
Building Secure Hardware and Software

Todd Austin
University of Michigan

Two Day Tutorial

Why is Security Important?
(to Architects and Compiler Designers)

 Hardware and system-level solutions are needed to protect

software and intellectual property (IP)

 Hardware and low-level software support improves speed and

quality of cryptography

 Hardware and system-level software support can most

effectively seal up security vulnerabilities

 Hardware and system-level software vulnerabilities enable

security attacks
2

 Industry is based on a patch-based approach
to security
 Find and fix vulnerabilities (i.e., bugs in S/W that can be

exploited)

 S/W and H/W complexity growth massively outstrips
security bug verification capabilities

 Manual verification is fallible, formal methods fall short
when proving something CANNOT happen

 Key unaddressed challenge: how do we
protect against unknown (0-day) attacks?
 Known vulnerabilities that have not found and as yet

unknown vulnerabilities

 Leads to an endless security arms race
 Every second Tuesday, patch and pray…

3

Why is Security So Hard to Get Right?

Out-of-Core
Accelerators

Maltiel estimates Our estimates

A10

The Security Arms Race

Develop/Debug
Applications

and Platforms

Deploy
Counter-
measures

Attackers
Hack Customers

4

 Attacking is fundamentally easier than
protecting against attacks

 Attacking requires one vulnerability

 Protecting requires 100% coverage
of all vulnerabilities (impractical to
achieve)

 Related software growth rates:

 Protections: ~2x LoC every 2 years

 Attacks: ~1.4x LoC in 30 years

 As a result, vulnerabilities are on the rise

 And, rate of attacks is exploding

5

Today’s Security Strategy Favors the Attacker

Why Do Attackers Attack?

 To gain control of machines, e.g., BotNets

 To gain access to private information, e.g., credit card numbers

 To punish/embarrass individuals and institutions, e.g., Sony

 To educate and advocate, e.g., FireSheep

 To earn reputation in the cracking community, e.g., hackers vs. script

kiddies

 Etc…

6

The Ultimate Goal of the Designer

 Win the bear race…

 Value = f(easy of attack, population, loot therein, goodwill, etc…)

Attackers Someone more
valuable

You

7

Tutorial Outline
 Security Basics

 Security Exploit Prevention Techniques

 Side-Channel Attacks and Protections

 Hardware for Secure Computing

 Security Vulnerability Analysis

8

Acknowledgements
 Colleagues: Valeria Bertacco, Seth Pettie

 Students: Joseph Greathouse, Eric Larson, Andrea Pellegrini

 With contributions from:
 Edward Chow

 Crispin Cowan

 Koji Inoue

 David Lie

 Igor Markov

 Ivo Pooters

 Hovav Shacham

 Andrew Tanenbaum

 Kris Tiri

 Steve Trimberger

 Wikipedia
9

Security Basics
 Cryptography

 Symmetric key cryptography

 Asymmetric key cryptography

 Secure sockets layer (SSL) overview

 Streaming ciphers

 Cryptographic Hashes

 Security Attacks

 Buffer overflow attacks

 Heap spray attacks

 Return-oriented programming attacks

 Hardware-based security attacks

 Discussion Points
10

Symmetric Key Cryptography

 Sender and receiver share a private key

 Anyone who knows the private key can listen in

 Often called a “private-key cipher”

 Examples: AES, DES, Blowfish

plaintext g(x) g(x)ciphertext plaintext

Private Key Private Key

11

Block Cipher

encrypting each block separately not secure:
identical plaintext blocks --> identical cipher

text blocks

Image from: Security Basics for
Computer Architects, Ruby Lee

12

Block Cipher Operation Modes

Ek

Cipher Block
Chaining

(CBC)

Counter Mode
(CTR)

Images from: Security Basics for
Computer Architects, Ruby Lee 13

ECB vs. CBC Streaming Modes

Original ECB Encrypted CBC Encrypted

14

Asymmetric Key Cryptography
plaintext ciphertext plaintextf(x) g(x)

Public Key Private Key

 Sender has the receiver’s public key, receiver has the private key

 Anyone can encrypt a message with the public key, only the

holder of the private key can decrypt the message

 Allows sharing of private information with no initial shared secret

 The reverse path also works: everyone can decrypt a message

that was encrypted by the holder of the private key

 Often called a “public-key cipher”

 Examples: RSA, Diffie-Hellman 15

RSA Authentication

 Client sends a unique message to

server

 Server encrypts unique message

with private key

 Client decrypts the message with

public key and verifies it is the same

 Authentication: only server could

return private-key encrypted unique

message

Public Key
(e,n)

Private Key
(d,n)

m

s m

16

Symmetric vs. Asymmetric Ciphers

 Symmetric Ciphers

 Fast to compute

 Require prior shared knowledge to establish private communication

 Asymmetric Ciphers

 Orders of magnitude slower to compute

 No shared secrets required to establish private communication

 Individual benefits create a need for both types of cryptography

17

Secure Sockets Layer (SSL) Overview

authenticate

private key

serverclient

https get

public

.

