
Summary: Benefits of App-Specific Design

Speed,
Efficiency

Flexibility,
Programmability

H/W designs General Purpose
Processors

General Purpose
Processors

+ ISA Extensions

Application
Specific
Processor

 Specialization limits the scope of a device’s operation

 Produces stronger properties and invariants

 Results in higher return optimizations

 Programmability preserves the flexibility regarded by GPP’s

 A natural fit for embedded designs

 Where application domains are more likely restrictive

 Where cost and power are 1st order concerns

 Overcomes growing silicon/architecture bottlenecks
 Concentrated computation overcomes dark silicon dilemma

 Customized acceleration speeds up Amdahl’s serial codes

A Take on Composable Customization

Works presented here are from Jason Cong’s research group @ UCLA

• Tightly Coupled Accelerator (TCA)
• Extended Instruction (e.g. MAC, SQRT)

• Dedicated Accelerator (e.g. FFT, MPEG4)

• Loosely Coupled Accelerator (LCA)
• Acts independently of individual cores

• Can be shared among cores/resources

• Essentially the “accelerator” we normally see.

TCA vs LCA

• Dedicated: accelerator executes a program using domain-specific
component.
• Examples: GPU

• Programmable accelerator: Use programming fabrics to customized
accelerator
• Ex. FPGA-based accelerator

• Composable: combines accelerator building blocks into an accelerator

LCA

• Dark silicon provide extra area for incorporating more accelerator?
• Yes… but how many accelerator do we really need?

• An LCA may be useless for new algorithms or new domains

• Essentially, it is not practical to build an accelerator for every single
application

• LCA is
• Often under-utilized

• Contain many replicated structures (things like fp-ALUs, DMA engines, SPM)
• Unused when the accelerator is unused

Why bother composing accelerator?

How do we compose an accelerator?

• ABB (Accelerator building block)
• A Block of accelerator unit that performs small specific task

From CHARM: A Composable Heterogeneous Accelerator-Rich Microprocessor ISLPED’12

Example of ABB Flow-Graph (Denoise)

2

Example of ABB Flow-Graph (Denoise)

--

**

--

**

--

**

--

**

--

**

--

**
++ ++ ++

++

++

sqrtsqrt

1/x1/x

2

Example of ABB Flow-Graph (Denoise)

--

**

--

**

--

**

--

**

--

**

--

**
++ ++ ++

++

++

sqrtsqrt

1/x1/x

2

ABB1: Poly

ABB2: Poly

ABB3: Sqrt

ABB4: Inv

Example of ABB Flow-Graph (Denoise)

--

**

--

**

--

**

--

**

--

**

--

**
++ ++ ++

++

++

sqrtsqrt

1/x1/x

2

ABB1:Poly

ABB2: Poly

ABB3: Sqrt

ABB4: Inv

Micro Architecture of CHARM
• ABB

• Accelerator Building Blocks (ABB)
• Primitive components that can be

composed into accelerators

• ABB islands
• Multiple ABBs
• Shared DMA controller, SPM and

NoC interface

• ABC
• Accelerator Block Composer (ABC)

• To orchestrate the data flow between
ABBs to create virtual accelerator

• Arbitrate requests from cores

• Other components
• Cores
• L2 Banks
• Memory controllers

ABC Internal Design
• ABC sub-components

• Resource Table(RT): To keep track of
available/used ABBs

• Composed LCA Table (CLT): Eliminates
the need to re-compose virtual LCAs

• Task List (TL): To queue the broken
virtual LCA requests (to smaller data
size)

• TLB: To service and share the translation
requests by ABBs

• Task Flow-Graph Interpreter (TFGI):
Breaks the virtual LCA DFG into ABBs

• vLCA Composer (vLC): Compose the
virtual LCA using available ABBs

• Implementation
• RT, CLT, TL and TLB are implemented

using RAM
• TFGI has a table to keep ABB types and

an FSM to read task-flow-graph and
compares

• vLC has an FSM to go over CLT and RT
and check mark the available ABBs

Resource
Table

Composed
LCA Table

TLB

Task List

DFG
Interpreter

vLCA
Composer

From ABBs

(Done signal)

Cores

Accelerator Block Composer

To ABBs

(allocate)

