Application-Specific Hardware

...in the real world
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Microsoft Cloud Services
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Datacenter Environment

» Software services change monthly

» Machines last 3 years, purchased on a rolling basis
- Machines repurposed ~%2 way into lifecycle
e Little/no HW maintenance, no accessibility

» Homogeneity is highly desirable

The paradox: Specialization and homogeneity



Efficiency via Specialization
I

More flexible...

 FPGAs
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PGAS into the Datacenter
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Prototype #1: BFB board

Prototyped a 6 FPGA board

3x2 GPIO mesnh

PCle connecting all FPGAs, CPU
Plugs into Supermicro GPU server
Serves L2 scoring for 48 server pod

 1U,2U, or4U rack-mounted
* 1/2/4 x10Ge ports
 Upto4 PClexl16 slots

» 2 sockets, 6-core Intel Westmere




Centralized Model Unsuitable for Datacenter

« Single point of tailure
« Complicates rack design, thermals, maintainability
« Network communication for any use of FPGA

« Definition of the Network In cast problem
 Precludes many latency sensitive workloads

» Limited elasticity

« What if you need more than six FPGAs?




Our Design Requirements

Don’t Burn Too Much

Don’t Cost Too Much
Power

. 1. Specialize HW with
<30% Cost of Current an FPGA Fabric

Servers

<10% Power Draw
2. Keep Servers (25W max, all from PCle)

Homogeneous

Don’t Break Anything

Work In existing servers
No Network Modifications
Do not increase hardware failure rate




Datacenter Servers

« Microsoft Open Compute Server
« 1U, ¥2 wide servers

« Enough space &
oower for ¥2 height,
Y2 length PCle card

« Squeeze in a single FPGA
- Won't fit (or power) GPU

http://www.globalfoundationservices.com/posts/2014/january/27/microsoft-contributes-cloud-server-specification-to-open-compute-project.aspx



http://www.globalfoundationservices.com/posts/2014/january/27/microsoft-contributes-cloud-server-specification-to-open-compute-project.aspx

Microsoft Open Compute Server

PEREWNEN
ALaLan 7

* Two 8-core Xeon 2.1 GHz CPUs —

« 64 GB DRAM Alr ﬂOW
« 4HDDs @ 2 TB,2 SSDs @ 512 GB

* 10 Gb Ethernet 2(3)0 LFM
* No cable attachments to server 68 “C Inlet




Catapult FPGA Accelerator Card

- Altera Stratix V GS D5
.- 172k ALMs, 2,014 M20Ks, 1,590 DSPs

- 8GB DDR3-1333
- 32 MB Configuration Flash

Stratix '

8GB DDR3

- PCle Gen 3 x8
- 8 lanes to Mini-SAS

SFF-8088 connectors

- Powered by PCle slot

q PCIeGen3 x8 k

-\ //74/ S VANt /75

4x 20 Gbps Torus Nétwork




Board Details

16 Layer, FR408 i
e 95cm x 8.8cm x 115.8 miljjEet
e 35mm X 35mm FPGA
. 14.2mm higmeatsink

(CFN

T
!

Mezz Conn.



Catapult Network Cables

Board / Server Integration

I/0O Backplane

Jay1ebo| perauuo)) spieog

Catapult Board
Mezzanine Slot

Server w/ Catapult Board
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Scalable Recontigurable Fabric

« 1 FPGA board per Server
« 48 Servers per Y2 Rack
« 0x8 Torus Network among FPGAS
« 20 Gb over SAS SFF 8088 cables

b

2
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2
b
>
B3
>
e
-
<
-

-----------

Data Center Server (1U, "2width)




Infrastructure and Platform Architecture

* To enable productive use of the FPGA:

(1) APIs for interfacing software with the FPGA = SW Interface
(2) interfaces b/n FPGA and board-level functions = shell
(3) support for resilience and debugging = Error correction



Software Interface

* Design goals:
* Host-to-FPGA:

» Latency (10us/16KB)
» multithreading

e Custom PCle interface with DMA support
* No sys calls
* 11/P, 1 O/P buffer in non-paged memory
* Buffer has 64 slots of size 64KB
* Status bits