.

.

https recv

close

private

Encrypt client
symmetric key

with server
public key

Decrypt with
server private key

to get symmetric key,
return “finished”

message encrypted
by symmetric key

Decrypt with
symmetric key

to ensure
authentication

successful

18

Verifying Integrity: Hash Functions

 Goal: provide a (nearly) unique “fingerprint” of the message
 Hash function for L-bit hash must demonstrate three properties:

1. Fast to compute y from m.
2. One-way: given y = h(m), can’t find m’ satisfying h(m’) = y without O(2L) search
3. Strongly collision-free: For m1 != m2, we find h(m1)=h(m2) with probability 1/2L

 Widely useful tool, e.g., Has this web page changed?
 Examples: MD5 (cryptographically broken), SHA-1, SHA-2

Cryptographic hash
Function, h

Arbitrary-length
message m

0xdeadbeefbaadf00d

Fixed-length
message digest y

19

Hash Application: Password Storage

 Never store passwords as plain text

 If your machine is compromised, so too are all the user passwords

 E.g., Gawker.com attack in 2010

 Why protect passwords on a compromised machine?

 Instead, store a cryptographic hash of the password

 Even with a compromised password file, the passwords are still unknown

 Use “salt” to eliminate the use of “rainbow tables”

User Hashed Password

Security Vulnerabilities are Everywhere

 Most often born out of software bugs

 NIST estimates that S/W bugs cost U.S. $60B/year

 Many of these errors create security vulnerabilities

21

Buffer Overflow Attack
 Buffer overflows constitute a large class of security vulnerabilities

 Goal: inject code into an unsuspecting machine, and redirect control

void foo()
{

int local_variables;
int buffer[256];
…
buffer = read_input();
…
return;

}

Return address

Local variables

buffer

B
u

ffe
r F

ill

New Return address

Bad Local variables

If read_input() reads 200 intsIf read_input() reads >256 ints

buffer

22

Escalate: No code allowed on stack

 Use a heap-spray attack

 Inject executable data into heap,

then do random stack smash

 Requires a blended attack (stack
overflow plus heap spray)

 Example: generate many strings in
JavaScript that are also attack code

 Generously large heap sprays

are easily found

 Protections? Discuss!

23

Escalate: No new code at all

 Use return-oriented programming

 Smash stack with many returns to the

tails of functions

 Returns stitch together new code (from

existing code) using tails of functions

 This form of code injection doesn’t inject

new code, but reuses the code that is

already there!

24

stack

foo() {
…
pop %rdi
ret

}

foo() {
…
pop %rsi
ret

}

foo() {
…
call write
ret

}

%rsp

New Threats: Hardware-Based Attacks
 2008: Kris Kapersky announced the discovery of an OS-independent remote

code execution exploit based on an Intel CPU bug (not disclosed)

 2008: UIUC researcher Sam King demonstrate that 1400 additional gates

added to a Leon SPARC processor creates an effective Linux backdoor

 2008: Princeton researcher Ed Felten demonstrates that disk encryption keys

can be extraction after system shutdown from frozen DRAM chips

 2010: Christopher Tarnovsky announced a successful hardware exploit of an

Infineon TPM chip

 2011: Sturton/Hicks develop non-stealthy malicious circuits, provide plausible

deniability to rogue designers

 2014: Rowhammer bug demonstrated, able to flip DRAM bits in adjacent rows

even without access permission

 2018: Spectre/Meltdown and later attacks exploit speculation and caches
25

Security Basics: Discussion Points

 Does the security arms race ever end?

 How do I know that I have the server’s true public key?

 Can hardware-based security exploits be fixed?

 Do all security protocols and algorithms have a fixed shelf life?