ABBs

(TLB service)

An Example of ABB Library (for Medical Imaging)

Internal

of Poly

o0 o1 o2 o3

o4 o5

o6

Virtual LCA Composition Process

ABB

ISLAND1

ABB

ISLAND2

ABB

ISLAND3

ABB

ISLAND4

x

y

x

w

z

w

y

z

All islands have X, Y, Z, W

For Simplicity only those

ABBs which are available

now are shown

ABB

ISLAND1

ABB

ISLAND2

ABB

ISLAND3

ABB

ISLAND4

Virtual LCA Composition Process

1. Core initiation
• Core sends the task description: task

flow-graph of the desired LCA to ABC
together with polyhedral space for input and
output

x

y

x

w

z

w

y

z

x

y z

10x10 input and output

Task description

ABB

ISLAND1

ABB

ISLAND2

ABB

ISLAND3

ABB

ISLAND4

Virtual LCA Composition Process

2. Task-flow parsing and task-list creation
• ABC parses the task-flow graph and breaks the

request into a set of tasks with smaller data size
and fills the task list

x

y

x

w

z

w

y

z
Needed ABBs: “x”, “y”, “z”

With task size of 5x5 block,

ABC generates 4 tasks

ABC generates internally

ABB

ISLAND1

ABB

ISLAND2

ABB

ISLAND3

ABB

ISLAND4

Virtual LCA Composition Process

3. Dynamic ABB mapping
• ABC uses a pattern matching algorithm

to assign ABBs to islands
• Fills the composed LCA table and

resource allocation table

x

y

x

w

z

w

y

z

Island
ID

ABB
Type

ABB ID Status

1 x 1 Free

1 y 1 Free

2 x 1 Free

2 w 1 Free

3 z 1 Free

3 w 1 Free

4 y 1 Free

4 z 1 Free

ABB

ISLAND1

ABB

ISLAND2

ABB

ISLAND3

ABB

ISLAND4

Virtual LCA Composition Process
3. Dynamic ABB mapping

• ABC uses a pattern matching algorithm
to assign ABBs to islands

• Fills the composed virtual LCA table
and resource allocation table

x

y

x

w

z

w

y

z

Island
ID

ABB
Type

ABB ID Status

1 x 1 Busy

1 y 1 Busy

2 x 1 Free

2 w 1 Free

3 z 1 Busy

3 w 1 Free

4 y 1 Free

4 z 1 Free

ABB

ISLAND1

ABB

ISLAND2

ABB

ISLAND3

ABB

ISLAND4

Virtual LCA Composition Process
4. LCA cloning

• Repeat to generate more virtual LCAs if
ABBs are available

x

y

x

w

z

w

y

z

Core
ID

ABB
Type

ABB ID Status

1 x 1 Busy

1 y 1 Busy

2 x 1 Busy

2 w 1 Free

3 z 1 Busy

3 w 1 Free

4 y 1 Busy

4 z 1 Busy

ABB

ISLAND1

ABB

ISLAND2

ABB

ISLAND3

ABB

ISLAND4

Virtual LCA Composition Process

5. ABBs finishing task
• When ABBs finish, they signal the ABC.

If ABC has another task it sends
otherwise it frees the ABBs

x

y

x

w

z

w

y

z

Island
ID

ABB
Type

ABB ID Status

1 x 1 Busy

1 y 1 Busy

2 x 1 Busy

2 w 1 Free

3 z 1 Busy

3 w 1 Free

4 y 1 Busy

4 z 1 Busy

DONE

ABB

ISLAND1

ABB

ISLAND2

ABB

ISLAND3

ABB

ISLAND4

Virtual LCA Composition Process

5. ABBs being freed
• When an ABB finishes, it signals the

ABC. If ABC has another task it sends
otherwise it frees the ABBs

x

y

x

w

z

w

y

z

Island
ID

ABB
Type

ABB ID Status

1 x 1 Busy

1 y 1 Busy

2 x 1 Free

2 w 1 Free

3 z 1 Busy

3 w 1 Free

4 y 1 Free

4 z 1 Free

ABB

ISLAND1

ABB

ISLAND2

ABB

ISLAND3

ABB

ISLAND4

Virtual LCA Composition Process

6. Core notified of end of task
• When the virtual LCA finishes ABC

signals the core

x

y

x

w

z

w

y

z

Island
ID

ABB
Type

ABB ID Status

1 x 1 Free

1 y 1 Free

2 x 1 Free

2 w 1 Free

3 z 1 Free

3 w 1 Free

4 y 1 Free

4 z 1 Free

DONE

Limitation?

