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ASICsFPGAs

Source: Bob Broderson, Berkeley Wireless group
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• 1U, 2U, or 4U rack-mounted

• 1/2/4 x 10Geports

• Up to 4 PCIe x16 slots

• 2 sockets, 6-core Intel Westmere
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• Two 8-core Xeon 2.1 GHz CPUs

• 64 GB DRAM

• 4 HDDs @ 2 TB, 2 SSDs @ 512 GB

• 10 Gb Ethernet

• No cable attachments to server 68 ⁰C



• PCIe Gen 3 x8

• 8 lanes to Mini-SAS  

SFF-8088 connectors

• Powered by PCIe slot

Stratix V

8GB DDR3

PCIe Gen3 x8

4x 20 Gbps Torus Network

• Altera Stratix V GS D5

• 172k ALMs, 2,014 M20Ks, 1,590 DSPs

• 8GB DDR3-1333

• 32 MB Configuration Flash

Config

Flash



FPGA

Mezz Conn.

1U





8 shell cables 6 shell cables



DataCenterServer (1U, ½width)



Infrastructure and Platform Architecture

• To enable productive use of the FPGA: 
(1) APIs for interfacing software with the FPGA  SW Interface
(2) interfaces b/n FPGA and board-level functions  shell
(3) support for resilience and debugging  Error correction



Software Interface

• Design goals:
• Host-to-FPGA:

➢Latency (10us/16KB)
➢multithreading

• Custom PCIe interface with DMA support
• No sys calls
• 1 I/P, 1 O/P buffer in non-paged memory
• Buffer has 64 slots of size 64KB
• Status bits

• Services initiated through calls to low-level software library
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Ranking-as-a-Service (RaaS)

- Compute scores for how relevant each selected

document is for the search query

- Sort the scores and return the results

Selection-as-a-Service (SaaS)

-Find all docs that contain query terms,

-Filter and select candidate documents for  

ranking

Selection as a Service 

(SaaS)
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Ranking as a Service (RaaS)
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Query: “FPGA Configuration”
NumberOfOccurrences_0 = 7 NumberOfOccurrences_1 = 4 NumberOfTuples_0_1 = 1

Document

Score



FFE #1 =(2*NumberOfOccurrences_0 + NumberOfOccurrences_1)

(2 * NumberOfTuples_0_1)

Document

Score

NumberOfOccurrences_0 = 7 NumberOfOccurrences_1 = 4 NumberOfTuples_0_1 = 1

Metafeature #1 = 9



PCIe

Distribution latches
Control/Data  

Tokens

Compressed  
Document

Feature  
Gathering  
Network

Free Form  
Expression  

(FFE)

Stream  
Preprocessing  

FSM

• 196 feature families

• 43 state machines

• 2.6K dynamic features extracted in

less than 4us (~600us in SW)
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FFE: Free-Form  
Expressions

FE: FeatureExtraction FPGA 0
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Accelerating Large-Scale Services – Bing Search

1,632 Servers with FPGAs Running Bing Page Ranking Service (~30,000 lines of C++)

More compute time for

improving relevance

Reduce no. of

Servers







Google - Tensor Processing Unit
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AGoldenAge in Microprocessor Design

• Stunning progress in microprocessor design 40 years ≈ 106x faster!

• Three architectural innovations(~1000x)
▪ Width: 8163264 bit (~8x)

▪ Instruction levelparallelism:
➢4-10clockcyclesper instruction to 4+ instructions perclock cycle (~10-20x)

▪ Multicore: 1 processor to16 cores (~16x)

• Clock rate: 3to 4000 MHz (~1000x thru technology & architecture)

• Made possible by ICtechnology:
▪ Moore’s Law: growth in transistor count (2X every 1.5years)

▪ DennardScaling: power/transistor shrinks at same rate as transistors are
added (constant per mm2 of silicon)



End of Growth of Performance?

• Since

▪ Transistorsnot getting muchbetter

▪ Powerbudgetnot getting muchhigher

▪ Alreadyswitched from 1inefficient

processor/chipto Nefficient  

processors/chip

• Onlypath left isDomainSpecific

Architetures

▪ Justdoafew tasks,but extremely well



TPUOrigin

• Starting as far back as 2006, Google engineers had discussions about  
deploying GPUs, FPGAs, or custom ASICs in their data centers. They  
concluded that they can use the excess capacity of the large data  
centers.

• The conversation changed in 2013 when it was projected that if  
people used voice search for 3 minutes a day using speech  
recognition DNNs, it would have required Google’s data centers to  
double in order to meet computation demands.

• Google then started a high-priority project to quickly produce a  
custom ASIC for inference.

• The goal was to improve cost-performance by 10x over GPUs.

• Given this mandate, the TPU was designed, verified, built, and  
deployed in data centers in just 15 months



Neural nets
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http://cs231n.github.io/neural-networks-1/

Weights
• Multi-Layer Perceptrons(MLP)

▪ Each new layer is a set of nonlinear functions of 

weighted sum of all outputs  ( fully connected) from a 

prior one

• Convolutional Neural Networks(CNN)

▪ Each ensuing layer is a set of nonlinear functions of 

weighted sums of  spatially nearby subsets of outputs 

from the prior layer, which also reuses the  weights.

• Recurrent Neural Networks(RNN)

▪ Each subsequent layer is a collection of nonlinear 

functions of weighted sums  of outputs and the previous 

state. The most popular RNN is Long Short-Term  

Memory (LSTM).

3 Kinds of Popular NNs



Inference DatacenterWorkload(95%)



TPU architecture

• PCIe coprocessor

• No internal instruction fetch
• CISC-like instructions from host:

• Read_Host_Memory

• Read_Weights

• MatrixMultiply/Convolve

• Activate

• Write_Host_Memory

• Off-chip DDR3 weight memory
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TPU architecture

• MACs for core computation

• 24MB Unified Buffer
• Store intermediate results

• Sized to match pitch of matmult unit, 
simplify compilation w/ specific apps

• Tiny control logic
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TPU architecture – systolic structure
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Software Stack

• Software stack is split into aUserSpace  
Driver and a KernelDriver.

• The Kernel Driver is lightweight

• Handles only memorymanagement  andinterrupts.

• The User Space driver changes  
frequently.

• It sets up and controls TPU  execution

• Reformats data into TPU order

• Translates API calls into TPU  instructions, 
and turns them into an  application binary.



System configurations
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* TPU is less than half die size of the Intel Haswell processor

• K80 and TPU in 28nm process, Haswell fabbed in intel 22nm process

• Widely deployed in Google data centers



Performance

• “Roofline curves” – computation 
vs memory-intensity

• “Ridge point” at intensity where 
app becomes compute-bound

• Before ridge = memory-bound

• After ridge = compute-bound

• Below curve = response time-
constrained
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Performance – energy efficiency
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Performance – energy proportionality
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Design space exploration
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TPU v2

• At HotChips 2017:
• 2x 128x128x32b “mixed multiply units” 

(MXUs)

• 64GB HBM

• 64x TPU modules per “pod”  4TB HBM

• Some available in TensorFlow cloud svc
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Google vs. Microsoft

• Why Google ASIC? Why Microsoft FPGA?

• Flexibility? Programmability?

• Cost and usefulness over time?
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