EECS 573
Microarchitecture

Data Parallel Architectures: GPUs

Todd Austin
CSE
University of Michigan
Fall 2014

With slides by David Kirk, Wen-mei W. Hwu, Li-Shiuan Peh, Mehrzad Samadi, Amir
Hormati, Janghaeng Lee, and Anoushe Jamshidi

Data Parallel Architecture Recap

Instruction
Stream

Data Output
Data Input Processo stream A
stream A A

Data Output
Data Input Processor stream B
stream B B '

Processor Data Output
Data Input C stream C
stream C
C<=A, * B,

Ex: CRAY machine vector processing, Thinking machine cm*
Intel MMX (multimedia support),
Intel SSE/AVX (SIMD extensions)

Adapted from Peh

Data Parallelism is everywhere

Financial Medical Physics Audio Machine
Modeling Imaging Simulation Processing Learning

&

Games Image Processing Statistics Video Processing

e Mostly regular applications
e Works on large data sets

Adapted from Samadi, ASPLOS 2014

Outline

e GPU hardware introduction
e GPU programming introduction
 Programming challenges & current research

GPU: Highly Parallel Coprocessor

e GPU as a coprocessor that
— Has its own DRAM memory
— Communicate with host (CPU) through bus (PClx)
— Runs many threads in parallel

e GPU threads

— GPU threads are extremely lightweight (almost no
cost for creation/context switch)

— GPU needs at least several thousands threads for
full efficiency

Adapted from Utah SCI Institute

What is the GPU Good at?

e The GPU is good at data-parallel processing

e The same computation executed on many data elements in
parallel — low control flow overhead

with high SP floating point arithmetic intensity

 Many calculations per memory access
e Currently also need high floating point to integer ratio

e High floating-point arithmetic intensity and many data
elements mean that memory access latency can be hidden
with calculations instead of big data caches — Still need to

avoid bandwidth saturation!

Adapted from Peh

Example GPGPU System

Intel® Pentium® 4

GPU w/ Erheoes Eoon
local DRAM
N (device)

PCI Exprass®
x16 Graphics

Intel® High
Definition Audio

4 PCI

Express® x1

8 Hi-Speed
USB 2.0 Ports

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois, Urbana-Champaign

Example GPU: Tesla

16 Multiprocessors FUy (FUL FUS TR

Register File

\
/
T T wToeTurTur] oo

FU [FU 'FUY FU
1.5GB

RAM (Global Memory)

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 7
ECE 498AL, University of lllinois, Urbana-Champaign

Theoretical GFLOP/s

5750
5500
5250
5000
4750
4500
4250
4000
3750
3500
3250
3000
2750
2500
2250
2000
1750
1500
1250
1000
750
500
250
0

Apr-01

Why GPU for computing?

e |nexpensive supercomputers

e GPU hardware performance increases faster than CPU
Trend: simple, scalable architecture, interaction of clock speed, cache,

memory (bandwidth)

NVIDIA GPU Single Precision
e NVI|DIA GPU Double Precision
s===|ntel CPU Double Precision
=mgmm|ntel CPU Single Precision

Tesla K40
Tesla K20X

Tesla M2090

Tesla C2050
Tesla C1060

Ivy Bridge
Harpertown

- Sandy,B_r,idg;, -
Woodcrest et 28

Pentium 4. v i Boomf)eld Westmere
Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-1

Floating-Point Operations per Second - Nvidia CUDA C Programming Guide
Version 6.5 - 24/9/2014 - copyright Nvidia Corporation 2014

Adapted from Utah SCI Institute

Theoretical GB/s

Note: PCle 2.0 max b/w is 16 GB/s

360 -
330 - —

300

-numCPU Tesla K40

270 - GeForce GPU

Tesla K20X
240 - ‘Tesla GPU
210

180 -

Tesla M2090
150 -

Tesla C2050
120 -

90 ;
Tesla C1060

— Ivy Bridge

60 L) Sandy Bridge

Bloomfield

30 -

GeForce FX 5900 ' Prescott Woodciest

Westmere
0 “Northwood T Harpertayn
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Memory Bandwidth for CPU and GPU - Nvidia CUDA C Programming Guide
Version 6.5 - 24/9/2014 - copyright Nvidia Corporation 2014

GPU is for Parallel Computing

* CPU

— Large cache and sophisticated flow control minimize latency for
arbitrary memory access for serial process

e GPU

— Simple flow control and limited cache, more transistors for computing
in parallel