26

Security Basics: Bibliography

 Applied Cryptography, Bruce Schneier, Wiley, 1996

 CMU’s Computer Emergency Response Team, www.cert.org

 OpenSSL Security Advisory,

http://www.openssl.org/news/secadv_20101116.txt

 Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin Zorn, Nozzle: A

Defense Against Heap-spraying Code Injection Attacks, USENIX, 2009

 Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage, When

Good Instructions Go Bad: Generalizing Return-Oriented Programming to

RISC, CCS 2008

 Hardware Exploits and Bugs, http://www.cromwell-intl.com/security/security-

hardware.html

27

Security Exploit Prevention Techniques

 No-Execute (NX) Stacks

 Address Space Layout Randomization (ASLR)

 Stack Canaries

 Encrypted Pointers

 Hardware-Based Buffer Overflow Protection

 Safe Languages

 Discussion Points

28

No-Execute (NX) Stacks

 Eliminate stack code injection by

preventing code execution on stack

 Can be a problem for some safe

programs, e.g., JITs

 NX bit in newer x86 PTEs indicates

no-execute permission for pages static

text

stack

heapheap

unused

Execute

No Execute

29

Address Space Layout Randomization (ASLR)

 At load time, insert random-sized

padding before all code, data,

stack sections of the program

 Successfully implementing a buffer

overflow code injection requires

guessing the padding geometry on

the first try

 Implemented in recent Windows,

Linux and MacOS kernels

static

text

stack

heapheap

unused

Random
Sized Padding

Random
Sized Padding

Random
Sized Padding

Random
Sized Padding

30

Attacking ASLR

 ASLR make stack based code

injection difficult because the

injected return address is

different for each execution

 A successful attack requires a

brute-force guess of an address

containing injected code on the

first try

 ASLR can be compromised with

heap-spray attacks

Return address

Local variables

buffer

B
u

ffe
r F

ill

New Return address

Bad Local variables

buffer

31

Escalate: No code allowed on stack
 Use a heap-spray attack

 Inject executable data into heap, then perform random stack smash

 Example, generate many strings in Javascript that are also real code

 Generous heap sprays will likely be found by stack smash attack
32

Stack Canaries with StackGuard
 Implemented in compiler (GCC), runtime check of stack integrity

 Embed “canaries” in stack frame before the return address, in

function prologue, verify their integrity in function epilogue

 Canary is a per-instance random value that attacker must guess

on the first try for a successful attack

 About 10% overhead for typical programs

 Can be thwarted with overflow attacks on function pointers

strretsfplocal
top
of

stack
canarystrretsfplocal canary

Frame 1Frame 2

33

StackGuard Variant - ProPolice

args

ret addr

SFP

CANARY

arrays

Local variables

Stack
Growth

No arrays or pointers

Ptrs, but no arrays

String
Growth

 IBM enhancement of StackGuard, in GCC, deployed in OpenBSD

 Moves pointers in front of arrays, to protect from overflows

34

Encrypting Pointers with PointGuard

 Encrypt all pointers while in memory

 Using a per-instance random key, generated when program starts

 Each pointer is XOR’ed with this key (decrypted) when loaded from memory
to registers or when stored back into memory (encrypted)

 Pointers cannot be overwritten by buffer overflow while in registers

 Protects return addresses and function pointers

 Attackers must guess, on the first try, the random key to

implement a successful pointer attack

 Otherwise, when pointer is overwritten its XOR decrypted value will
dereference to a random memory address

 Very difficult to thwart, but pointer encryption/decryption can slow

programs by up to 20% 35

CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
by corrupted pointer

Attack
code

36

CPU

Memory Encrypted pointer
0x7239 Data

1. Fetch pointer
value

0x1234

2. Access data referenced by pointer

PointGuard Dereference

0x1234

Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
segmentation fault and crash

Attack
code

1. Fetch pointer
value

0x9786

Decrypt

Decrypts to
random value

0x9786

37

Sandboxing: Imprison Potential
Violators Early
 Often attackers will infiltrate one

program domain to attack another

 E.g., inter-tab “man-in-the-browser” attacks

 Sandboxes utilize virtual memory

system to contain potential damage

 Programs inside sandbox run in NaCl mode

 External interactions require validation

 Generally reliable but still attackable

 Through missed external interactions

 Through bugs in the policy manager

 Through system-level bugs or external
services, e.g., Flash 38

Chrome NaCL Sandbox Architecture

NaCL Native Execution:
The Rules of the Game

Perhaps We Should Go to the Root of the
Problem

 Most buffer overflows occur due to memory access errors

 Spatial - Buffer overflow
char *c = malloc(100);

c[101] = ‘a’;

