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Architecture’s Diminishing Return

« Staples of value we strive for...
« High Speed
 Low Power
* Low Cost

 Tricks of the trade
» Faster clock rates, via pipelining

 Higher instruction throughput, via ILP extraction
« Homogeneous parallel systems
* Much past evidence of diminishing return, PIll vs. P4

* Plll vs. P4: 22% less P4 throughput (0.35 vs. 0.45 SPECInt/MHz)
« Parallel resources not fully harnessed by today’s software

e Less return = less value = g
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Moore’s Law Performance Gap
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Is Density Still Scaling?
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Performance Demands Continue to Grow:
Speech Recognition
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Remedy #1: Chip Multiprocessors
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The Dark Silicon Dilemma g &
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Advanced Scaling:
Dennard: “Computing Capabilities
IfS=14x ... Scale by S° - 2.8x”

S=14x
Faster Transistors

S2=2x
More Transistors

] . v -1 Specific Architectures
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The Dark Silicon Dilemma g &

!
High-k

g Silicon

Dennard:
“We can keep power consumpftion
constant”
S=14x S=14x

Faster Transistors Lower Capacitance

S2=2x

More Transistors Scale Vdd by S=1.4x

S2=2x

e e g e ot eemm s = e e . e eweew-. Opecific Architectures
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The Dark Silicon Dilemma ga &

p

High-k

Silicon

Fast forward to 2005:
Threshold Scaling Problems due to
Leakage Prevents Us From Scaling Voltage
____________________________________ S3
S =1.4x S=1.4x
Faster Transistors Lower Capacitance
__________________________________ S2
S?=2x
More Transistors
________________ S
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S(N) = ——
(1-P)+—
N Amdahl’s Law
20.00
S e ) e

18.00 - /-"" Parallel Portion(P)

16.00 - eed to be » —gg:,:u

14.00 AR 0%
©12.00 / = 85%
s / ]
2 10.00 y |
3 8,00 /

4.00 /

2.00 W -

1.00 %i_

0.00

R EEEE YT E T E TR E
Advance FNmEﬁ%EEﬁE

Universii_ Number of Processors (N)

—

0



A Powerful Solution: Eschew Generality

Speed, Flexibility,
Efficiency Programmability
< >
I I I I
H/W designs Application General Purpose General Purpose
Specific Processors Processors
Processor + ISA Extensions

« Specialization limits the scope of a device’s operation

* Produces stronger properties and invariants

* Results in higher return optimizations

* Programmability preserves the flexibility regarded by GPP’s
« A natural fit for embedded designs

* Where application domains are more likely restrictive

* Where cost and power are 15t order concerns
« Overcomes growing silicon/architecture bottlenecks

« Concentrated computation overcomes dark silicon dilemma

» Customized acceleration speeds up Amdahl’s serial codes
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Case Study: CryptoManiac [ISCA'01]

CM
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Encrypt/decrypt %é’ //' Proc Ciphertext/plaintext
requests J|2g , results
="
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\ CM

A highly specialized and efficient crypto-processor design
* Specialized for performance-sensitive private-key cipher algorithms
 Chip-multiprocessor design extracting precious inter-session parallelism
« CP processors implement with 4-wide 32-bit VLIW processors
 Design employs crypto-specific architecture, ISA, compiler, and circuits
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Crypto-Specific Instructions

» frequent SBOX substitutions Table Index
« X = shox[(y >> c) & Oxff 31 100 0 24 16 8 0
« SBOX instruction T 1 1 |
* Incorporates byte extract \ J+— opeode
 Speeds address generation ! !
through alignment restrictions 00

o 4-cycle Alpha code sequence
becomes a single CryptoManiac
Instruction

« SBOX caches provide a high-
bandwidth substitution
capability (4 SBOX's/cycle)

SBOX Table
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Case Study: Subliminal Systems [ISCA’05]

o Project goals

0 Explore area-constrained low-energy systems 10
Memory /Sensors /

CPU Power

/0

o Develop 100% silicon platforms

o Target form factors below 1 mm3 <0.5mm

o Technology Developments

o Subthreshold-voltage processors and memories
0 Robust subthreshold circuit/cell designs

o Compact integrated wireless interfaces

o Energy scavenging technologies

O Sensor designs




Energy Efficiency: A Key Requirement

o They live on a limited amount of energy generated from a small battery
or scavenged from the environment.

o Traditionally the communication component is the most power-hungry
element of the system. However, new trends are emerging:
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Performance of Various Platforms

10000.00 8036.77 8296.37
3943.47
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XRT rating: how many times faster than real-time the processor can handle the worst-case data stream rate
on the most computationally intensive sensor benchmark



Summary from Architecture Study

o We studied 21 different subthreshold processors experimenting with following options:

o Number of stages
o w/ vs. w/o instruction prefetch buffer
o w/ vs. w/o explicit register file

o Harvard vs. Von-Neumann architecture

o To minimize energy at subthreshold voltages, architects must:

) Minimize area = Toreduce leakage energy per cycle )

Maximize Transistor utility = To reduce V,,, and energy per cycle

\Minimize CPI = Toreduce Energy per instruction p

o The memory comprises the single largest factor of leakage energy, as such, efficient
designs must reduce memaory storage requirements.



