
Morpheus
Adaptive Defenses for Tomorrow’s

Secure Systems

Todd Austin
University of Michigan

austin@umich.edu

Joint work with:
Valeria Bertacco (UM)

Sharad Malik (Princeton)
Mohit Tiwari (UT-Austin)

• Jeep hacked remotely while driving

• DHS attacks Boeing 757, details classified

• Pacemaker wirelessly infiltrated

• Mirai botnet disables DynDNS

• Entire baby monitor market hacked

• Atrium fish tank thermometer hacked

2

Assessing the State of Security

• Currently, a patch-based approach
• Find and fix vulnerabilities
• Complexity growth far outstrips security
• Manual testing & analyses don’t scale

• Endless security arms race
• Patch and pray…

• How do we protect against
unknown (0-day) attacks?
• Anticipate the “unknown unknowns”

3

Why is Security So Hard to Get Right?

• Attacking is easier than protecting
• Attackers needs only one vulnerability
• Protecting requires 100% coverage

• Related software growth rates:
• Protections: doubles every 2 years
• Malware: 40% growth in 30 years

• Vulnerabilities are on the rise
• Rate of attacks is exploding

4

Attacking is Easy, Protecting is HARD

5

Durable Security: the Big Unsolved Challenge

• What we do well:
• Finding and fixing vulnerabilities

• Deploying system protections that
stop well-known attacks

• Where we fail: identifying and
stopping emergent attacks

Synopsys’
Coverity Tools

Intel’s
Control-Flow
Enforcement

ARM’s
TrustZone

Valgrind

What If a Secure System Could…

• Respond lightning-fast against
common attacks

• Self-adapt quickly to unknown
emerging threats

• Learn and prioritize the most
successful defense strategies

• Utilize a self-protecting distributed
implementation

6

Human Adaptive Immunity Primer
• T-cells receptors discern normal cells

from malicious cells, via genetic markers

• To stop an unknown disease, T-cells
undergo hypermutation that randomizes
T-cell defense capabilities

• Boosted T-cell diversity will likely
stop the pathogen attack

• Immunological memory records
successful T-cell variants to speed
future recoveries

7

1015 possible diseases
107 T-cell variants

Memory
Cell

Morpheus Mimics Adaptive Immunity
• Morpheus attack detectors discern normal

code from malicious code, via
undefined semantics

• To stop an unknown attack, Morpheus
randomizes a system’s undefined
semantics, a process called “churn”

• Churning undefined semantics stops
security attacks

• Learning mechanisms record successful
defenses and stop future attacks quicker

8

void target() {
printf("You overflowed, gg");
exit(0);

}

void vulnerable(char* str1) {
char buf[5];
strcpy(buf, str1);

}

int main() {
vulnerable("ffffffffffffffff\xf0\x01\x01\x00");
printf("This prints for normal control flow");

}

Undefined: return
address store

Undefined: target()
address forgery

Undefined:
array overflow

9

Morpheus’ Unique Approach to Security

Randomization Defenses (w/Churn)
• Code representation
• Code layout (absolute and relative)
• Code pointer representation
• Data pointer representation
• Data layout (absolute and relative)
• Function pointer representation
• Return pointer representation
• User enclave data representation
• Microarchitectural mappings

Attack Detector
• Buffer overflow
• Code pointer arith
• Data pointer logical operation
• Code forgery
• Pointer forgery
• Uninitialized variable access
• Mem permission violation
• Integer overflow
• Shift overflow
• Code read
• Cyclic interference

or every
50 ms

504 bits of
true random

entropy

Code
Code Ptrs
Data Ptrs

• Critical program assets are encrypted
under their domain keys
• Code, code pointers, data pointers
• Decrypted at fetch, jumps and load/stores
• Tracked at runtime using dynamic tagging

• Assets remain encrypted in registers,
memory, buses, I/O
• Requires strong ciphers in the pipeline

• Churn re-encrypts a domain under a
new random key
• Places a time limit on penetrating encryption

10

Protecting Critical Assets with Encryption

Information
Assets

~50 ms

Pr
ob

e

C
hu

rn

Pr
ob

e

C
hu

rn

Pr
ob

e

C
hu

rn

C
hu

rn . . .With Churn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn

Pr
ob

e
C

hu
rn . . .With Adaptive

Churn and
Memory

Morpheus Breaks Emergent Attacks
Pr

ob
e

Synthesize Attack

Su
cc

es
s

Conventional
Attack

Synthesize Attack
Pr

ob
e

Su
cc

es
sWith

Randomized
Critical
Assets

ms

hours+

~2 ms

11

• Blind call attack example
• Attacker attempts to call syscall()

• Attack success rate dependent on
churn rate and degree of entropy
• State-of-the-art: no churn and low/high entropy
• Morpheus: frequent churn and high entropy

• H/W churn makes probes no more
powerful than random guesses
• Impractically difficult with high entropy

12

Fast Churn Defeats Probing
vaddr

syscall()

syscall()

syscall()

syscall()