 Temporal - Dangling reference
char *p1 = malloc(100);

char *p2 = p1;

free(p1);

p2[0] = ‘x’;

a

c

0 99

p1

0 99

p2

x

40

Safe Languages Prevent Many Attacks

 Runtime checks verify as the program runs that all accesses are in

the bounds of intended live storage

 Examples: Python, JavaScript, Java, Ruby, Go

 Reduces the attack surface available to attackers

 It is also possible to provide runtime checking in non-safe

languages, but at some cost

41

Are Safe Languages Safer?
 Qualys top 5 vulnerabilities for February 2016

1. Microsoft Internet Explorer Vulnerability

2. Oracle Java SE Critical Patch Update

3. Adobe Flash Player and AIR Multiple Vulnerabilities

4. Microsoft .Net Framework Elevation of Privilege Vulnerability

5. Microsoft Windows Network Location Awareness Service Security Bypass

 Yes, but safe languages are not a panacea

 Buffer overflows still occur in the interpreter, JIT, runtime, OS, and drivers

 Doesn’t mitigate non-buffer overflow-based attacks, such as SQL injection

 Not easily made available to legacy programs in unsafe languages

 But, if given a choice, why not choose a safer (and likely more

productive) language?
42

[PIs: Austin, Das]

Protecting Control Flow with Control-Data Isolation (CDI)

• All indirection removed, use whitelisted direct jumps to thwart all code
injection
• Direct, as specified by programmer
• Validated, via whitelisting, before the transition occurs
• Complete, no jumps data segment, no instructions move data to PC

• System supports run-time code gen and dynamic libraries

return

jreg

43

Architecture Optimized for CDI Execution

• S/W-only CDI has19% worst-case slowdown (7% average)
• Due to indirect edge whitelist validation that occurs at all indirect jumps

• Edge cache memoizes edge validations, doubles as predictor
• With range table, 6kB edge cache reduces slowdowns to 0.3%

• Indirect target prediction cuts misprediction rate in half over simple BTB

44

PC

GHR

BTB

Predictor
Array Edge

Cache
with

Range Table
Commit

Fetch

<src,target>

=

Squash,
execute

sled

No

YesRetire

[PIs: Austin, Das]

Prevention: Discussion Points

 Are hardware-based security protection mechanisms worth the

silicon to manufacture them?

 Software-based protection mechanisms seem to be more

hardened than hardware-based techniques, why is this the case?

45

Prevention: Bibliography
 CPU-Based Security: The NX Bit, http://hardware.earthweb.com/chips/article.php/3358421

 H. Shacham et al, On the Effectiveness of Address-Space Randomization, Computer and

Communications Security, 2004

 Crispin Cowan et al, StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow

Attacks, USENIX Security, 1998

 GCC extension for protecting applications from stack-smashing attacks,

http://www.research.ibm.com/trl/projects/security/ssp/

 Crispin Cowan et al, PointGuard: Protecting Pointers From Buffer Overflow Vulnerabilities, USENIX

Security, 2003

 Benjamin A. Kuperman et al, Detection and prevention of stack buffer overflow attacks,CACM,

November 2005

 Koji Inoue, Energy-Security Tradeoff in a Secure Cache Architecture Against Buffer Overflow Attacks,

Workshop on architectural support for security and anti-virus, March 2005

 Todd Austin et al, Efficient Detection of All Pointer and Array Access Errors, PLDI 1994

46

Side-Channel Attacks and Protections

 Timing-Based Attacks

 Cache-Based Attacks

 Power Monitoring Attacks

 Fault-Based Attacks

 Discussion Points

47

Side-Channel Attacks

 Even carefully designed systems

leak info about internal computation

 E.g., safes can be cracked by carefully
listening to the tumblers

 Clever attackers can utilize leaked

information to grain secrets

 Generally not directly

 Use statistical methods over time

 These attacks are often considered

attacks on the implementation,

rather than the algorithm
48

Cache-Based Side-Channel Attack

MEMORY

CACHE

CPU Snoop on cache misses to

determine code and data

accesses

 Second process can force
misses to DRAM

 Reveals another process’
memory accesses

 Algorithms such as AES are

designed from the ground

up to thwart these attacks

49

Cache-Based Side Channel Attacks
1. Resource sharing

Cache accesses observed by spy

process evicting cached data

2. Optimization features

Cache implemented to overcome

latency penalty

3. Increased visibility

Performance counters provide

accurate picture
MEMORY

CACHE

CPU

50

1. Resource sharing
 Reduces hardware needed to implement design functionality
 Results in interaction and competition revealed in timing and power