— High arithmetic intensity hides memory latency

Courtesy NVIDIA

I N
N ||
L[| ||
L[| ||
[[| L
[[| B
[[| B
L[] [

DRAM

Adapted from Utah SCI Institute CPU GPU

Hardware Implementation :
a set of SIMD Processors

e Device

— a set of multiprocessors

 Multiprocessor

— a set of 32-bit SIMD

Processors

Adapted from Utah SCI Institute

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Courtesy NVIDIA

Hardware Implementation: Memory
Architecture

Device

 Device memory (DRAM)
— Slow (~300-400 cycles)

— Local, global, constant,
and texture memory

* On-chip memory
— Fast (<10 cycles)

— Registers, shared
memory,
constant/texture cache

A
\ 4 \ 4 \4

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Adapted from Utah SCI Institute

A Quick Overview of GPUs

Chip

Fetch
Decode

Issue

Riiliter File

=1
—+
)
=S
@)
o)
-]
=)
M
0
—

IVYdd

vdd

INVYHd

Adapted from Jamshidi, PACT 2014

12

A Quick Overview of GPUs

Chip

Fetch - _
Decode Register File

Issue

~100’s of

JO9UuUO02.

cycles
MR o

IVYdd

¢

INVYd

INVYHd

Adapted from Jamshidi, PACT 2014

13

How do GPUs Achieve Great
Performance?

o Effectively use available
memory bandwidth

— Exploit data reuse when

possible che Li

Store Store Store Store

Adapted from Jamshidi, PACT 2014

How do GPUs Achieve Great

Performance?
o Effectively use available
memory bandwidth YO
— Exploit data reuse when
possible Cache Li

— Regular, well coalesced
memory accesses

CD CD CD

Store

Adapted from Jamshidi, PACT 2014

Outline

e GPU programming introduction
 Programming challenges & current research

CUDA Programming Model:
A Highly Multithreaded Coprocessor

e The GPU is viewed as a compute device that:
— Is a coprocessor to the CPU or host
— Has its own DRAM (device memory)
— Runs many threads in parallel

e Data-parallel portions of an application are

executed on the device as kernels which run in
parallel on many threads

e Differences between GPU and CPU threads

— GPU threads are extremely lightweight
e Very little creation overhead

— GPU needs 1000s of threads for full efficiency

e Multi-core CPU needs only a few

Thread Batching: Grids and

e Akernelis executed as a grid
of thread blocks

— All threads share data memory
space
e Athread block is a batch of
threads that can cooperate
with each other by:

— Synchronizing their execution

e For hazard-free shared
memory accesses

— Efficiently sharing data through
a low latency shared memory
e Two threads from two
different blocks cannot directly
cooperate

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois, Urbana-Champaign

Blocks

Host Device
Grid 1
Kernel Block Block Block
! 0,0 (1,0 (20
Block.”" Block Block
0% @1 i @1
“ Grid 2
Kernel —<—3 =/ ")
2 ,II 1 “\
. a I I [
Block (1, 1)

18

Courtesy:

NVIDIA

Execution Model

e Each thread block is executed by a single
multiprocessor

— Synchronized using shared memory

e Many thread blocks are assigned to a single
multiprocessor
— Executed concurrently in a time-sharing fashion
— Keep GPU as busy as possible

* Running many threads in parallel can hide DRAM
memory latency
— Global memory access : ~300-400 cycles

Adapted from Utah SCI Institute

GPU Execution Model

wﬁmmmg

-@@-
SRR

L
8900k

L
8900k

=/

—

N
gl
gl
gl

(oo)

e

e/
(o)

W..
W..

LD -DE-0-0) o

Grid 1

fleascp
8900k

R
e
e
(D

o
Z
\

Adapted from Hormati, ASPLOS 2011

GPU Execution Model

SMO
/:Shared:\
Lo J [t
D EB
Lo s
B B
- \
k‘ ’/

Threadld
/ OWargd 3Warpa \

4 @ @
- _/

BBBBBB

BBBBBB

BBBBBB

BBBBBB

Block and Thread IDs

e Threads and blocks have IDs

— So each thread can decide
what data to work on

— Block ID: 1D or 2D
— Thread ID: 1D, 2D, or 3D

e Simplifies memory
addressing when processing
multidimensional data

— Image processing
— Solving PDEs on volumes

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois, Urbana-Champaign

Device
Grid 1
Block Block Block
(0,0) (1,0) (2,0)
Block Block Block
0, 1) (1,1) (2, 1)
Block (1, 1)

Courtesy: NDVIA

22

CUDA Device Memory Space Overview

Each thread can: (Device) Grid
— R/W per-thread registers Block (0, 0) Block (L, 0)
— R/W per-thread local memory
— R/W per-block shared memory
— R/W per-grid global memory ’ ’ ’ ’
— Read only per-grid constant memory
— Read onIy per_grid texture memory Thread (0, 0) ' Thread (1,0) | Thread (0, 0) Thread (1, 0)
The host can R/W —
oS
global, constant, and
texture memories
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