* Services initiated through calls to low-level software library



An Elastic Reconfigurable Fabric

Math Acceleration
Service

|
P
et

W ebSearch Ape

-

Physics
Engine

——— PCle (8.0 GB/s)

— SLIII (2.0 GB/s)
400 ns latency/hop



Shell & Role

« Shellhandles all I/O &
management tasks

« Roleis only application
logic

 Shell exposes simple

FIFOs

« Flight data recorder for
scale out debug

« Role is Partial Reconfig
boundary

4 GBDDR3-1333 4 GBDDR3-1333
EQCSO-DIMM ECCSO-DIMM
} 72 72
Shell
» DDR3Core 0 DDR3Core 1

Host 8| X8PCle

CPU - Core
I

DMA

Engine

Inter-FPGA Router
[ [ [ [
North South East West
IS SLIl Sl SLil

Config
Flash

(RSU)
JIAG

LEDs

Temp
Sensors

[2C

Xcvr
reconfig

S=U

i

I

256 Mb

> QSPI

Config
Flash
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Selection as a Service

(Saas)

Query

s

SaaS1

Saasz

SaaS3

(

Document Ranking Flow

/——————R

Ranking as a Service (RaaS) \

Saas4

Selection-as-a-Service (SaaS)
-Find all docs that contain query terms,
-Filter and select candidate documents for

ranking

\
RaaS1 N
SelecteJ RaaS2
Documen1s
"1 RaaS3
I RaaS48
\\ ‘/JJ

\

N

J

Ported to Catapult

Ranking-as-a-Service (Raa$S)

- Compute scores for how relevant each selected
document is for the search query

- Sort the scores and return the results

——» 10 blue links

7

\————



-t reature Extraction
Query: “FPGA Configuration”

Document

Features:| NumberOfOccurrences_0=7/ NumberOfOccurrences_1=4 NumberOfTuples 0 1=1

[ Bl

g=arey

- @I\V http://en wikipedia.org/wiki/FPGA O ~ 8 € X u \V Field-programmable gate a... % _‘ ok
FE: Feature < O [T | :

& Login/ create account ‘j
EXt ra Ctlon Article Talk Read Edit View history |Searct Q ‘
WARIPETA ztne!d pr?gjammable gate array
The Free EnC}‘Ck)pde’l :Rc.dlreded fml FPGAS‘;I
Mah poge A field-programmable gate array is an integrated circuit desianed to be configured by the customer or
f°mems designer after manufacturing—hence "held-programmable”. The FPGA fonfigurationis generally specified using a
eatured content G AR, X . . v L 5 3 . .
Cutont svents hardware description language (HDL), similar to that used for an application-specific integrated circuit (ASIC) (circuit
Random article diagrams were previously used to specify the configuration, as they were for ASICs, but this is increasingly rare).
Donate to Wikipedia an be used to implement any loaical function that an ASIC could perform. The ability to update the
~ Inoracion tnctionality after shipping, partial re-configuration of a portion of the designl!! and the low non-recurring engineering
Help costs relative to an ASIC design (notwithstanding the generally higher unit cost), offer advantages for many
About Wikipedia apph cations [21
Community portal
23:::;?:;2:; - |FPGAsIcontain programmable logic components called "logic blocks", and a hierarchy of reconfigurable
nterconnects that allow the blocks to be "wired together'—somewhat like many (changeable) logic gates that can be
y Tonmiox inter-wired in (many) different configurations . Logic blocks can be ¢anfigured to perform complex combinational
pAEtEspat functions, or merely simple logic gates like AND and XOR. In mos the logic blocks also include memory
~ Languages elements, which may be simple flip-flops or more complete blocks of memory.[2l
:::"m = In addition to digital functions, some have analog features. The most common analog feature is
Boanth programmable slew rate and drive strength on each output pin, allowing the engineer to set slow rates on lightly
Catala loaded pins that would otherwise ring unacceptably, and to set stronger, faster rates on heavily loaded pins on high-

Score



FFE. Free Form EXpressions

Document

{

|

FE: Feature
Extraction

Score

Features:

NumberOfOccurrences_0=7 NumberOfOccurrences 1= 4| NumberOfTuples 0 1 =1

~.