2. Design optimizations
 Typical case optimized, thus the corner cases leak information
 Corner cases run slower and use different hardware leading to distinct

timing and power signatures

3. Increased visibility and functionality
 Provides more information or introduces new interactions
 Facilitates observation of unique activities/interactions with unique timing

and power signatures

Hardware Design Techniques
Facilitate Side Channel Attacks

51

Speculative Covert Channel Attacks
 Spectre/Meltdown are speculative covert

communication channels
 Confused (speculating) deputy attack
 Has generated intense interest in community

 Meltdown: read out kernel private data
1. Issues illegal load in the mispeculation stream
2. Convert data bit to cache/BTB/FPU/etc. load
3. Time user-level reads to 0/1 addresses

 Meltdown/Spectre mitigations have arrived

(do these mitigations work? Discuss!)
 Stop sharing in the caches (CAT, DAWG)
 Remove precision from timing (NaCl, Timewarp)
 Add non-speculating branches (RETpoline, LFENCE)
 “Ghost” speculation (InvisiSpec)

52

flush_caches();
throw new someException();
unsigned val = kernelArr[index1];
unsigned index2 = ((val&1)*0x100);
unsigned value2 = userArr[index2];

7 2 0 8 4 0 2 7 2
3 3 6 7 1 2 8 7 5
3 1 8 2 6 5 5 2 3

P = S-1(KGC)

E = HmW(P)
estimation

device

key fragment guess

unknown secret key

input

measurement

model

analysis

P = S-1(KGC)

E = HmW(P)

Power Side-Channel Attacks

e.g. guess 8 bits
brute force easy

compare both and
choose key guess
with best match

e.g. estimated power =
number of changing bits
can be lousy model

AES: 128-bit secret key
brute force impossible

53

supply current

‘start encryption’-signal

clock cycle of interest

 Unprotected ASIC AES

with 128-bit datapath, key

scheduling

 Measurement: Ipeak in round 11

 Estimation: HamDistance

of 8 internal bits

 Comparison: correlation

 Key bits easily found despite

algorithmic noise

 128-bit key under 3 min.

Power Analysis Example

54

Fault-Based Attack of RSA

Correct behavior:

Server challenge:

s = md mod n

Client verifies:

m = se mod n

Faulty Server:

ŝ != md mod n

Public Key
(e,n)

Private Key
(d,n)

m

s

Public Key
(e,n)

Private Key
(d,n)

m

ŝ

m

55

Fault-Based Attack of RSA
 The attacker collects the faulty signatures

 The private key is recovered one window at the time

 The attacker checks its guess against the collected signatures

Public Key
ŝŝŝŝ

Private Key
m

ŝŝ ŝ

ŝ
d= XXXXd3 d2d1d0

56

Retrieving the Private Key
 The private key is recovered one window at the time, guessing

where and when the fault hits

 Extend the window if no signature confirms value of guess

ŝ = (∙∙∙(md3)16)md2)2)2 ±2f)2)2)md1)16md0

Already
known Value?

Which Multiplication?

Which bit?

d= XXXd3 d2

57

Fault Injection Mechanisms

How to make hardware fail:

 Lower voltage causes signals to slow down, thus missing the deadline

imposed by the system clock

 High temperatures increase signal propagation delays

 Over-clocking shortens the allowed time for traversing the logic cloud

 Natural particles cause internal signals to change value, causing errors

All these sources of errors can be controlled to tune the fault injection rate

and target some units in the design

58

Physical Demonstration of Attack

Leon3

59

Attack Completed Successfully

RSA 1024-bit private key

8,800 corrupted signatures
collected in 10 hours

Distributed application with 81 machines for offline analysis

Private key recovered in 100 hours
60

[PIs: Austin, Das]

Cold-Boot Attacks are Hot Again

 Cold-boot attacks steal encryption keys
 Super-cool DRAM, rip it from running machine

 Analyze it in a second machine without security

 Many modern DDR3+ interfaces utilize memory
scrambling
 Data to DRAM is encrypted with per-boot key

 Non-chained cipher, only 48 key expansions

 Recently, we cold-boot attacked a DDR3
interface with memory scrambling
 Used known plaintext to identify key expansions

 Located TrueCrypt AES keytable, regen’ed key

 Developed a strongly encrypted DDR3+
interface
 Encryption uses counter-mode AES, it lacks correlation

that makes current CPUs attackable

 Encryption has zero exposed latency for DRAM row
buffer hits

61

Security Implications of Approximate HW

Approximate Memory

Applicable to image processing,
Machine Learning, Sensor Networks

Observation:

1. Memory cells decay in order that is robust against environmental
conditions

2. Memory cells decay rate is largely due to manufacturing variances

Vulnerability:
De-anonymize approximate systems by using memory errors as a fingerprint