ECE 498AL, University of lllinois, Urbana-Champaign

Buffering to Optimize Bandwidth

Chip
Register File
]

Fetch
Decode

Issue

|l ~100’s of

cycles
A |

[

JO9UUO0JJ3a]U|

<10 cycles

INVYHd

Buffer data in fast Shared Memory

24
Adapted from Jamshidi, PACT 2014

GeForce GTX 480 Technical Specs

e Maximum number of threads per block: 1024

e Maximum size of each dimension of a grid:
65,535

Many parameters change across SM):
generations! '

e Device memory:

 Shared memory per multiprocessor: 16/48KB
divided in 32 banks

e Transistors/Size: 3 Billion transistors/529 mm?

25
Adapted from Peh

CUDA

e C-extension programming language
— No graphics API
e Flattens learning curve
e Better performance

— Support debugging tools

 Extensions / API
— Function type: global , device , host
— Variable type: shared_, constant__
— cudaMalloc(), cudaFree(), cudaMemcpy(), ...
— __syncthread(), atomicAdd(),...

* Program types
— Device program (kernel) : run on the GPU
— Host program : run on the CPU to call device programs

Adapted from Utah SCI Institute

Compiling CUDA

C/C++ CUDA
* NVCC Application

— Compiler driver
— Invoke cudacc, g++, cl

* PTX

— Parallel Thread eXecution

Id.global .v4.132 {$f1,$f3,$F5,$F7}, [$ro+0];
mad . 32 $F1, $f5, $F3, $Ff1; PTX to Target

Compiler

PTX Code

Courtesy NVIDIA

27
Adapted from Utah SCI Institute Targ et COde

Extended C

__device__ float filter[N];

Declspecs
— global, device, shared,

local, constant __global__ void convolve (float *image) {

__shared__ float region[M];

Keywords
— threadidx, blockldx
.. region[threadldx] = image[i];
Intrinsics
— __syncthreads __syncthreads()
Runtime API image[j] = result;

— Memory, symbol, ¥

execution management // Allocate GPU memory
void *myimage = cudaMalloc(bytes)

Function launch
// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

CUDA Function Declarations

Executed on| Only callable
the: from the:
__device float DeviceFunc() device device
~_global void KernelFunc() device host
__host float HostFunc() host host

__global ___ defines a kernel function
— Must return void

__device__and___host__ can be used together

__device__ functions cannot have their address taken

For functions executed on the device:
— No recursion

— No static variable declarations inside the function

— No variable number of arguments

Language Extensions:
Built-in Variables

e dim3 gridDim;
— Dimensions of the grid in blocks (gridDiIm.z unused)

e dim3 blockDim;

— Dimensions of the block in threads

e dIm3 blockldx;

— Block index within the grid

e diIm3 threadldx;

— Thread index within the block

Adapted from Peh

30

Example: Vector Addition Kernel

// Pair-wise addition of vector elements
// One thread per addition

__global void
vectorAdd(float* 1A, float* 1B, float* oC)
{
InNt 1dx = threadldx.Xx
+ blockDim.x * blockld.X;
oC[1dx] = 1A[1dx] + 1B[1dx];

} Courtesy NVIDIA

Adapted from Utah SCI Institute

Example: Vector Addition Host Code

float* h A = (float*) malloc(N * sizeof(float));
float* B = (float*) malloc(N * sizeof(float));
// ... italize h A and h B

// allocate device memory

float* d A, d B, d C;

cudamMal loc((void**) &d A, N * sizeof(float));
cudaMalloc((void**) &d B, N * sizeof(float));
cudamMalloc((void**) &d C, N * sizeof(float));

// copy host memory to device

cudaMemcpy(d_A, h_ A, N * sizeof(float),
CudaMemeyHostToDeV|Ce);

cudaMemcpy(d_ B, h B, N * sizeof(float),
CudaMemeyHostToDeV|Ce);

// execute the kernel on N/256 blocks of 256 threads each
vectorAdd<<< N/256, 256>>>(d A, d B, d C);

Courtesy NVIDIA 32
Adapted from Utah SCI Institute

For more CUDA info...