Microarchitecture Overview
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First Subliminal Chip
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Pareto Analysis for Several
Processors
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Case Study: Taking Computer Vision Mobile

o Embedded mobile computation on the rise

0 Smart Phones, Tablets

o0 Improved sensors
o High megapixel cameras, HD video

o New capabilities from new sensors

0 Thereis a need for near real time computation
o0 Users don't want to wait

o Why not use the cloud?

o High latency
o Bandwidth Limits
0 Reliability



Computer Vision

Typical computer vision pipeline
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Feature Extraction Characteristics

o 3 Algorithms
o FAST - corner detection
o0 HoG - general object shape detector

o SIFT - specific object/blob detector

Generate

gnature Post process
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Efficient Fast Feature EXtraction
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Patch Memory

. Patch
Pixel (X,Y) Memory [ADDR Memor
Loc y
Controller
Pixel
Data < Data

Traditional image storage Patch memory storage



A Taste of the Results
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Outlook for App-Specific Design is Unsure:

The Good, the Bad and the Ugly

o The Good: Moore’s law will continue for the near future

o It won't last forever, but that another problem

o The Bad: Dennard scaling has all but stopped, leaving
Innovation to fill the performance/power scaling gap

o E.g., app-specific design, custom accelerators

o The Ugly: Hardware innovation requires design
diversity, which is ultimately too expensive to afford

o Skyrocketing NREs will necessitate broadly applicable
(vanilla and slow) H/W designs

Gl
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Design Costs Are Skyrocketing
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High Costs Will be a Showstopper

o Heterogeneous designs often serve smaller markets
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Outcome: “Nanodiversity” is Dwindling
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The Remedy: Scale Innovation

o Ultimate goal: accelerate system architecture innovation and make it
efficient and inexpensive enough that anyone can do it anywhere

o0 Approach #1: Embrace system-level innovation

0 Approach #2: Leverage technology advances on CMOS silicon

0 Approach #3: Reduce the cost to design custom hardware

0 Approach #4: Widen the applicability of custom hardware

0 Approach #5: Reduce the cost of manufacturing custom H/W

32



“Give me 15% “I need 1%
speedup and I'll speedup for 1%
accept your paper” "
ISCA 201 ptyourpap area
Proceadings of the 38th Annual
INTERNATIONAL SYMPOSIUM on
COMPUTER ARCHITECTURE
.:m::; ...... A,
SHIEEE @mmi. GIBARCH

“Your system-level ideas
needs to deliver 2x or
more, or someone else

should fund it”
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o Traditional parallelizing compilers must

honor possible dependencies

o HELIX-UP manufactures parallelism by

profiling which deps do not exist and
which are not needed

o0 Based on user supplied output
distortion function

o Big step for parallelization

0 2x speedup over parallelizing
compilers, 6x over serial, < 7%
distortion

nread O
nread
nread 2

nread 3

Normalized Performance
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1'_*8 lteration 1

- \;Data ‘

el

Nehalem 6 cores, 2 threads per core

\ 4

Hardware threads

[l:l HELIX

BB Static HELIX-UP \_

Output distortion

2.1%

0%

2%

Cores

3%

6.9%

3.8%

o 3] i (=] [e]
T

177.mesa 179.art

183.equake 2

56.bzip2  blackscholes  swaptions

34

Geomean




Association Rule Mining with the

Automata Processor

o Micron’s Automata processor

o Implements FSMs at memory
o Massively parallel with accelerators

o Mapped data-mining ARM rules to memory-
based FSMs

o ARM algorithms identify relationships between
data elements

o Implementations are often memory bottlenecked

o Big-data sets had big speedups

o 90x+ over single CPU performance
o 2-9x+ speedups over CMPs and GPUs

o Joint effort with UVA and Micron

Level Ot Level 1 1 Level 2 1 Level 3
| | [

oo 0o =3
P00

(a) Automaton for itemset {0, 2}

Level 01 Level 1 1 level 2 1 Level 3 1 Level 4
] 1 1 (]

000
DO OO

(b) Automaton for itemset {1, 3, 5}
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2) Leverage technology advances on CMOS
silicon

o Recent success: the reduced leakage and
transient fault protection of FINFETs —

o Upcoming: the density and durability of
Intel/Micron’s XPoint memory technology

o Many additional opportunities possible: TFETs, CNTs, spin-tronics, novel
materials, analog accelerators, etc...

o Key challenge: integration of non-silicon technologies

o Advice: to maximize benefits of these devices, architects need to work
with device and materials researchers
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Top 10 Technology Plays that Would Make
Architects REALLY Excited

o Reduced leakage for memory
o Helps with low power sleep states, allows lower computational power states
Reduced leakage for computation
0 Re-balances the power-parallelism tradeoff in favor of more performance/watt
o More energy efficient communication that doesn't overtly exacerbate latency
o Allows for more system scalability — both scale-in and scale-out
o More energy efficient computation that is dense and cheap
o Allows for more T-flops, since almost all computational capabilities today are energy bounded