Man-in-the-Middle Attack Scenario

62

Row Hammer Attack
 Attack flips bits in victim DRAM

row, without permission to access

 Result of wordline crosstalk

 Creates small pulses on adjacent
wordlines, increases bitcell leakage

 Hammer enough times (~400k) in
one refresh cycle (~64ms) and bits
will flip in victim row

 Typical protection requires

doubling the refresh rate

 Why doesn’t this happen all the

time?
63

victim

aggressor

wordlines

cr
o

ss
ta

lk
ch

a
nn

e
ls

ANVIL S/W-Based Rowhammer Protection

• Rowhammer attack exposes memory
• “Hammering” adjacent DRAM rows flips bits
• Remedy: 2x refresh (32ms) or no CLFLUSH

• Current protections are easily broken
• With efficient CLFLUSH hammer or cache tricks
• We announced world-first CLFLUSH-free attack

• Developed ANVIL S/W protection
• H/W perf counters identify high-locality misses
• Refreshes potential victims, <1% slowdown

64

L3
 M

is
s

Co

un
t

Li
ne

ar

Ad

dr
es

s

DRAM

Processor
Performance

Counters

Linux ANVIL

Process
1

Process
2

Process
n

Se
le

ct
iv

e
Re

fr
es

hSoftware

Hardware

Hardware Trojans

 Hardware-based back doors

inserted into the design by a

rogue engineer

 Typically coupled with a trigger

circuit that recognizes a code

or data sequence

 Implement with hash function

 Difficult to detect

 Given range of approaches

 Many points of entry in the design
process

65

Processor Trojan Example

 Processor updates privilege bit in EX stage

 If code sequence precedes update (recognized by trigger hash)

 Privilege update is always “1” (enter privileged mode)

 Attack: 1) execute trigger code sequence, 2) own machine (as you now have

privilege mode access) 66

1
privilege bit

=

Trigger hash

A2 Analog Malicious Circuit

 OpenRISC with (A2) analog malicious circuit

 Charge share with infrequent signals (e.g., Div0, C31) to charge up leaky passive cap

 If cap charges up fully, CPU privilege bit is set

 Attack: 1) frequently execute unlikely trigger code sequence, 2) own machine (as you now have privilege
mode access)

 Taped out chip, attack sequence working in the lab, no false positives detected

 Malicious circuit is not detectable by current protections (i.e., lacks power/timing signature and it has no digital
representation)

67

privilege bit

Div0
C31

C47

Side Channels: Discussion Points

 Is it possible to close a side channel completely?

 How much concern should we put on attacks that have

unrealistic/favorable pre-requisites, e.g., Bernstein’s requirement

to control key and plaintext plus cycle-level timing, Austin’s

requirement to control server voltage

68

Side Channels: Bibliography

 Daniel J. Bernstein, Cache-timing attacks on AES,

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

 Z. Wang et al, New cache designs for thwarting software cache-based side

channel attacks, ISCA 2007

 J. Kong et al, Deconstructing new cache designs for thwarting software cache-

based side channel attacks, CSAW 2008

 P. Kocher et al, Differential Power Analysis,

http://www.cryptography.com/public/pdf/DPA.pdf

 I.L. Markov, D. Maslov, Uniformly-switching Logic for Cryptographic Hardware,

DATE 2005

 Andrea Pellegrini, Valeria Bertacco and Todd Austin, Fault-Based Attack of

RSA Authentication, DATE-2010, March 2010

69

Hardware for Secure Computing

 Secure boot – TPMs

 Generating True Random Numbers

 Crypto-engines – CryptoManiac

 Physical unclonable functions

 Chiplocking Technologies

 Secure Execution

 High-Bandwidth Digital Content Protection

 Discussion Points

70

Bootstrapping a typical PC

What can go wrong before the kernel runs?

INIT POST

BIOS

TPM

GRUB
Stage1
(MBR)

SELinux
Kernel

Bootloader

Stage1.5
GRUB

Stage1.5

Operating
System

GRUB
Stage2

BIOS
Extensions

Flash memory Disk Disk

71

Secure Boot
 Goal of secure boot

 Ensure only a secure system is booted
 Operating system that is bootstrapped is based on a untampered foundation

 Why is this useful?
 Ensure original integrity of system (i.e., no hacking)
 Protect internal intellectual property (i.e., IP)
 Examples: iPhone, Xbox 360, SELinux

 Implementation can only be guaranteed if-and-only-if:
 Base layer is immutable (requires hardware support)
 The integrity of the base layer is verified
 Transition to higher layer only occurs after valid verification

