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Traditional Defect-Tolerant Techniques

#Used at high-end life-critical systems

+ N-Version Hardware
+ Triple Modular Redundancy (voting scheme)

+ Microprocessor Checkers

PTOCGSSOFI—_—: M Main Checker
Type A Processor . Processor

ProcessorI: & M[—' V —

Type B Processor Level
2-Version Hardware Mg TMR Checking

# Utilize redundant hardware to validate computation

+ Results in very high area cost
+ Very costly to employ for mainstream systems

Goal: BulletProof Pipeline

& Area Cost Reliability

+ Ultra low-cost solution BulletProof

Pipeline
Area Performance

& Provided Reliability

+ Support recovery from first defect

@ Performance

+ After recovery the system still operates
in degraded performance mode




Approach: BulletProof Pipeline

4 Employ microarchitectural checkpointing to provide a computational epoch

4 Computational Epoch: a protected period of computation over which the
underlying hardware is checked

# Use on-line distributed testing techniques to verify the hardware is free of
defects, on idle cycles

# If a component is defective disable it, rollback state, and continue
operation under a degraded performance mode on remaining resources

For inexpensive defect protection, don’t check computation,
Instead... Validate H/W is free of defects, otherwise, rollback and recover.
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Micro-Architectural Checkpointing

4 A mechanism to create coarse-grained epochs of execution
+ Augment each cache block with a Volatile bit to indicate speculative state
+ Backup Register File: single-port SRAM (simpler and smaller than regular RF)

REGISTER
FILE L1 Data Cache

4-way set-associative L2 Cache

4 A computational epoch must end when:

+ All cache blocks in a set are volatile OR an I/O operation is requested

© Average epoch size is in the order of 10,000+ of instructions
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Specialized Distributed Online Testing/Checking

Tester/Checker for the ALU/Address Generation Unit

* Onidle cycles the ALU enters
into testing mode

 Built-In Self-Test vectors are
sentto ALU

» Output verified by a 9-bit mini-
ALU checker

e 4cycles to fully verify the ALU RS

Testing —>
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Experimental Methodology - Baseline Architecture

4 Baseline Architecture:
+ 5-stage 4-wide VLIW architecture, 32KB I-Cache, 32KB D-Cache
+ Embedded designs: Need high reliability with high cost sensitivity
# Circuit-Level Evaluation:
+ Prototype with a physical layout (TSMC 0.18um)
+ Accurate area overhead estimations
+ Accurate fault coverage area estimations
# Architecture-Level Evaluation:
+ Trimaran toolset & Dinero IV cache simulator
+ Average computational epoch size
+ Performance while in graceful degradation

& Benchmarks:
+ SPECINT2000, MediaBench, MiBench




Area Overhead Summary

& Overhead calculated using a physical-level prototype
+ Place & routed synthesized Verilog description of the design

& EX stage dominates area cost contribution
+ Functional unit checkers

+ Testvectors Overall design area cost: 5.8%

# Nextis ID stage ID 1.6% (27%) EX 3.8% (66%)
+ Decoder checkers

+ Test vectors

+ Backup register file k\
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Design Defect Coverage

# Defect Coverage: total area of the design in which a defect can be
detected and corrected
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@ The unprotected area of the design mainly consists:
+ Resources that do not exhibit inherent redundancy
+ E.g., Interconnect (i.e., buses connecting the components) and control logic
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Performance Under Degraded Mode Execution

@ The system recovers from a defect by disabling the defective component
& Losing an ALU results in average 18% performance degradation

& Losing an Addr. Gen/MULT unit results in average 4% perf. degradation
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Conclusions

# Presented the BulletProof pipeline

+ First ultra-low cost defect protection mechanism for microprocessors

+ Propose the combination of on-line distributed testing with
microarchitectural checkpointing for low-cost defect protection

4 Implemented a physical-level prototype of the technique
+ Area cost: 5.8%

Reliability
+ Reliability: 89% 89%
(coverage for first defect) BulletProof
+ Performance loss: 18% Pipeline

i Area Cost Performance
after graceful degradation
(after graceful degradation) 5.8% < 18%




Discussion Points

# How useful is single defect coverage?

4 Is the measured design coverage “good enough”?

@ Does it make sense to build in defect coverage without support for
soft-errors?