• Composing accelerator from building blocks still only serve limited
range of applications
• So incorporate Programmable fabric

ASICS vs. Programmable Accelerator

ASICS Programmable

+ Fast
+ Small Area (per accelerator)
+ Energy Efficient
- Inflexible
- Need more as applications
become diverse

Pretty much the opposite
+ Reconfigurable
+ Small Area (Overall)
+ Good Utilization
- Not Efficient
- Slower than ASICs

CAMEL Architecture (ISLPED’13)

• Operating accelerators with different speeds (frequencies) can create a
bottleneck. Especially, since PFs are slower than ABBs.

Challenges in incorporating PF

• Duplicates slow accelerators to bring up throughput

Rate-Matching Technique

Runtime PF Allocations

Note that is kernel being mapped is too large for total # of ASICs +
PFs, task flow graph is partitioned (in a way that minimize data
transfer)

Compiler Framework

• 11.6X performance improvement, 13.9X energy savings over CHARM
(up to over 30X from GP)

• Experimental results found optimal percentage of PFs to be around
30% for application domain like Medical imaging/Navigation, and 50%
for commercial application domain and computer visions

• Still more work to be done!

Result?

Brick and Mortar Silicon Manufacturing

Martha Mercaldi
Mark Oskin, Todd Austin, Karl Bohringer, Azita Emami

University of Washington, University of Michigan, Columbia University

January 11, 2007

1

1

Declining ASIC Starts

0

3,750

7,500

11,250

15,000

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

[DataQuest] 2

2

Cost of Production

[www.edn.com] 3

FPGA
Standard Cell ASIC

Product Volume

P
ro

du
ct

io
n

C
os

t

3

http://www.edn.com
http://www.edn.com

Cost of Production

[www.edn.com] 4

FPGA
Standard Cell ASIC
Brick & Mortar Goal

Product Volume

P
ro

du
ct

io
n

C
os

t

4

http://www.edn.com
http://www.edn.com

System on Chip

• Assemble system out of pre-
designed components

• Reduce design time

• In 2004, one engineer costed $392,000
annually [www.design-reuse.com]

• Minimize bugs

• Initial bugs can cost 50% of revenue
[www.design-reuse.com]

[www.tomshardware.co.uk]

PXA27X processor

5

5

http://www.design-reuse.com
http://www.design-reuse.com
http://www.design-reuse.com
http://www.design-reuse.com
http://www.tomshardware.co.uk
http://www.tomshardware.co.uk

Brick and Mortar: Assembly

6

uP

ETH

US
B

VGA

DM
A

PCI

uP

ETH
US
B

VGA

DM
A

3DES

• Bricks -- ASIC chips

• standard interface

• implement standard functions

• i.e., USB, VGA controller, ethernet
NIC, PCI bridge, DMA, SRAM,
3DES, JPEG codec, RISC core

6

uP
ETH

USB

Brick and Mortar: Assembly

7

uP ETH USB

uP ETH USB

7

uP ETH USB

I/O cap

uP ETH USB

I/O cap

Brick and Mortar: Assembly

8

uP ETH USB

I/O cap

8

Brick and Mortar: Chip

9

9

Brick and Mortar: I/O Pads

10

• One surface covered with
I/O pads

• 25 um x 25 um / pad

• 2.5 Gbps / pad

10

Brick and Mortar: I/O Cap Interconnect

11

• I/O cap -- ASIC chip
implementing inter-brick
interconnect

• packet-switched network

• FPGA-like, island style
configurable interconnect

11

uP

ETH

US
B JPEG codec

FFT uP + 256K SRAM

uP ETH USB uP + 256K SRAMFFT JPEG codec

I/O cap

uP + 256K SRAM

I/O cap

uP + 256K SRAM
FFT JPEG codec uP ETH USB

I/O cap

uP + 256K SRAM FFT JPEG codec uP ETH USB

I/O cap

uP + 256K SRAM FFT JPEG codec

Brick and Mortar: Multiple Brick Sizes

12

12

Brick and Mortar: Multiple Brick Sizes

13

Function Cite Circuit Max. Circuit Min. Perf. 0.25mm2 1.0mm2 4.0mm2

Area (um2) Freq. (MHz) (Mbps) brick brick brick

Valid Freq. Range (MHz)