72

Trusted Platform Module (TPM)

Random

Number

Generator

Crypto

RSA

Non-Volatile Storage

Accepts only signed data

(EK, AIK, SRK)

Key

Generation

Platform

Configuration

Register (PCR)

L
P

C
 b

u
s

Secure

Hash

SHA-1

I/O

DIP Packaging or integrated into SuperIO

Endorsement
Key (EK)

Immutable

73

SELinux Trusted Boot Stages

Trusted Boot

CRTM

GRUB
Stage1
(MBR)

SELinux
Kernel

PCR01-07

POST

BIOS Bootloader

Stage1.5
GRUB

Stage1.5

PCR04-05TPM

Operating
System

JVM

MAC
Policy

DB

GRUB
Stage2

PCR08-14

conf

TPM
Flash memory Disk Disk

74

Why Are Random Numbers Important?

 Generally, secret key == random number

 If your random number generator is weak (i.e., guessable), then

your secret key are guessable

 Example: Early Netscape implementation seeded a pseudo-random
number generator with <time of day, process ID, parent process ID>

 Where can we find true random numbers?

 Random atomic or subatomic physical phenomenon whose unpredictability
can be traced to the laws of quantum mechanics (Best)

 Human behavior, e.g., moving a mouse (OK)

75

Intel Random Number GeneratorThermal noise
drives oscillator

von Neumann
corrector removes

bias

Slow oscillator
samples fast one

Voila! Variable-rate
random bit stream

76

Metastability Based RNG

77

But, If You Need an Exceptional RNG

 SGI Lavarand – Lava lamp based random number generator

 US Patent #5732138 – hash the image of the lamp

 Provided an online source of random numbers, 1997-2001

CryptoManiac Crypto Processor

 Goal - fast programmable private-key bulk cryptographic processing

 Fast : efficient execution of computationally intensive cryptographic workloads

 Programmable: support for algorithms within existing protocols, support for new
algorithms

 Motivation

 Cipher kernels have very domain specific characteristics

 Solution - hardware/software co-design

 Software: crypto-specific ISA

 Hardware: efficient co-processor implementation

 Results

 More than 2 times faster than a high-end general purpose processor and orders of
magnitude less area and power

79

CryptoManiac System Architecture [ISCA’01]

 A highly specialized and efficient crypto-processor design
 Specialized for performance-sensitive private-key cipher algorithms

 Chip-multiprocessor design extracting precious inter-session parallelism

 CP processors implement with 4-wide 32-bit VLIW processors

 Design employs crypto-specific architecture, ISA, compiler, and circuits

CM
Proc

CM
Proc

CM
ProcKey Store

R
e

qu
est

S
che

du
le

r

In Q Out Q
Encrypt/decrypt

requests
.
.
.

Ciphertext/plaintext
results

80

CryptoManiac Processing Element (CM)

B
T
B

I
M
E
M

RF

FU

FU

FU

FU

Data
Mem

InQ/OutQ
Interface

Keystore
Interface

IF ID/RF EX/MEM WB

81

Crypto-Specific Instructions

 frequent SBOX substitutions

 X = sbox[(y >> c) & 0xff]

 SBOX instruction

 Incorporates byte extract

 Speeds address generation
through alignment restrictions

 4-cycle Alpha code sequence
becomes a single CryptoManiac
instruction

 SBOX caches provide a high-

bandwidth substitution

capability (4 SBOX’s/cycle)

010 08162431

opcode

00

SBOX Table

Table Index

82

Crypto-Specific Instructions

 Ciphers often mix logical/arithmetic operation

 Excellent diffusion properties plus resistance to attacks

 ISA supports instruction combining

 Logical + ALU op, ALU op + Logical

 Eliminates dangling XOR’s

 Reduces kernel loop critical paths by nearly 25%

 Small (< 5%) increase in clock cycle time

Instruction Semantics

Add-Xor r4, r1, r2, r3 r4 <- (r1+r2)r3
And-Rot r4, r1, r2, r3 r4 <- (r1&&r2)<<<r3
And-Xor r4, r1, r2, r3 r4 <- (r1&&r2)r3

83

Crypto-Specific Functional Unit

Pipelined
32-Bit
MUL 1K Byte

SBOX
Cache

32-Bit
Adder

32-Bit
Rotator

XOR AND

Logical Unit

XOR AND

Logical Unit

{tiny}

{short}

{tiny}

{long}

84

Scheduling Example: Blowfish

SBOX SBOX SBOX SBOX

ADD

XOR

ADD

XOR

Sign
Ext

Load

XOR

SBOX SBOX SBOX SBOX
Add-XOR Load
Add XOR
XOR-SignExt

Takes only 4 cycles per iteration
to execute!

