

0x1234

2. Access data referenced by pointer

PointGuard Dereference

0x1234

Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
segmentation fault and crash

Attack
code

1. Fetch pointer 
value

0x9786

Decrypt

Decrypts to
random value

0x9786
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Sandboxing: Imprison Potential 
Violators Early
 Often attackers will infiltrate one 

program domain to attack another

 E.g., inter-tab “man-in-the-browser” attacks

 Sandboxes utilize virtual memory 

system to contain potential damage

 Programs inside sandbox run in NaCl mode

 External interactions require validation 

 Generally reliable but still attackable

 Through missed external interactions

 Through bugs in the policy manager

 Through system-level bugs or external 
services, e.g., Flash 38

Chrome NaCL Sandbox Architecture



NaCL Native Execution:
The Rules of the Game



Perhaps We Should Go to the Root of the 
Problem

 Most buffer overflows occur due to memory access errors

 Spatial - Buffer overflow
char *c = malloc(100);

c[101] = ‘a’;

 Temporal - Dangling reference
char *p1 = malloc(100);

char *p2 = p1;

free(p1);

p2[0] = ‘x’;

a

c

0 99

p1

0 99

p2

x
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Safe Languages Prevent Many Attacks

 Runtime checks verify as the program runs that all accesses are in 

the bounds of intended live storage

 Examples: Python, JavaScript, Java, Ruby, Go

 Reduces the attack surface available to attackers

 It is also possible to provide runtime checking in non-safe 

languages, but at some cost
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Are Safe Languages Safer?
 Qualys top 5 vulnerabilities for February 2016

1. Microsoft Internet Explorer Vulnerability

2. Oracle Java SE Critical Patch Update

3. Adobe Flash Player and AIR Multiple Vulnerabilities

4. Microsoft .Net Framework Elevation of Privilege Vulnerability

5. Microsoft Windows Network Location Awareness Service Security Bypass

 Yes, but safe languages are not a panacea

 Buffer overflows still occur in the interpreter, JIT, runtime, OS, and drivers

 Doesn’t mitigate non-buffer overflow-based attacks, such as SQL injection

 Not easily made available to legacy programs in unsafe languages

 But, if given a choice, why not choose a safer (and likely more 

productive) language?
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[PIs: Austin, Das]

Protecting Control Flow with Control-Data Isolation (CDI)

• All indirection removed, use whitelisted direct jumps to thwart all code 
injection
• Direct, as specified by programmer
• Validated, via whitelisting, before the transition occurs
• Complete, no jumps data segment, no instructions move data to PC

• System supports run-time code gen and dynamic libraries

return

jreg
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Architecture Optimized for CDI Execution

• S/W-only CDI has19% worst-case slowdown (7% average)
• Due to indirect edge whitelist validation that occurs at all indirect jumps

• Edge cache memoizes edge validations, doubles as predictor
• With range table, 6kB edge cache reduces slowdowns to 0.3%

• Indirect target prediction cuts misprediction rate in half over simple BTB
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PC

GHR

BTB

Predictor 
Array Edge 

Cache 
with

Range Table
Commit

Fetch

<src,target>

=

Squash, 
execute 

sled

No

YesRetire

[PIs: Austin, Das]



Prevention: Discussion Points

 Are hardware-based security protection mechanisms worth the 

silicon to manufacture them?

 Software-based protection mechanisms seem to be more 

hardened than hardware-based techniques, why is this the case?
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Side-Channel Attacks and Protections

 Timing-Based Attacks

 Cache-Based Attacks

 Power Monitoring Attacks

 Fault-Based Attacks

 Discussion Points
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Side-Channel Attacks

 Even carefully designed systems 

leak info about internal computation

 E.g., safes can be cracked by carefully 
listening to the tumblers

 Clever attackers can utilize leaked 

information to grain secrets

 Generally not directly

 Use statistical methods over time

 These attacks are often considered 

attacks on the implementation, 

rather than the algorithm
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Cache-Based Side-Channel Attack