FFE #1 =(2*NumberOfOccurrences 0 + NumberOQfQccurrences 1)
(2 * NumberOfTuples 0 1

l

Metafeature #1 =9



Feature Extraction Accelerator

Compressed

- S

Control/Data

Distribution latches
Tokens

TTTTT]

Free Form

Expression

(FFE)

196 feature families

» 43 state machines
« 2.6K dynamic features extracted in

less than 4us (~600us in SW)



FFE Soft Cores

« Soft processor for multi
threaded throughput

4 HW threads per core
6 cores share a complex ALU

- log, divide, exp, float/int conv. 01610 clepie 11 G &

» 10 clusters (240 HW threads) o 5= il
per FPGA “dokdd Cored Core
Ranker Model FFE | ) | S;OFe

Thread 0

c Thread 1 | | [ | | [ |
Compiler B FHD HE HM HW

Thread 3

Model Backend

Compiler

File (INI)




Putting it all togetner

Document

{

|

FE: Feature Extraction J

8-Stage
Pipeline

FPGAO

I i

A

FRERE

FPGA7

-

P SR <

RaaS

Servers
Route to

Route to
Head

Pecorma -
. Server
Scoring

Request

Document
Scoring
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Accelerating Large-Scale Services - Bing Search

1,632 Servers with FPGAs Running Bing Page Ranking Service (~30,000 lines of C++)

95% Query Latency vs. Throughput
SW + FPGA

N
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2Xx Increase in
Throughput 4

N
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(Oa)

29% Latency |

Reduction 77 < 30% Cost
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improving relevance < 25 W Power
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Key Needs for FPGA Computing

« Huge need for high-productivity languages

- C to gates tools did not do well on FE state machines
« Domain specific languages, OpenCL, BlueSpec both show promise

Software &
Language

» Faster compilation times
« Fewer warnings... NO warnings on IP libraries
e Better debugging integration

Compiler &
Tools

« Hardened P(Cle, DDR, JTAG debugging
« Faster, more efficient DDR
 Improved floating point performance

RTL &
Hardware



Conclusions
- Hardware specialization is a (the?) way to gain
efficiency and performance

» The Catapult reconfigurable fabric offers a flexible,
elastic pool of resources to accelerate services

e Results for Bing: ¥2 the number of ranking servers,
ower latency, reduced variance, proven scalapility,
oroven resilience

» Bing going to production in early 2015
» Biggest future problem is programmability




Google - Tensor Processing Unit

In-Datacenter Performance Analysis of a Tensor Processing Unit™

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,

Suresh Bhatia, Nan Boden. Al Borchers. Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell,

Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,

Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek
Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke. Alan Lundin, Gordon MacKean, Adriana Maggiore,

Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick,

Narayana Penukonda, Andy Phelps. Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani., Chris Severn, Gregory Sizikov,

Matthew Snelham, Jed Souter, Dan Steinberg. Andy Swing. Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma.
Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang. Eric Wilcox. and Doe Hyun Yoon
Google, Inc., Mountain View, C4 USA
Email: {jouppi, cliffy, nishantpatil, davidpatterson} @google.com

To appear at the 44th International Symposium on Computer Architecture (ISCA), Toronto, Canada, June 26, 2017.
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A GoldenAge In Microprocessor Design

* Stunning progress in microprocessor design 40 years = 105x faster!

* Three architectural innovations (~1000x)
» Width: 8>16->32->64 bit (~8X)

= |Instruction level parallelism:
» 4-10 clock cycles per instruction to 4+ instructions per clock cycle (~10-20x)
= Multicore: 1processor to 16 cores (~16x)

* Clock rate: 3to 4000 MHz (~1000x thru technology & architecture)

» Made possible by ICtechnology:

» Moore’s Law: growth in transistor count (2X every 1.5 years)

= Dennard Scaling: power/transistor shrinks at same rate as transistors are
added (constant per mmz2 of silicon)



End of Growth of Performance?

