Ultra Low-Cost Defect Protection for
Microprocessor Pipelines

Smitha Shyam Kypros Constantinides Sujay Phadke
Valeria Bertacco Todd Austin

Advanced Computer Architecture Lab
University of Michigan

Key Reliability Threats
H/W and S/W Transient Faults due to

Design Ermors cqsmic Rays & Alpha Particles

(Bugs are expensive and . :
/| (Increase exponentially with
expose security holes) 7 ' number of devices on chip)

Gate
Source Drain
swes _1_ 0

Focus of this work. Run-tlme and i
Manufacturing Defects

Run-Time Defects
(Wire break-down and
transistor wear-out)

Manufacturing Defects

Parametric Variability That Escape Testing
(Uncertainty in device and environment) (Inefficient Burn-in Testmg)

Increased Heatlng
<§ Thermal ":>
Higher Runaway Higher
Power Transistor
Dissipation Leakage

Traditional Defect-Tolerant Techniques

#Used at high-end life-critical systems

+ N-Version Hardware
+ Triple Modular Redundancy (voting scheme)

+ Microprocessor Checkers

PTOCGSSOFI—_—: M Main Checker
Type A Processor . Processor

ProcessorI: & M[—' V —

Type B Processor Level
2-Version Hardware Mg TMR Checking

Utilize redundant hardware to validate computation

+ Results in very high area cost
+ Very costly to employ for mainstream systems

Goal: BulletProof Pipeline

& Area Cost Reliability

+ Ultra low-cost solution BulletProof

Pipeline
Area Performance

& Provided Reliability

+ Support recovery from first defect

@ Performance

+ After recovery the system still operates
in degraded performance mode

Approach: BulletProof Pipeline

4 Employ microarchitectural checkpointing to provide a computational epoch

4 Computational Epoch: a protected period of computation over which the
underlying hardware is checked

Use on-line distributed testing techniques to verify the hardware is free of
defects, on idle cycles

If a component is defective disable it, rollback state, and continue
operation under a degraded performance mode on remaining resources

For inexpensive defect protection, don’t check computation,
Instead... Validate H/W is free of defects, otherwise, rollback and recover.

LOCAL TESTER LOCAL TESTER LOCAL TESTER LOCAL TESTER
CHECKER CHECKER CHECKER CHECKER

FaRlecovery

~

if%is -

No Checking

Reconfiguration

S E
, Checking ~ Failure
PR Checkpoint mplete Extended epoch Detected

Micro-Architectural Checkpointing

4 A mechanism to create coarse-grained epochs of execution
+ Augment each cache block with a Volatile bit to indicate speculative state
+ Backup Register File: single-port SRAM (simpler and smaller than regular RF)

REGISTER
FILE L1 Data Cache

4-way set-associative L2 Cache

4 A computational epoch must end when:

+ All cache blocks in a set are volatile OR an I/O operation is requested

© Average epoch size is in the order of 10,000+ of instructions

Micro-Architectural Checkpointing
) Recavery
Computational Epoch »~ ~ =
Computation

Checking

Reconfiguration "

Checkpoint
SplevalidiRakata

L1 Data Cache
4-way set-associative

L2 Cache
OR
Main Memory

Specialized Distributed Online Testing/Checking

Tester/Checker for the ALU/Address Generation Unit

* Onidle cycles the ALU enters
into testing mode

 Built-In Self-Test vectors are
sentto ALU

» Output verified by a 9-bit mini-
ALU checker

e 4cycles to fully verify the ALU RS

Testing —>
» Other checkers covered Mode

in paper Testing clk

Experimental Methodology - Baseline Architecture

4 Baseline Architecture:
+ 5-stage 4-wide VLIW architecture, 32KB I-Cache, 32KB D-Cache
+ Embedded designs: Need high reliability with high cost sensitivity
Circuit-Level Evaluation:
+ Prototype with a physical layout (TSMC 0.18um)
+ Accurate area overhead estimations
+ Accurate fault coverage area estimations
Architecture-Level Evaluation:
+ Trimaran toolset & Dinero IV cache simulator
+ Average computational epoch size
+ Performance while in graceful degradation

& Benchmarks:
+ SPECINT2000, MediaBench, MiBench

Area Overhead Summary

& Overhead calculated using a physical-level prototype
+ Place & routed synthesized Verilog description of the design

& EX stage dominates area cost contribution
+ Functional unit checkers

+ Testvectors Overall design area cost: 5.8%

Nextis ID stage ID 1.6% (27%) EX 3.8% (66%)
+ Decoder checkers

+ Test vectors

+ Backup register file k\

@ Therestis: WB 0.05%

— (10
+ Cache parity/volatile bits |||z SNEE7Ne,]= / / (1%)
+ Testing logic 0.2% (3%) L1 D-Cache 0.1% (3%)

Design Defect Coverage

Defect Coverage: total area of the design in which a defect can be
detected and corrected

EX_| |MEM| | wB

92.206 —920%— |8E3% [924% 63.4%

Overall'Desigh Defect Coverage88.6%-

@ The unprotected area of the design mainly consists:
+ Resources that do not exhibit inherent redundancy
+ E.g., Interconnect (i.e., buses connecting the components) and control logic

)
5

Performance Under Degraded Mode Execution

@ The system recovers from a defect by disabling the defective component
& Losing an ALU results in average 18% performance degradation

& Losing an Addr. Gen/MULT unit results in average 4% perf. degradation

3
N
g0
2

B @ 2AL U/2L SM - Reference Config.|
B2ALUALSM
B oauzLsm

Conclusions

Presented the BulletProof pipeline

+ First ultra-low cost defect protection mechanism for microprocessors

+ Propose the combination of on-line distributed testing with
microarchitectural checkpointing for low-cost defect protection

4 Implemented a physical-level prototype of the technique
+ Area cost: 5.8%

Reliability
+ Reliability: 89% 89%
(coverage for first defect) BulletProof
+ Performance loss: 18% Pipeline

i Area Cost Performance
after graceful degradation
(after graceful degradation) 5.8% < 18%

Discussion Points

How useful is single defect coverage?

4 Is the measured design coverage “good enough”?

@ Does it make sense to build in defect coverage without support for
soft-errors?