MEMORY

CACHE

CPU  Snoop on cache misses to 

determine code and data 

accesses

 Second process can force 
misses to DRAM

 Reveals another process’ 
memory accesses

 Algorithms such as AES are 

designed from the ground 

up to thwart these attacks
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Cache-Based Side Channel Attacks
1. Resource sharing 

Cache accesses observed by spy

process evicting cached data

2. Optimization features 

Cache implemented to overcome 

latency penalty 

3. Increased visibility 

Performance counters provide 

accurate picture 
MEMORY

CACHE

CPU
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1. Resource sharing 
 Reduces hardware needed to implement design functionality
 Results in interaction and competition revealed in timing and power

2. Design optimizations
 Typical case optimized, thus the corner cases leak information
 Corner cases run slower and use different hardware leading to distinct 

timing and power signatures

3. Increased visibility and functionality 
 Provides more information or introduces new interactions
 Facilitates observation of unique activities/interactions with unique timing 

and power signatures

Hardware Design Techniques 
Facilitate Side Channel Attacks
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Speculative Covert Channel Attacks
 Spectre/Meltdown are speculative covert 

communication channels
 Confused (speculating) deputy attack
 Has generated intense interest in community

 Meltdown: read out kernel private data
1. Issues illegal load in the mispeculation stream
2. Convert data bit to cache/BTB/FPU/etc. load
3. Time user-level reads to 0/1 addresses

 Meltdown/Spectre mitigations have arrived

(do these mitigations work? Discuss!)
 Stop sharing in the caches (CAT, DAWG)
 Remove precision from timing (NaCl, Timewarp)
 Add non-speculating branches (RETpoline, LFENCE)
 “Ghost” speculation (InvisiSpec)
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flush_caches();
throw new someException();
unsigned val = kernelArr[index1];
unsigned index2 = ((val&1)*0x100);
unsigned value2 = userArr[index2];



7 2 0 8 4 0 2 7 2  
3 3 6 7 1 2 8 7 5
3 1 8 2 6 5 5 2 3

P = S-1(KGC)

E = HmW(P)
estimation

device

key fragment guess

unknown secret key

input

measurement

model

analysis 

P = S-1(KGC)

E = HmW(P)

Power Side-Channel Attacks

e.g. guess 8 bits
brute force easy

compare both and 
choose key guess 
with best match

e.g. estimated power =
number of changing bits
can be lousy model

AES: 128-bit secret key
brute force impossible
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supply current

‘start encryption’-signal

clock cycle of interest

 Unprotected ASIC AES

with 128-bit datapath, key 

scheduling

 Measurement: Ipeak in round 11

 Estimation: HamDistance

of 8 internal bits

 Comparison: correlation

 Key bits easily found despite 

algorithmic noise

 128-bit key under 3 min.

Power Analysis Example
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Fault-Based Attack of RSA

Correct behavior:

Server challenge:

s = md mod n

Client verifies:

m = se mod n

Faulty Server:

ŝ != md mod n

Public Key
(e,n)

Private Key
(d,n)

m

s

Public Key
(e,n)

Private Key
(d,n)

m

ŝ

m
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Fault-Based Attack of RSA
 The attacker collects the faulty signatures

 The private key is recovered one window at the time

 The attacker checks its guess against the collected signatures

Public Key
ŝŝŝŝ

Private Key
m

ŝŝ ŝ

ŝ
d= XXXXd3 d2d1d0
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Retrieving the Private Key
 The private key is recovered one window at the time, guessing 

where and when the fault hits

 Extend the window if no signature confirms value of guess

ŝ = (∙∙∙(md3)16)md2)2)2 ±2f)2)2)md1)16md0

Already
known Value?

Which Multiplication?

