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Data Parallel Architecture Recap
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Data Parallelism is everywhere

Financial Medical Physics Audio Machine
Modeling Imaging Simulation Processing Learning

&

Games Image Processing Statistics Video Processing

e Mostly regular applications
e Works on large data sets

Adapted from Samadi, ASPLOS 2014



Outline

e GPU hardware introduction
e GPU programming introduction
 Programming challenges & current research



GPU: Highly Parallel Coprocessor

e GPU as a coprocessor that
— Has its own DRAM memory
— Communicate with host (CPU) through bus (PClx)
— Runs many threads in parallel

e GPU threads

— GPU threads are extremely lightweight (almost no
cost for creation/context switch)

— GPU needs at least several thousands threads for
full efficiency

Adapted from Utah SCI Institute



What is the GPU Good at?

e The GPU is good at data-parallel processing

e The same computation executed on many data elements in
parallel — low control flow overhead

with high SP floating point arithmetic intensity

 Many calculations per memory access
e Currently also need high floating point to integer ratio

e High floating-point arithmetic intensity and many data
elements mean that memory access latency can be hidden
with calculations instead of big data caches — Still need to

avoid bandwidth saturation!

Adapted from Peh



Example GPGPU System
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Example GPU: Tesla
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Theoretical GFLOP/s
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Why GPU for computing?

e |nexpensive supercomputers

e GPU hardware performance increases faster than CPU
Trend: simple, scalable architecture, interaction of clock speed, cache,

memory (bandwidth)

NVIDIA GPU Single Precision
e NVI|DIA GPU Double Precision
s===|ntel CPU Double Precision
=mgmm|ntel CPU Single Precision

Tesla K40
Tesla K20X

Tesla M2090

Tesla C2050
Tesla C1060

Ivy Bridge
Harpertown

- Sandy,B_r,idg;, -
Woodcrest et 28

Pentium 4. v i Boomf)eld Westmere
Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-1

Floating-Point Operations per Second - Nvidia CUDA C Programming Guide
Version 6.5 - 24/9/2014 - copyright Nvidia Corporation 2014

Adapted from Utah SCI Institute

Theoretical GB/s

Note: PCle 2.0 max b/w is 16 GB/s

360 -
330 - —

300

-numCPU Tesla K40

270 - GeForce GPU

Tesla K20X
240 - ‘Tesla GPU
210

180 -

Tesla M2090
150 -

Tesla C2050
120 -

90 ;
Tesla C1060

— Ivy Bridge

60 L ) Sandy Bridge

Bloomfield

30 -

GeForce FX 5900 ' Prescott Woodciest

Westmere
0 “Northwood T Harpertayn
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Memory Bandwidth for CPU and GPU - Nvidia CUDA C Programming Guide
Version 6.5 - 24/9/2014 - copyright Nvidia Corporation 2014



GPU is for Parallel Computing

* CPU

— Large cache and sophisticated flow control minimize latency for
arbitrary memory access for serial process

e GPU

— Simple flow control and limited cache, more transistors for computing
in parallel

— High arithmetic intensity hides memory latency

Courtesy NVIDIA
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Hardware Implementation :
a set of SIMD Processors

e Device

— a set of multiprocessors

 Multiprocessor

— a set of 32-bit SIMD

Processors

Adapted from Utah SCI Institute
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Hardware Implementation: Memory
Architecture

Device

 Device memory (DRAM)
— Slow (~300-400 cycles)

— Local, global, constant,
and texture memory

* On-chip memory
— Fast (<10 cycles)

— Registers, shared
memory,
constant/texture cache

A
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A Quick Overview of GPUs

Chip

Fetch
Decode

Issue

Riiliter File

=1
—+
)
=S
@)
o)
-]
=)
M
0
—

IVYdd

vdd

INVYHd

Adapted from Jamshidi, PACT 2014

12




A Quick Overview of GPUs
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How do GPUs Achieve Great
Performance?

o Effectively use available
memory bandwidth

— Exploit data reuse when

possible che Li

Store Store Store Store
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How do GPUs Achieve Great