Vector types

Atomic operations

Thread synchronization

Texture cache usage

Mathematical functions

APl details

... see the NVIDIA CUDA C Programming Guide

— http://docs.nvidia.com/cuda/cuda-c-programming-guide/

Outline

 Programming challenges & current research

Achieving Peak GPU Performance:
Theory and Practice

5000 - Matrix Multiplication
4500 - GTX 780
4000 -
3500 - -
¢ 3000 + Not easy to fully utilize GPU capabilities!
Q 2500 -
Ll
© 2000 - GTX 580 CUBLAS
1500 H GTX 480
1000 - - GTX 280
500 8800 SDK
%
O | | I I I |]
2007 2008 2009 2010 2011 2012 2013

35
Adapted from Jamshidi, PACT 2014

GPU Programming Challenges

Data restructuring for complex
memory hierarchy efficiently

— Global memory, Shared memory,
Registers

Partitioning work between CPU and
GPU

Lack of portability between different
generations of GPU

— Registers, active warps, size of global
memory, size of shared memory

Will vary even more

— Newer high performance cards e.g.
NVIDIA’s Kepler, Maxwell...

— Mobile GPUs with fewer resources

Adapted from Hormati, ASPLOS 2011

400

350

300

250

Time (ms)
= N
(O o
o o

100

50

o ——— N ammm—_—— ,o—_————

T \ \Y; \
| High Performance | Desktop I Mobile |
J 1y - I

| Iy d g |
| d I :
I 16 !

| d I |
| d I :
| [N |
| d I |
I Iy I

] I 32 wv J I
] 48|| I |
] L L I
I Optimized for L)

64 ' GeForceaooas i :
| I I |
] Optimized for l "l '
| GeForce GTX 285l Iy '
I Iy I

| I I :
\ JAN I\ Y

[e — O T — g ——
Number of Registers Per Thread
36

Varying Inputs, Drastic Performance Effects

B e e e e e m e m e = e e o e— - — e — s — s — s — - — - — - =, " mmm o m mm o= mm

20 - ," >, \
ok Low _II.' EfflClent Execution ‘. ngh |
16 | Utilization ' I!Overhead !
14 | ! !
I . ©
» 12 ©
S 10 Rectangular gcso £
S g : Matrix 8 s
6 | 2
4
| 1
u ;
0 ---------- I— [| | I- — -I— . —I " - -I -— —‘ " I. | . _‘ " .I - I— *
N “k' & & &9 ‘E' &' N ol SN N T R A A P T
N % D) N o
Lo %“b b‘;ﬁj '\,‘VQ bwio o 5‘0“* c;\q’% & ’ﬁg S & \g@g)@;kj'\ bb‘g 008@. %@? 6@@* N

Optimize by writing many kernels?

Compiler support may ease this burden.

Adapted from Samadi, PLDI 2012

37

Amdahl’s Law

e GPGPU may have <100x speedup but...

50%
A

50%
A

NO GPU utilization

GPU Executable

NO GPU utilization

-
-
-
-
-
-
-
-

f”
-

Even 1000x here does NOT
bring more than 2x in overall

Execution Time

Adapted from Samadi, GPGPU 2012

>

General Purpose Computing on GPU

e Limitation of| GPU Executable

— Massive Data-Parallelism
— Line
— NO How can GPUs be more GENERAL?
—_ NO S -

e Leaves GPUs underutilized

— GPGPUs are not general enough

Adapted from Samadi, GPGPU 2012

Barriers to Generalization

NO GPU utilization

e Reduce Sections

— Non-Linear array access
|

for(y=0.
P pa |

h -

;_y<ny; y++)
for(i=1; 1I<m;

1++)
Y Y4 |

~=\._‘... Ca o a R 4 . o . D\
for(int 1=0;

I<n;

1++){

*C

at+:

b++;

C++;

}

¥

Adapted from Samadi, GPGPU 2012

cial...

GPUO CPU E GPU 1
Seq.
Code Tra nisfer
| InQut
Kernel
Run on
IDLE IDLE GPU 1

Time

Adapted from Lee, PACT 2013

Tra nisfe r
Output

What about Heterogeneity?

Why not utilize GPU O

and CPU’s SIMD
resources?

41

Collaborative Heterogeneous Execution

GPUO | CPU GPU 1
Seq.
. Code Transfer
5 InQut
Kernel
Run on
IDLE IDLE GPU 1
Tranésfer
§ Output
Time i i

Adapted from Lee, PACT 2013

GPUO | CPU GPU 1

Seq. |
. Code Tranisfer
| Input

Run oné > Runéon Run on

GPU O CPU GPU 1
L
EMerge':' Transfer

Outgput

Current Hardware Research

e Remember, trend is simple & scalable

— General goals:
e Reducing cache thrashing
e Better overlapping of computation & memory
* Improved performance & energy efficiency

— Warp scheduling

e Cache-Conscious Wavefront Scheduling (Rogers et. al.)

— Prefetching
e Adaptive prefetching (APOGEE, Sethia et al.)