Which bit?

d= XXXd3 d2
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Fault Injection Mechanisms

How to make hardware fail:

 Lower voltage causes signals to slow down, thus missing the deadline 

imposed by the system clock

 High temperatures increase signal propagation delays

 Over-clocking shortens the allowed time for traversing the logic cloud

 Natural particles cause internal signals to change value, causing errors

All these sources of errors can be controlled to tune the fault injection rate 

and target some units in the design
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Physical Demonstration of Attack

Leon3
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Attack Completed Successfully

RSA 1024-bit private key 

8,800 corrupted signatures 
collected in 10 hours

Distributed application with 81 machines for offline analysis

Private key recovered in 100 hours
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[PIs: Austin, Das]

Cold-Boot Attacks are Hot Again

 Cold-boot attacks steal encryption keys
 Super-cool DRAM, rip it from running machine

 Analyze it in a second machine without security

 Many modern DDR3+ interfaces utilize memory 
scrambling
 Data to DRAM is encrypted with per-boot key

 Non-chained cipher, only 48 key expansions

 Recently, we cold-boot attacked a DDR3 
interface with memory scrambling
 Used known plaintext to identify key expansions

 Located TrueCrypt AES keytable, regen’ed key

 Developed a strongly encrypted DDR3+ 
interface
 Encryption uses counter-mode AES, it lacks correlation 

that makes current CPUs attackable

 Encryption has zero exposed latency for DRAM row 
buffer hits
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Security Implications of Approximate HW

Approximate Memory 

Applicable to image processing, 
Machine Learning, Sensor Networks

Observation:

1. Memory cells decay in order that is robust against environmental 
conditions

2. Memory cells decay rate is largely due to manufacturing variances

Vulnerability:
De-anonymize approximate systems by using memory errors as a fingerprint 

Man-in-the-Middle Attack Scenario
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Row Hammer Attack
 Attack flips bits in victim DRAM 

row, without permission to access

 Result of wordline crosstalk

 Creates small pulses on adjacent 
wordlines, increases bitcell leakage

 Hammer enough times (~400k) in 
one refresh cycle (~64ms) and bits 
will flip in victim row

 Typical protection requires 

doubling the refresh rate

 Why doesn’t this happen all the 

time?
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ANVIL S/W-Based Rowhammer Protection

• Rowhammer attack exposes memory
• “Hammering” adjacent DRAM rows flips bits
• Remedy: 2x refresh (32ms) or no CLFLUSH

• Current protections are easily broken
• With efficient CLFLUSH hammer or cache tricks
• We announced world-first CLFLUSH-free attack

• Developed ANVIL S/W protection
• H/W perf counters identify high-locality misses
• Refreshes potential victims, <1% slowdown
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Hardware Trojans

 Hardware-based back doors 

inserted into the design by a 

rogue engineer

 Typically coupled with a trigger 

circuit that recognizes a code 

or data sequence

 Implement with hash function

 Difficult to detect

 Given range of approaches

 Many points of entry in the design 
process 
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Processor Trojan Example

 Processor updates privilege bit in EX stage

 If code sequence precedes update (recognized by trigger hash)

 Privilege update is always “1” (enter privileged mode)

 Attack: 1) execute trigger code sequence, 2) own machine (as you now have 

privilege mode access) 66

1
privilege bit
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Trigger hash



A2 Analog Malicious Circuit

 OpenRISC with (A2) analog malicious circuit

 Charge share with infrequent signals (e.g., Div0, C31) to charge up leaky passive cap

 If cap charges up fully, CPU privilege bit is set

 Attack: 1) frequently execute unlikely trigger code sequence, 2) own machine (as you now have privilege 
mode access)

 Taped out chip, attack sequence working in the lab, no false positives detected

 Malicious circuit is not detectable by current protections (i.e., lacks power/timing signature and it has no digital 
representation)
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Side Channels: Discussion Points

 Is it possible to close a side channel completely?

 How much concern should we put on attacks that have 

unrealistic/favorable pre-requisites, e.g., Bernstein’s requirement 

to control key and plaintext plus cycle-level timing, Austin’s 

requirement to control server voltage
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Hardware for Secure Computing

 Secure boot – TPMs

 Generating True Random Numbers

 Crypto-engines – CryptoManiac

 Physical unclonable functions

 Chiplocking Technologies

 Secure Execution

 High-Bandwidth Digital Content Protection

 Discussion Points
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Bootstrapping a typical PC

What can go wrong before the kernel runs?