85

Encryption Performance (250nm)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

Blowfish 3DES IDEA MARS RC4 RC6 Rijndael Twofish

Alpha ISA+
ISA++ 4WC
3WC 2WC
4WNC

T-3

HDTV

OC-3

OC-12

86

Crypto Support in Modern CPUs

 IBM Power7 and Power8: Implement multiple AES block cipher

operation modes entirely in hardware (AES-GCM, AES-CTR,
AES-CBC, AES-ECB)

 Intel Westmere(32nm) and newer: implement AES block
cipher hardware accelerators; software implements
operation modes

87

AESENC. This instruction performs a single round of encryption.
AESENCLAST. Instruction for the last round of encryption.
AESDEC. Instruction for a single round of decryption
AESDECLAST. Performs last round of decryption.
AESKEYGENASSIST is used for generating the round keys used for encryption.
AESIMC is used for converting the encryption round keys to a form usable for decryption
using the Equivalent Inverse Cipher.

Hardware for Per-IC Authentication

 How can we securely authenticate devices?

 Keycards, RFIDs, mobile phones

 Genuine electronics vs. counterfeits

 Device allowed to display a purchased movie

 Ensure we are communicating with a specific server

 Each system must have a unique IC

 Expensive to customize each manufactured IC

 Physical unclonable functions (PUFs) implement this very cheaply

88

Physical Unclonable Functions (PUFs)

 Extract secrets from a complex physical system

 Because of random process variations, no two Integrated Circuits even with the same
layouts are identical
 Variation is inherent in fabrication process
 Hard to remove or predict
 Relative variation increases as the fabrication process advances

 Delay-Based Silicon PUF concept
 Generate secret keys from unique delay characteristics

of each processor chip

Combinatorial
Circuit

Challenge
c-bits

Response time
n-bits

89

Arbiter-Based Silicon PUF

 Compare two paths with an identical delay in design

 Random process variation determines which path is faster

 An arbiter outputs 1-bit digital response

 Multiple bits can be obtained by duplicating circuit or use different challenges

 Each challenge selects a unique pair of delay paths

…

c-bit
Challenge

Rising
Edge

1 if top
path is
faster,
else 0

D Q
1

1

0

0

1

1

0

0

1

1

0

0

1 0 10 0 1

01

G

Response

90

XOM Secure Execution

 Programs are encrypted with symmetric key

 XOM processor accesses encrypted program by decrypting IP

key with XOM public key

 XOM architecture implements secure and insecure domains,

with policies to move data between differing domains
91

Data
Encrypt/Decrypt

Insn Decryptor

IF/
ID

ID/
EX

EX/
MEM

MEM
/WB

XIF ID EX MEM WB

Encrypted I$ Encrypted D$

IP Key

Decrypt with
XOM public key

Hardware: Discussion Points

 What are the relative advantages and disadvantages of a crypto

engine implemented as an ASIC, for a specific cipher?

 Can PUFs be affected by extreme environmental changes and

silicon wearout can compromise PUF integrity?

92

Hardware: Bibliography

 W. A. Arbaugh et al, A secure and reliable bootstrap architecture, Symposium

on Security and Privacy, 1997

 Trusted Platform Computing Group, TPM Specification,

http://www.trustedcomputinggroup.org/resources/tpm_main_specification

 Benjamin Jun et al, The Intel Random Number Generator,

http://www.cryptography.com/public/pdf/IntelRNG.pdf

 Lisa Wu, Chris Weaver, and Todd Austin, “CryptoManiac: A Fast Flexible

Architecture for Secure Communication”, ISCA 2001

 Jerome Burke, John McDonald, and Todd Austin, Architectural Support for

Fast Symmetric-Key Cryptography, ASPLOS-IX, October 2000

 G. Edward Suh and Srinivas Devadas, Physical Unclonable Functions for

Device Authentication and Secret Key Generation, DAC 2007

93

Where to Learn More…

 USENIX Security Conference, www.usenix.org

 IEEE Symposium on Security and Privacy, http://www.ieee-

security.org/TC/SP-Index.html

 International Cryptology Conference, http://www.iacr.org

 Wikipedia, http://en.wikipedia.org/wiki/Computer_security

 Slashdot Security, http://slashdot.org/stories/security

 Schneier on Security, http://www.schneier.com/

94