O

o Controllable and recognizable analog functions
o Allow computation to be replaced with potentially fast and efficient analog compute
o Ultra-cheap fabrication technologies
0 Re-balances the specialization-cost tradeoffs, making system-level optimization more valuable
o Emerging technologies that deliver additional traditional value at low fault rates
o We have many low-cost system-level fault tolerance technologies, let's use them!, limit faults to < 0.1%
o Emerging technologies that are not too fiddly, unless they deliver significant value
o We need clean productive abstractions, CMOS is the benchmark, compare to asynch and CUDA
o Faster, more energy efficient, less destructive writes for nonvolatile storage
o Allows for simpler, denser, more efficient memory designs, supports ultra-low power states
o Computation/memory capabilities with no power/electrical/etc. signature
o Today's systems are fraught with side channels, this is needed as a basis for establishing H/W trust
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3) Reduce the cost to design custom hard

Shared Memory/Interconnect

Models
OBALADDIN
B 2 RN
Unmodified v I 1
C-Code = 1
. Accelerator Private L1/ ! David Brooks
. | o : Harvard
Accelerator Design | Specific Scratchpad I @
Parameters =l Datapath |
(e.g., # FU, mem. BW) '\ ) ,'

Better tools and infrastructure

- Scalable accelerator synthesis and compilation, generate code and H/W for highly
reusable accelerators

. Composable design space exploration, enables efficient exploration of highly
complex design spaces

- Well put-together benchmark suites to drive development efforts
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CortexSuite:

A Synthetic Brain Benchmark Suite

RBM

Sphinx

PCA

P \//- \

Learning/Feature | Language

Selection Processing

SvD
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~

A
T

LibLinear

Michael Taylor @ UCSD
CMU SPHINX

LDA AP

Motion Estimation

Superresolution
UCSC VISION LAB

SD-vBS

Image Disparity Robot
Segmentation] Map [Localization

Support
Vector
Machines

Texture || Feature
SynthesisfiTracking

__suin  WSFT
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S Output

Red = non-free IP, Green = free IP
40

DDR2/3



Embrace Open-Source Concepts to
Reduce Costs

APPLICATIONS

Phone Browser

Al iIcATION EDAMCwWAD W
£ (SUASY LA 20 BN A Y TR A A2 AN AN

ctivity Window Content View Notification
¢ Manager Providers System Manager

As a community, we need to consider:
How much of our basic technology
should be collectively maintained?

Macnine

libc

LINUX KERNEL

Bluetooth Flash Memory Binder (IPC)

Driver Driver

Red = non-free IP, Green = free IP
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Apblicati Computer Multimedia Machine
pplications VRor - Learning
Computational Patterns Dense Sparse ***] Graph

Specializers\with custom implci:‘men}ationls and autotuning

Glue Dense parse Graph CES:
Code SUE
Code Code Code | ~ode

. — —
| ILP I Dense || Sparse || Graph | ESP
Engine J| Engine ]| Engine J| Engine ] Core

o ESP: Ensembles of Specialized Processors

o0 Ensembles are algorithmic-specific processors optimized for code “patterns”

0 Approach uses composable customization to deliver speed and efficiency that is
widely applicable to general purpose programs

o Grand challenges remain: what are the components and how are they
connected?
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5) Reduce the cost of manufacturing customized

Martha Kim @ Co '

s Adratkenthooght silipenmeiteshsddinblyldmg @usiouseation, i.e., MCMs + 3D +
weeAikecfatieating a chip?

Brick-and-mortar silicon
design flow:

1) Assemble brick layer

2) Connect with mortar layer
3) Package assembly

4) Deploy software

o Diversity via brick ecosystem & interconnect flexibility
o Brick design costs amortized across all designs
o Robust interconnect and custom bricks rival ASIC speeds

o Facilitates non-silicon integration and mature design strategies
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The Remedy: Scale Innovation

o Ultimate goal: accelerate system architecture innovation and make it
efficient and inexpensive enough that anyone can do it anywhere

o0 Approach #1: Embrace system-level innovation

0 Approach #2: Leverage technology advances on CMOS silicon

0 Approach #3: Reduce the cost to design custom hardware

0 Approach #4: Widen the applicability of custom hardware

0 Approach #5: Reduce the cost of manufacturing custom H/W
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Summary: Benefits of App-Specific Design

Speed, Flexibility,
Efficiency Programmability
< >
I I I I
H/W designs  Application General Purpose  General Purpose
Specific Processors Processors
Processor + ISA Extensions

o Specialization limits the scope of a device’s operation

0 Produces stronger properties and invariants

0 Results in higher return optimizations

o Programmability preserves the flexibility regarded by GPP’s
o A natural fit for embedded designs

o Where application domains are more likely restrictive

o0 Where cost and power are 15t order concerns

o Overcomes growing silicon/architecture bottlenecks
o Concentrated computation overcomes dark silicon dilemma
o Customized acceleration speeds up Amdahl’s serial codes