INIT POST

BIOS

TPM

GRUB
Stage1
(MBR)

SELinux
Kernel

Bootloader

Stage1.5
GRUB

Stage1.5

Operating 
System

GRUB
Stage2

BIOS
Extensions

Flash memory Disk Disk

71



Secure Boot
 Goal of secure boot

 Ensure only a secure system is booted
 Operating system that is bootstrapped is based on a untampered foundation

 Why is this useful?
 Ensure original integrity of system (i.e., no hacking)
 Protect internal intellectual property (i.e., IP)
 Examples: iPhone, Xbox 360, SELinux

 Implementation can only be guaranteed if-and-only-if:
 Base layer is immutable (requires hardware support)
 The integrity of the base layer is verified
 Transition to higher layer only occurs after valid verification
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Trusted Platform Module (TPM)

Random

Number

Generator

Crypto

RSA

Non-Volatile Storage

Accepts only signed data

(EK, AIK, SRK)

Key 

Generation

Platform

Configuration

Register (PCR)

L
P

C
 b

u
s

Secure

Hash

SHA-1

I/O

DIP Packaging or integrated into SuperIO

Endorsement
Key (EK)

Immutable

73



SELinux Trusted Boot Stages

Trusted Boot

CRTM

GRUB
Stage1
(MBR)

SELinux
Kernel

PCR01-07

POST

BIOS Bootloader

Stage1.5
GRUB

Stage1.5

PCR04-05TPM

Operating 
System

JVM

MAC
Policy

DB

GRUB
Stage2

PCR08-14

conf

TPM
Flash memory Disk Disk
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Why Are Random Numbers Important?

 Generally, secret key == random number

 If your random number generator is weak (i.e., guessable), then 

your secret key are guessable

 Example: Early Netscape implementation seeded a pseudo-random 
number generator with <time of day, process ID, parent process ID>

 Where can we find true random numbers?

 Random atomic or subatomic physical phenomenon whose unpredictability 
can be traced to the laws of quantum mechanics (Best)

 Human behavior, e.g., moving a mouse (OK)
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Intel Random Number GeneratorThermal noise
drives oscillator

von Neumann
corrector removes

bias

Slow oscillator
samples fast one

Voila! Variable-rate
random bit stream
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Metastability Based RNG
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But, If You Need an Exceptional RNG

 SGI Lavarand – Lava lamp based random number generator

 US Patent #5732138 – hash the image of the lamp

 Provided an online source of random numbers, 1997-2001



CryptoManiac Crypto Processor

 Goal - fast programmable private-key bulk cryptographic processing

 Fast : efficient execution of computationally intensive cryptographic workloads

 Programmable: support for algorithms within existing protocols, support for new 
algorithms

 Motivation

 Cipher kernels have very domain specific characteristics

 Solution - hardware/software co-design

 Software: crypto-specific ISA

 Hardware: efficient co-processor implementation

 Results

 More than 2 times faster than a high-end general purpose processor and orders of 
magnitude less area and power
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CryptoManiac System Architecture [ISCA’01]

 A highly specialized and efficient crypto-processor design
 Specialized for performance-sensitive private-key cipher algorithms

 Chip-multiprocessor design extracting precious inter-session parallelism

 CP processors implement with 4-wide 32-bit VLIW processors

 Design employs crypto-specific architecture, ISA, compiler, and circuits
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CryptoManiac Processing Element (CM)

B
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FU

FU

FU

FU

Data
Mem

InQ/OutQ
Interface

Keystore
Interface

IF ID/RF EX/MEM WB
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Crypto-Specific Instructions

 frequent SBOX substitutions

 X = sbox[(y >> c) & 0xff]

 SBOX instruction

 Incorporates byte extract

 Speeds address generation 
through alignment restrictions

 4-cycle Alpha code sequence 
becomes a single CryptoManiac 
instruction

 SBOX caches provide a high-

bandwidth substitution 

capability (4 SBOX’s/cycle)