40 years of Processor Performance

100000
« Since

10000 » Transistors not getting muchbetter
@ = Powerbudget not getting much higher
5 1000 = Already switched from linefficient
f processor/chipto N efficient
g 100 processors/chip
E (12%lyr)
S RISC
9 CISC 2X /1.5 yrs

10 2X13.5yrs (52%/yr)

 Only path left is Domain Specific
Architetures
» Justdo afew tasks, but extremely well

(22%Iyr)

. 280 1985 1990 1995 2000 2005 2010 2015
Based on SPECIntCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018



TPUOrigin

« Starting as far back as 2006, Google engineers had discussions about
deploying GPUs, FPGAs, or custom ASICs In their data centers. They
concluded that they can use the excess capacity of the large data
centers.

 The conversation changed in 2013 when it was projected that if
people used voice search for 3 minutes a day using speech
recognition DNNSs, it would have required Google’s data centers to
double in order to meet computation demands.

» Google then started a high-priority project to quickly produce a
custom ASIC for inference.

 The goal was to improve cost-performance by 10x over GPUSs.

* Given this mandate, the TPU was designed, verified, built, and
deployed in data centers in just 15 months




Neural nets
3 Kinds of Popular NNs

» Multi-Layer Perceptrons(MLP)

= Each new layer is a set of nonlinear functions of

weighted sum of all outputs ( fully connected) from a

4

o
o
o;o

prior one

‘/ » Convolutional Neural Networks(CNN)
‘ output layer

» Each ensuing layer is a set of nonlinear functions of

S
i
(X
}\4\\"
AN

‘;

input layer weighted sums of spatially nearby subsets of outputs
hidden layer 1 hidden layer 2 _ _ _
from the prior layer, which also reuses the weights.
http://cs231n.github.io/neural-networks-1/ e Recurrent Neural NetWOFkS(RNN)

» Each subsequent layer is a collection of nonlinear
functions of weighted sums of outputs and the previous
state. The most popular RNN is Long Short-Term
Memory (LSTM).
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Inference Datacenter\Workload(95%)

; Layers Nonlinear 5 TPU Ops / [I'PU Batch| % of Deployed
Name |10 FC | Conv |Vector| Pool |Total|  function g Weight gyre Size |TP L"‘TS'];n JZI;/};Z 016
MLPO | 100 5 5 ReLU 20M 200 200 61%
MLP1 |1000 4 4 ReLU SM 168 168
LSTMO | 1000 | 24 3 58 | sigmoid, tanh | 52M 64 64 99
LSTM1 [ 1500 | 37 19 56 | sigmoid, tanh | 34M 96 96
CNNO | 1000 16 16 RelLU &M 2888 8 50,
CNN1 | 1000 4 402 13 | 89 RelLU 100M 1750 32

Table 1. Six NN applications (two per NN type) that represent 95% of the TPU’s workload. The columns are the NN name: the number of
lines of code: the types and number of layers in the NN (FC 1s fully connected, Conv 1s convolution, Vector 1s self-explanatory. Pool 1s
pooling, which does nonlinear downsizing on the TPU: and TPU application popularity in July 2016. One DNN 1s RankBrain [Clal5]: one
LSTM 1s a subset of GNM Translate [Wul6]: one CNN 1s Inception; and the other CNN 1s DeepMind AlphaGo [Sil16][Joul5].



TPU architecture

* PCle coprocessor

* No internal instruction fetch

e CISC-like instructions from host:
e Read Host Memory

Read_Weights

Activate

14 GiB/s

MatrixMultiply/Convolve >

Write_Host_Memory
e Off-chip DDR3 weight memory

PCle Gen3 x16
Interface

N/

Host Interface

D Off-Chip VO
[[] pata Butfer
[:] Computation
. Control

14 GiB/s

|

(Do DN Chice’|

Q 30 GiBls
30 GiBls

DDR3-2133

Interfaces (Weight Fetcher)

Weight FIFO

G 30 GiBI;

/

10 GiB/s

Unified
Buffer
(Local

Activation
Storage)

- Matrix Multiply :

- (64K per cycle)