Performance?
o Effectively use available
memory bandwidth YO
— Exploit data reuse when
possible Cache Li

— Regular, well coalesced
memory accesses

CD CD CD

Store
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Outline

e GPU programming introduction
 Programming challenges & current research



CUDA Programming Model:
A Highly Multithreaded Coprocessor

e The GPU is viewed as a compute device that:
— Is a coprocessor to the CPU or host
— Has its own DRAM (device memory)
— Runs many threads in parallel

e Data-parallel portions of an application are

executed on the device as kernels which run in
parallel on many threads

e Differences between GPU and CPU threads

— GPU threads are extremely lightweight
e Very little creation overhead

— GPU needs 1000s of threads for full efficiency

e Multi-core CPU needs only a few



Thread Batching: Grids and

e Akernelis executed as a grid
of thread blocks

— All threads share data memory
space
e Athread block is a batch of
threads that can cooperate
with each other by:

— Synchronizing their execution

e For hazard-free shared
memory accesses

— Efficiently sharing data through
a low latency shared memory
e Two threads from two
different blocks cannot directly
cooperate

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois, Urbana-Champaign
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Execution Model

e Each thread block is executed by a single
multiprocessor

— Synchronized using shared memory

e Many thread blocks are assigned to a single
multiprocessor
— Executed concurrently in a time-sharing fashion
— Keep GPU as busy as possible

* Running many threads in parallel can hide DRAM
memory latency
— Global memory access : ~300-400 cycles

Adapted from Utah SCI Institute



GPU Execution Model
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GPU Execution Model
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Block and Thread IDs

e Threads and blocks have IDs

— So each thread can decide
what data to work on

— Block ID: 1D or 2D
— Thread ID: 1D, 2D, or 3D

e Simplifies memory
addressing when processing
multidimensional data

— Image processing
— Solving PDEs on volumes

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois, Urbana-Champaign
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CUDA Device Memory Space Overview

Each thread can: (Device) Grid
— R/W per-thread registers Block (0, 0) Block (L, 0)
— R/W per-thread local memory
— R/W per-block shared memory
— R/W per-grid global memory ’ ’ ’ ’
— Read only per-grid constant memory
— Read onIy per_grid texture memory Thread (0, 0) ' Thread (1,0) | Thread (0, 0) Thread (1, 0)
The host can R/W —
oS
global, constant, and
texture memories
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
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Buffering to Optimize Bandwidth
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GeForce GTX 480 Technical Specs

e Maximum number of threads per block: 1024

e Maximum size of each dimension of a grid:
65,535

Many parameters change across SM):
generations! '

e Device memory:

 Shared memory per multiprocessor: 16/48KB
divided in 32 banks

e Transistors/Size: 3 Billion transistors/529 mm?

25
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CUDA

e C-extension programming language
— No graphics API
e Flattens learning curve
e Better performance

— Support debugging tools

 Extensions / API
— Function type: global , device , host
— Variable type: shared_, constant__
— cudaMalloc(), cudaFree(), cudaMemcpy(), ...
— __syncthread(), atomicAdd(),...

* Program types
— Device program (kernel) : run on the GPU
— Host program : run on the CPU to call device programs

Adapted from Utah SCI Institute



Compiling CUDA

C/C++ CUDA
* NVCC Application

— Compiler driver
— Invoke cudacc, g++, cl

* PTX

— Parallel Thread eXecution

Id.global .v4.132 {$f1,$f3,$F5,$F7}, [$ro+0];
mad . 32 $F1, $f5, $F3, $Ff1; PTX to Target

Compiler

PTX Code

Courtesy NVIDIA
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Extended C

__device__ float filter[N];

Declspecs
— global, device, shared,

local, constant __global__ void convolve (float *image) {

__shared__ float region[M];

Keywords
— threadidx, blockldx
.. region[threadldx] = image[i];
Intrinsics
— __syncthreads __syncthreads()
Runtime API image[j] = result;