010 08162431

opcode

00

SBOX Table

Table Index
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Crypto-Specific Instructions

 Ciphers often mix logical/arithmetic operation

 Excellent diffusion properties plus resistance to attacks

 ISA supports instruction combining

 Logical + ALU op, ALU op + Logical

 Eliminates dangling XOR’s

 Reduces kernel loop critical paths by nearly 25%

 Small (< 5%) increase in clock cycle time

Instruction Semantics

Add-Xor r4, r1, r2, r3 r4 <- (r1+r2)r3
And-Rot r4, r1, r2, r3 r4 <- (r1&&r2)<<<r3
And-Xor r4, r1, r2, r3 r4 <- (r1&&r2)r3
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Crypto-Specific Functional Unit

Pipelined
32-Bit
MUL 1K Byte

SBOX
Cache

32-Bit
Adder

32-Bit
Rotator

XOR AND

Logical Unit

XOR AND

Logical Unit

{tiny}

{short}

{tiny}

{long}
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Scheduling Example: Blowfish

SBOX SBOX SBOX SBOX

ADD

XOR

ADD

XOR

Sign
Ext

Load

XOR

SBOX   SBOX SBOX SBOX
Add-XOR   Load
Add   XOR
XOR-SignExt

Takes only 4 cycles per iteration 
to execute!
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Encryption Performance (250nm)
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Crypto Support in Modern CPUs

 IBM Power7 and Power8: Implement multiple AES block cipher 

operation modes entirely in hardware (AES-GCM, AES-CTR, 
AES-CBC, AES-ECB)

 Intel Westmere(32nm) and newer: implement AES block 
cipher hardware accelerators; software implements 
operation modes
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AESENC. This instruction performs a single round of encryption. 
AESENCLAST. Instruction for the last round of encryption.
AESDEC. Instruction for a single round of decryption
AESDECLAST. Performs last round of decryption. 
AESKEYGENASSIST is used for generating the round keys used for encryption.
AESIMC is used for converting the encryption round keys to a form usable for decryption 
using the Equivalent Inverse Cipher.



Hardware for Per-IC Authentication

 How can we securely authenticate devices?

 Keycards, RFIDs, mobile phones

 Genuine electronics vs. counterfeits

 Device allowed to display a purchased movie

 Ensure we are communicating with a specific server

 Each system must have a unique IC

 Expensive to customize each manufactured IC

 Physical unclonable functions (PUFs) implement this very cheaply
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Physical Unclonable Functions (PUFs)

 Extract secrets from a complex physical system

 Because of random process variations, no two Integrated Circuits even with the same 
layouts are identical
 Variation is inherent in fabrication process
 Hard to remove or predict
 Relative variation increases as the fabrication process advances

 Delay-Based Silicon PUF concept
 Generate secret keys from unique delay characteristics

of each processor chip

Combinatorial 
Circuit

Challenge
c-bits

Response time
n-bits
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Arbiter-Based Silicon PUF

 Compare two paths with an identical delay in design

 Random process variation determines which path is faster

 An arbiter outputs 1-bit digital response

 Multiple bits can be obtained by duplicating circuit or use different challenges

 Each challenge selects a unique pair of delay paths

…
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XOM Secure Execution

 Programs are encrypted with symmetric key

 XOM processor accesses encrypted program by decrypting IP 

key with XOM public key 

 XOM architecture implements secure and insecure domains, 

with policies to move data between differing domains
91
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Hardware: Discussion Points

 What are the relative advantages and disadvantages of a crypto 

engine implemented as an ASIC, for a specific cipher?

 Can PUFs be affected by extreme environmental changes and 

silicon wearout can compromise PUF integrity?
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Where to Learn More…

 USENIX Security Conference, www.usenix.org

 IEEE Symposium on Security and Privacy, http://www.ieee-

security.org/TC/SP-Index.html 

 International Cryptology Conference, http://www.iacr.org

 Wikipedia, http://en.wikipedia.org/wiki/Computer_security

 Slashdot Security, http://slashdot.org/stories/security 

 Schneier on Security, http://www.schneier.com/
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