Unit

_ A

LI

X
Accumulators

T,

Activation

Normalize / Pool

4'23—.-4—
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TPU architecture

* MACs for core computation
e 24MB Unified Buffer

e Store intermediate results

* Sized to match pitch of matmult unit,
simplify compilation w/ specific apps

* Tiny control logic

Local Unified Buffer for

Matrix Multiply Unit

Activations (256x256x8b=64K MAC)
(96Kx256x8b = 24 MiB) 24%
29% of chip
D Host Accumulators 3
5 Interf. 2% (4Kx256x32b =4 MiB) 6% | X
M r — A M
port - Activation Pipeline 6% | port
ddr3 ddr3

PCle

3%

2 A

Interface 3%

s 0

&
A =

Misc. /0 1%

3%

39




TPU architecture — systolic structure

Local Unified Buffer for

Matrix Multiply Unit

Activations (256x256x8b=64K MAC)
(96Kx256x8b = 24 MIB) 24%
29% of chip
D Host Accumulators g
§ Interf. 2% (4Kx256x32b =4 MiB) 6% |
M ' =S -4 M
port - Activation Pipeline 6% port
d.'?’? ‘ PCle : ) | d:;?
| 57 Interface 3% | 4 i | Misc. /O 1% |

0

’
’

Partial Sums

— Done

|

|

|
TETENE
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Software Stack

 Software stack is split into a User Space
Driver and a Kernel Driver.

* The Kernel Driver is lightweight

» Handles only memorymanagement andinterrupts.

 The User Space driver changes
frequently.
* |t sets up and controls TPU execution
« Reformats data into TPU order

« Translates API calls into TPU instructions,
and turns them into an application binary.

Google
Application

. . Google
TensorFlow Application

StreamExecutor API

\ 7

User Space Driver

Kernel Driver

_______________________________________________

[ Tensor Processing Unit J

\
) \
1

A0BIS NdL



System configurations

Die Benchmarked Servers

Model 2 ) Measured | TOPS/s | On-Chip - - Measured

mm- | nm |MHz| TDP Jdie | Busy | 8b | FP GB/s Memory Dies| DRAM Size rDp ldie | Busy

E[:bz‘gé 3 662 | 22 | 2300 145W| 41W| 145W| 2.6 | 13| 51 51 MiB| 2 256 GiB 504W| 159W | 455W
j 2 .

NVIDIA K30 sel |28 | 560 150W| 25w 98w| - |28 160 gMmiB| g | 220 0B hosh 1 el 357w | 991w
|(2 dies/card) +12G1IB x 8
j 3 .

TPU <331*%f 28 | 7000 75W] 28W| 40w| 92 34 g MiB| 4 | 226 G1B (host) 861Wl 290w | 384w
+80G1B x4

*TPU is less than half die size of the Intel Haswell processor

« K80 and TPU in 28nm process, Haswell fabbed in intel 22nm process
* Widely deployed in Google data centers




Performance

== TPU Roofline
100
== K80 Roofline

HSW Roofline

* “Roofline curves” — computation o
VS memory-intensity . * -

* “Ridge point” at intensity where  § -
app becomes compute-bound % 4 e

* Before ridge = memory-bound % o —— L

* After ridge = compute-bound : °. -

* Below curve = response time- ® e
constrained .
100 1000 @® cnnNo

® cn

Operational Intensity: MAC Ops/weight byte (log scale)
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Performance — energy efficiency

Performance/Watt Relative to CPU or GPU

B crucru | TPu/cPu ] TPu/GPU  [l] TPU/CPU [l TPU/GPU
196
200

150

100

50

Total Perf./Watt GM Total Perf./Watt WM Incremental Incremental
Perf./Watt GM Perf./Watt WM
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Performance — energy proportionality

- Haswell
- K80
250 - TPU
200
g 150
=
= 100
50
0
0% 25% 50% 75% 100%

Target Workload



Design space exploration

Weighted Mean
3.5 * memory
x clock+
3.0
clock
E 25 * matrix+
Ew matrix
3 2.0
é 1.5
»
0.5
0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Scale Relative to Original TPU
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TPU v2

e At HotChips 2017:

e 2x 128x128x32b “mixed multiply units”
(MXUs)

* 64GB HBM
* 64x TPU modules per “pod” = 4TB HBM
e Some available in TensorFlow cloud svc

47



Google vs. Microsoft

 Why Google ASIC? Why Microsoft FPGA?
* Flexibility? Programmability?
* Cost and usefulness over time?
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