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The Security Arms Race

• Question: Why are systems 
never safe?
• We deploy our designs

• Attackers attack

• We deploy countermeasures

• Rinse and repeat

• Let’s see an example of the 
arms race for code injection
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In the Beginning:
Buffer Overflow Attacks
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void foo()
{

int local_variables;
int buffer[256];
…
buffer = read_input();
…
return;

}
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Countermeasure:
No-Execute (NX) Stacks

• Eliminates stack code injection by 
stopping code execution on stack

• Can be a problem for some safe 
programs, e.g., JITs

• Often, a general mechanism via 
e(x)ecute bit in page table PTEs
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Enter: Heap-spray Attacks

• Inject executable data 
into heap, then perform 
random stack smash
• Example: generate many 

strings in Javascript that 
are also attack code

• Generously large heap 
sprays are easily found 
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Countermeasure:
Address Space Layout Randomization (ASLR)

• At load time, insert random-sized padding 
before all data, heap, and stack sections of 
the program

• Successfully implementing a heap-spray 
requires guessing the heap location on the 
first try

• Provides more safety on 64-bit systems

• Often, code placement is not randomized 
due to position-independence requirement
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Enter: Return-Oriented-Programming Attacks

• Smash stack with many returns to the 
tails of functions

• Returns stitch together a new 
program (from existing code) using
the tails of functions

• This form of code injection doesn’t 
inject new code, but reuses the code 
that is already there!

7

stack

foo() {
…
pop %rdi
ret

}

foo() {
…
pop %rsi
ret

}

foo() {
…
call write
ret

}
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Hardware is Catching Up Fast

• Growing list of hardware 
vulnerabilities calls into 
question the extent to 
which hardware can 
establish a root of trust 

8

Rowhammer

Flush+Reload

Cold Boot (DDR3/4)

A2 Malicious Hardware



Why Does the Race Never End?
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• Traditional additive methods add 
protections to thwart attacks
• Stack smash begat NX bit begat heap spray 

begat ASLR begat ROP…
• Verifying an additive measure requires a 

nonexistence proof
• For all <programs, inputs>, there exists no 

unchecked vulnerability

• Principled designs are not generally 
possible due to immense attack surface
• Created by software and hardware complexity
• Increasing complexity worsens challenge
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When Good Protections Go Bad:
CAT-Assisted Rowhammer
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• Current rowhammer
protections are effective

• When used in tandem

• CAT technology was made (in part) to 
prevent VM denial-of-service

• Works well in this regard
• Also works well to speed up rowhammer!

• Rowhammer attack approach:
1. Pose as a VM “noisy neighbor” and get LLC 

cache access restricted by CAT
2. Rowhammer using single-ended CFLUSH-

free attack mode

• Defenses?
• Most recent defenses work: ANVIL, PARA



Attackers Have the Upper Hand
• Attacking is fundamentally easier

than protecting against attacks
• Attacking requires one bug/vulnerability

• Protecting requires 100% coverage of all 
bugs/vulnerabilities (mostly incomplete)

• Consequently, attacks and 
vulnerabilities are on the rise
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My Goal Today is to Suggest a Better Way

• Subtractive security techniques remove functionality from 
the system necessary to implement classes of attacks

• The approach is a principled approach to achieving 
complete coverage of all vulnerabilities for non-trivial systems

• Demonstrated via a single-instance constructive proof
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Subtractive Security Techniques
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• Additive methods add protections to thwart attacks

• Verifying additive measures requires a nonexistence proof

• For all <programs, inputs, vulnerabilities>, there exists
no unchecked vulnerability

• Subtractive methods remove “functionality” needed
to implement a class of attacks

• Rebuild the subtractive design to work without functionality

• Implementation is an constructive proof that approach works

• Optimize subtractive design to negate overheads

• Resulting system is immune to targeted class of attacks

• Why does this work so well?

• Attack functionality differs radically from normal activity

• Constructive proofs are naturally scalable and approachable proof techniques



Two Examples…

• Control-data isolation (CDI), to stop code injection

• Ozone zero-leakage execution mode, to stop timing side 
channels
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Example #1: Control-Data Isolation

• Code injection requires
indirection

• All indirection removed, uses 
whitelisted direct jumps to 
thwart all code injection
• Direct, as specified by programmer

• Validated, via whitelisting

• Complete, no indirection remains

• System supports run-time code 
gen and dynamic libraries
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Hardware Support Erases Overheads

• Software-only approach 
experiences 7% slowdown

• Due to indirect whitelist validation 
that occurs at all indirect jumps

• Edge cache memoizes edge 
validations, doubles as predictor

• With range table, 6kB edge cache 
reduces slowdowns to 0.3%

• Indirect target prediction cuts 
misprediction rate in half over 
simple BTB
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Example #2:
Ozone Zero-Timing-Leakage Architecture

• Even carefully designed systems leak 
info about internal computation
• Example: safes can be cracked by carefully 

listening to the tumblers

• Clever attackers can utilize leaked 
information to gain secrets
• If not directly, use statistical methods

• Current protections are additive
• Add delays to the system to hide timing

• Add superfluous activities to hide actions

• Side channels persist despite measures
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Ozone Zero-Timing-Leakage Architecture

• Functionality removed: all characteristics 
that create timing channels
• Common case not optimized
• No resource sharing
• No fine-grained timing analysis

• Implementation approach:
• Ozone H/W thread runs in fixed time
• No complex (hammock) control, use static predictor
• Only access to scratchpad memory
• Does not share resources
• Not subject to context switches

• Zero timing leakage and 10x faster than 
additive approaches
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Challenges and Opportunities
• To what extent can subtractive security stop vulnerabilities?

• Demonstrated for code injection and timing leakage

• Could it work for rowhammer, memory side channels, and malicious 
hardware?

• To what extent will these techniques be composable?
• prot(code injection) + prot(timing leakage) ?= no code inject, no leakage

• To what extent will these techniques be deployable?
• Code-data isolation requires complete overhaul of build tool chain

• Ozone zero-leakage architecture somewhat restricts code expression

• Will system designers pay for these technologies?
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Conclusions
• My challenge to you: let’s get the upper hand back from attackers

• Requires a principled approach that shuts down vulnerabilities

• This is simply intractable for additive security measures

• Subtractive security measures are a principled approach that 
are simpler to validate

• Creation of a working system constitutes a constructive proof

• Has already been demonstrated for multiple vulnerabilities

• Would this approach address your critical vulnerabilities?
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Looking Ahead

• Exploring new models of “principled design”
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Challenges:

• Scalability and complexity

• Composability

• Soundness and completeness

Our new tools:

• Lies and deception

• Misdirection and bewilderment

• False hope and broken dreams



Questions?
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