13

Morpheus Platform Details

Morpheus Secure Platform
S/W Ecosystem

LLVM
GCC/Binutils

Type
Analysis

Backend
Metadata
Emitter

FreeRTOS

H/W Architecture

32/64-bit RISC-V
Rocket Core Morpheus Defense Layers

Domain
Encryption Pointer Locking Hard

NULLs

Tagged
Memory Churn Unit

Tagging & Attack Detection
• Tags enable

behavior tracking

• Illegal Ops
• Clearly dangerous

• Suspicious Ops
• Normal programs

may perform
• May be probes or

attacks

14

Attack Detector

Operand Tags Opcode

Illegal Suspicious
• Executing non‐code
• Jump to non‐CP
• …

Terminate Program Churn

• CP arithmetic
• Arith. overflow
• …

Otherwise, churn every 50ms

D
IFT

D
IFT

DIFT DIFT

R
an

do
m

M

ap
pi

ng

R
an

do
m

M

ap
pi

ng

R
an

do
m

M

ap
pi

ng
R

an
do

m

M
ap

pi
ng

15

Morpheus Microarchitecture

IF ID EX MEM
(read-only)

WB
(reg/mem)

Decrypt
Auth

Decrypt
Data-ptr

Decrypt
Code-ptr

Encrypted D-CachesEncrypted I-Caches

Encrypted RAM
and Disks

Key Hardware Advantages
• Power efficiency and speed
• Strong root-of-trust
• Randomization via strong ciphers (not XOR or CTR!)

Stops:
• Disclosures
• Foreshadow

Stops:
• Jailbreaks
• Cold-boot
attacks

Stops:
• Code injection
• Rooting
• ROP analysis

Stops:
• Buffer overfl
• ROP
• Return-to-libc
• COOP

Stops:
• Heartbleed
• AnC de-random
• Rowhammer

Stops:
• Spectre
• Meltdown
• Fallout
• Flush+Reload

Churning Keys at Runtime

16

Pr
og

ra
m

Ch
ur
n

Fl
us
h

Ke
y

G
en Re
g Asset Updates

Stale

Fl
us
h

Ke
y

G
en

Churn Period

Stale: Under OLD key
Clean: Updated to NEW key

! !

Asset Updates
Clean

Th
re
sh
ol
d

t

Assessing the Security of Morpheus
How long does it take to penetrate Morpheus defenses?

• Difficult to attack a system that is
• Constantly changing
• Has high entropy

• Approach: Attack a weaker Morpheus

Churn Disabled
Shared Key for Defenses

De-featured
Morpheus

17

18

Morpheus-- Penetration Testing Results
E == Domain encryption on (E) or off (E)
P == Pointer displacement on (P) or off (P)

Analysis: RISC-V Morpheus on Gem5 simulated system

Early results:
• Performance cost: 2% average

slowdown with 504-bits of
entropy and 50ms churn

• Power cost: 2.5% power
• Area cost: 8% area increase
• Developer cost: No impact on

normal applications

19

How Effective is Morpheus? Early Results

7% worst case

2% average

GPS

gyro accelmag barometer

videocontrol

safety comms

• Why: We want to build strong confidence in our security
• How: Provide RISC-V based H/W to attacker community

• Demo 1: Voting machine at DEFCON – by Dec 2019
• Goal: Validate security claims with black-hat community

• Demo 2: Network-facing website – by Feb 2020
• Goal: Deploy a long-term world-attackable platform with bounty
• Runs a subset of Wikipedia, includes an interface to inject code

• Demo 3: Secure avionics demonstration – by Jun 2020
• Goal: Excise developer issues via engagement with defense contractors

20

Morpheus Will Undergo Public Red-Teaming

• Originally Morpheus had decrypted caches
• Foreshadow taught us that was a potential vulnerability

• Today’s Morpheus has encrypted memory, caches, registers
• And more encryption domains: data pointer, code pointer, return pointer, user data, etc…

• Observation: to build security, we deploy two durable mechanisms
• Isolation and encryption
• History: physical memory begat virtual memory begat virtualization begat containers

begat TEEs begat Morpheus…
• Each step, we accomplish the important goal of putting less trust in software

• What is the endgame of security?
• Total isolation and total encryption… and zero trust in software?
• This is where I want to go next… let’s work together!

21

Morpheus’ Evolution and Beyond

22

Toward Zero Trust in Software

Less Trust in Software

Trust
Profile

More
S/W
Trust

More
H/W
Trust

Overheads

HE App/OS

CPU/Mem

100,000-1,000,000%

Homomorphic
Encryption

Apps/OS

CPU/Mem

0%

Unprotected

CPU/Mem

App OS App

5-10%

Container’ized

CPU/Mem

Apps/OS
SGX
App

SGX

10-15%

SGX Enclave

CP DP S/W

CPU/Mem

2%

Morpheus

• HE advances privacy
• No trust in S/W
• No trust in H/W
• Only trust in (immature) crypto

• What is the cost?
• 105 – 106 times slower than

comparable unencrypted computation
• Can be parallelized extensively, and a

focus of accelerator designers
• Is it safe? Is it economical?

23

Homomorphic Encryption Minimizes Trust

From: https://royalsociety.org/-/media/policy/projects/privacy-enhancing-technologies/privacy-
enhancing-technologies-report.pdf (highly recommended!)

24

The Cost of Data Breaches
Varonis.com:
• 1 in 4 chance of experiencing data

breach in a given year

IBM:
• Average cost per data breach in 2018:

$3.86 million

Cybersecurity Ventures:
• Global cybersecurity market >$120 B in 2017
• Typical S&P 500 bank spends $500 M/year

on cybersecurity

AWS Case Study
Yearly revenue $7.82 B
Expected total cost of data
breaches for AWS user base

$1.92 B

Questions?

We demand rigidly defined areas of doubt and uncertainty!
‐ Douglas Adams, The Hitchhiker's Guide to the Galaxy