Small Bricks

USB 1.1 [33] 2,201 2941 12 2 - 2941 No benefit No benefit

PHYSICAL LAYER

VITERBI [45] 2,614 1961 - N/A - 1961 No benefit No benefit

VGA/LCD [33] 4,301 1219 - N/A - 1046 N/A -1219 No benefit

CONTROLLER

WB DMA [33] 13,684 1163 - N/A - 521 N/A - 1163 No benefit

MEMORY [33] 29,338 952 - N/A - 843 N/A - 952 No benefit

CONTROLLER

TRI MODE [33] 32,009 893 1000 125 - 893 No benefit No benefit

ETHERNET

PCI BRIDGE [33] 76,905 1042 - N/A - 610 N/A - 1042 No benefit

WB Switch [33] 81,073 1087 - N/A - 88 N/A - 353 N/A - 1087

(8 master, 16 slave)

FPU [33] 85,250 1515 - N/A - 505 N/A - 1515 No benefit

DES [33] 85,758 1370 1000 16 - 1203 16 - 1370 No benefit

16K SRAM [6] 195,360 2481 - N/A - 2481 No benefit No benefit

(Singleport)

AHO-CORASIK [50] 201,553 2481 - N/A - 1331 N/A - 2481 No benefit

STR. MATCH

RISC CORE (NO [33] 219,971 1087 - N/A - 1087 No benefit No benefit

FPU) / 8K CACHE [6]

8K SRAM [6] 230,580 1988 - N/A - 1988 No benefit No benefit

(Dualport)

Medium Bricks

TRIPLE [33] 294,075 1282 1000 No space 16 - 1282 No benefit

DES

FFT [44] 390,145 1220 - No space N/A - 1220 No benefit

JPEG DECODER [33] 625,457 629 - No space N/A - 629 No benefit

64K SRAM [6] 682,336 2315 - No space N/A - 2315 No benefit

(Singleport)

32K SRAM [6] 733,954 1842 - No space N/A - 1842 No benefit

(Dualport)

RISC CORE [33] 864,017 1087 - No space N/A - 1087 No benefit

+ 64K CACHE [6]

Large Bricks

256K SRAM [6] 2,729,344 2315 - No space No space N/A - 2315

(Singleport)

128K SRAM [6] 2,935,817 2882 - No space No space N/A - 2882

(Dualport)

RISC CORE + [33] 3,111,025 1087 - No space No space N/A - 1087

256K CACHE [6]

Table 1: IP Block Synthesis and Brick Assignment: This table shows the synthesis-produced area and timing

characteristics of each brick-candidate IP block. Each block has been assigned to the smallest brick which met

its area and bandwidth constraints. Note how some of the blocks that we have assigned to small bricks could take

advantage of the increased I/O bandwidth afforded by larger bricks (indicated by the increased frequency range).

6

.5 mm

1 mm

2 mm

13

Advantages of Brick and Mortar

• Low manufacturing costs

• no custom masks

• small design & verification costs

• low-cost assembly system (fluidic self
assembly)

• ASIC-like degree of circuit integration

• Heterogeneous processes for bricks

• Exclude defective components from
assembly

• Leverage process variation for high
performance designs

14

14

Preliminary Performance Analysis

• Three, 16-way CMP designs

• Only 8% - 36% slowdown relative to ASIC

•

15

15

Why RAMP?

• Once a design has been tested and validated on RAMP platform

• Less costly, per unit, than FPGAs (or boards)

• Higher-speed than FPGAs

16

16

Conclusion

• Systems built out of ASIC bricks bonded to an interconnect ASIC

• A viable, low-cost technology if properly architected:

• appropriate brick functions

• general, flexible interconnect

• efficient inter-ASIC communication

17

17

Questions & Discussion

18

18