— Memory, symbol, ¥

execution management // Allocate GPU memory
void *myimage = cudaMalloc(bytes)

Function launch
// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);



CUDA Function Declarations

Executed on| Only callable
the: from the:
__device  float DeviceFunc() device device
~_global  void KernelFunc() device host
__host  float HostFunc() host host

__global ___ defines a kernel function
—  Must return void

__device__and___host__ can be used together

__device__ functions cannot have their address taken

For functions executed on the device:
— No recursion

— No static variable declarations inside the function

— No variable number of arguments




Language Extensions:
Built-in Variables

e dim3 gridDim;
— Dimensions of the grid in blocks (gridDiIm.z unused)

e dim3 blockDim;

— Dimensions of the block in threads

e dIm3 blockldx;

— Block index within the grid

e diIm3 threadldx;

— Thread index within the block

Adapted from Peh
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Example: Vector Addition Kernel

// Pair-wise addition of vector elements
// One thread per addition

__global  void
vectorAdd(float* 1A, float* 1B, float* oC)
{
InNt 1dx = threadldx.Xx
+ blockDim.x * blockld.X;
oC[1dx] = 1A[1dx] + 1B[1dx];

} Courtesy NVIDIA
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Example: Vector Addition Host Code

float* h A = (float*) malloc(N * sizeof(float));
float* B = (float*) malloc(N * sizeof(float));
// ... italize h A and h B

// allocate device memory

float* d A, d B, d C;

cudamMal loc( (void**) &d A, N * sizeof(float) );
cudaMalloc( (void**) &d B, N * sizeof(float) );
cudamMalloc( (void**) &d C, N * sizeof(float) );

// copy host memory to device

cudaMemcpy( d_A, h_ A, N * sizeof(float),
CudaMemeyHostToDeV|Ce );

cudaMemcpy( d_ B, h B, N * sizeof(float),
CudaMemeyHostToDeV|Ce );

// execute the kernel on N/256 blocks of 256 threads each
vectorAdd<<< N/256, 256>>>( d A, d B, d C);

Courtesy NVIDIA 32
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For more CUDA info...

Vector types

Atomic operations

Thread synchronization

Texture cache usage

Mathematical functions

APl details

... see the NVIDIA CUDA C Programming Guide

— http://docs.nvidia.com/cuda/cuda-c-programming-guide/




Outline

 Programming challenges & current research



Achieving Peak GPU Performance:
Theory and Practice
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GPU Programming Challenges

Data restructuring for complex
memory hierarchy efficiently

— Global memory, Shared memory,
Registers

Partitioning work between CPU and
GPU

Lack of portability between different
generations of GPU

— Registers, active warps, size of global
memory, size of shared memory

Will vary even more

— Newer high performance cards e.g.
NVIDIA’s Kepler, Maxwell...

— Mobile GPUs with fewer resources

Adapted from Hormati, ASPLOS 2011
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Varying Inputs, Drastic Performance Effects
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Optimize by writing many kernels?

Compiler support may ease this burden.

Adapted from Samadi, PLDI 2012
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Amdahl’s Law

e GPGPU may have <100x speedup but...
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Execution Time

Adapted from Samadi, GPGPU 2012

>



General Purpose Computing on GPU

e Limitation of| GPU Executable

— Massive Data-Parallelism
— Line
— NO How can GPUs be more GENERAL?
—_ NO S -

e Leaves GPUs underutilized

— GPGPUs are not general enough

Adapted from Samadi, GPGPU 2012



Barriers to Generalization

NO GPU utilization

e Reduce Sections

— Non-Linear array access
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What about Heterogeneity?

Why not utilize GPU O

and CPU’s SIMD
resources?
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Collaborative Heterogeneous Execution
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Current Hardware Research

e Remember, trend is simple & scalable

— General goals:
e Reducing cache thrashing
e Better overlapping of computation & memory
* Improved performance & energy efficiency

— Warp scheduling

e Cache-Conscious Wavefront Scheduling (Rogers et. al.)

— Prefetching
e Adaptive prefetching (APOGEE, Sethia et al.)



