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Perspectives on Scaling

- C-FAR: Center for Future Architectures Research
-+ Focused on scaling in 2020-2030 silicon v e
- Performance, power and cost K
+ 27 faculty at 14 universities, 82 students 4 e

- Why is C-FAR’s mission important?
- The promise... tomorrow’s applications need powerful systems

- Why is C-FAR’s mission challenging?
- The threats... slowing innovation and degrading silicon
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Is Density Still Scaling?
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What Does This All Mean to
Architects?
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Attempt #1: Chip Multiprocessors

B october 12,2010

Any F Moore's Lawisn'tm g, e

Regular costder  ARE NEW
are coming to a NOT BY M

Making comy
processingu

By StephenL:
- . 7w

Procssaors

The Gentral Proce:
computer for man,

Infact the nextge

availabilty of enou
enigs overal temp

of the three. e

leptopz were frcea o

Underwhelming Results

Why Cas ™ o Do | Even Need to Care About Processors Anvmore?
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Computers Aren’t Fast Anymore

Hello, doctor. Iam only 22 years old, but I think computers used to be faster. Why do Ifeel this way?
Canyouhelp me?

Well, it could't be CPUs. Everyone knows that chips were once getting twofold faster every couple of
vears. That is slowing down a bit now. But it couldn’t be GPUs, either. They've seen impressive leaps in
speed oo,

Hmm? Are we developers to blame? No, I don't think so. We're getting better and better at operating
our newfangled machines, to take advantage of their futuristic capabilities. At the very least, the smart
folks are writing languages and frameworks to bestow that power on the rest of us.

Of course, the extent that most developers see this innovation is in taking embarrassingly data-parallel
problems and slapping them on a GPU. But that’s something, isn't it, doctor? Memery’s faster, CEU
caches are bigger, and hard disks are faster than they used to be. SSDs are even faster than that.

Tell you about my past? Okay..

Aty high school, there were these run-of-the-mill Windows 2000 machines. We programmed on
them in VB6. And let me tell you, for all its downsides, VB6 was screaming fast. These crappy amateur
applications were downright speedy. Everything was.

When I use a computer now, 1 don't feel that way. I don't feel good about the speed or crisp
responsiveness of applications. Not on a desktop, not on a high-end laptop, and especially not ona
mobile device. And being that my job includes developing software for mabile devices, I have messed
around with a great many of them.

Iwas deeply concerned by this. So [ sat and I thought. Hmm. And it devned on me: I don't use real
applications anymore.
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We Investigate: Who’s to Blame?

Programmers u

- Computes 1 petahash/s

- Reportedly generates $8M I‘E
in Bitcoins per month

- Unfortunately soon to be
obsolete as Bitcoin difficulty
continues to scale

2
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We Investigate: Who’s to Blame?

Educators

1

CS Education in Ethiopia

- | have been working with Addis Ababa Institute of Technology
to develop CS and IT coursework since 2009

- Special focus on building
infrastructure and
developing active learning

- Nearly 600 students
in the CS program

- 2"d most popular major
in the university

- With many job opportunities
- The first?f1

CEAR 2




We Investigate: Who’s to Blame?

Educators The Transistor

Programmers u
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The Dark Silicon Dilemma

Advanced Scaling:
Dennard: “Computing Capabilities
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Courtesy Michael Taylor @ UCSD
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The Dark Silicon Dilemma

Dennard:
“We can keep power consumption
constant”
____________________________________ S3
S=1.4x S=lax
Faster Transistors Lower Capacitance
__________________________________ S2
2=
R Scale Vdd by S=1.4x
More Transistors 2=
il e o e e s o DN o e e o 1

Courtesy Michael Taylor @ UCSD
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The Dark Silicon Dilemma

B
Silicon

Fast forward to 2005:
Threshold Scaling Problems due to
Leakage Prevents Us From Scaling Voltage

____________________________________ S3

S=1.4x S=1.4x
Faster Transistors Lower Capacitance

S$2=2x
More Transistors

2

Courtesy Michael Taylor @ UCSD
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We Investigate: Who’s to Blame?

Educators The Transistor

] Architects

|

4
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A Story about
Jason and His Two Dads
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Vector Reduction Patch
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EVA Embedded Vision Architecture
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Where We Need to Focus:
Heterogeneous Parallel Systems

21

Silicon Today:
The Good, the Bad and the Ugly

- The Good: Heterogeneous parallel

systems have the potential to close

the Moore’s Law performance gap
- It's an old idea — it really works...

- The Bad: Dennard scaling has all
but stopped, Moore’s Law is losing
steam fast, leaving a growing
performance/power scaling gap
- All trends are bad...

- The Ugly: The heterogeneous
parallel designs needed to close the
gap will be too expensive to afford

- Skyrocketing NREs will necessitate broadly
applicable (vanilla and slow) H/W designs

CEA R
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What | Want You to Remember

- Successfully bridging the Moore’s Law performance gap is
less about “How” to do it, but more about “How Much” does
it cost!

- My claim: if we can effect a 100x reduction in the cost of
bringing a design to market, scaling challenges will eventually
solve themselves as the market flourishes with orders of
magnitude more designs, some of which will be the big wins
of tomorrow.

CEAR .

Design Costs Are Skyrocketing

Mask Production Costs

60 m Software Development and Test

m Design, Layout, and Verification

Yes, transistors are cheaper than ever
before, but the first one will cost you $60M!
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High Costs Kill Customization

- Heterogeneous designs serve smaller markets
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Outcome: “Nanodiversity” is Dwindling
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Inexpensive “Design” Promotes
Innovation and Adaptation

- Don’t Believe Me? Ask Mother Nature!

- I/K selection theory is a biological mechanism
that organisms use to better adapt to their
environment

- In unstable environments, r-selection
predominates as the ability
to reproduce quickly is crucial

- In stable environments, K-selection
predominates as the ability
to compete successfully for limited
resources is crucial

=
A

The Remedy :
Scale Innovation via Lower Design Cost

- Ultimate goal: make customized design sufficiently
inexpensive that anyone can do it anywhere
- Address all NRE factors: market size, design costs, build costs
- Take inspiration from Web 2.0, and subsequent innovation explosion

- Approach #1: Raise your expectations for scaling innovation
- Abandon former metrics for those that can start closing the gap

- Approach #2: Reduce the cost to design custom hardware
- With better tools that understand and leverage the benefits of customization
- By embracing open-source hardware design solutions

- Approach #3: Widen the applicability of custom hardware

- Increasing market applicability with composable customization mitigates
potentially higher NREs

- Approach #4: Reduce the cost of manufacturing hardware
- Utilize assembly-time customization to slash the cost of customization

=
A
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1) Raise your expectations for
scaling innovation

“Give me 15%

“I need 1%

speedupand I'll speedup for 1%
ISCA 201 accept your paper area
Procesdings of the 38th Annual
INTERNATIONAL SYMPOSIUM on
COMPUTER ARCHITECTURE

otlery

SHIEEE R GBARCH

“Your idea needs to deliver
2X or more, or someone
else should fund it”

CEAR 3 5

HELIX-UP Unleashed Parallelization
David Brooks @ Harvard

- Traditional parallelizing .
compilers must honor Thread 0: lteration 0 :
possible dependencies  Thread 1! gB€la Iteration 1 |

! Data !

- HELIX-UP manufactures Thread 2: \ !
parallelism by profiling Thread 3: w
which deps do not exist '
and which are not needed Nehalem 6 cores, 2 threads per core

- Based on user supplied output 1oL Harvre treads [E5 HELX  mm Static HELIX-UP ||
distortion function 2, N,

. . . E’ Output distorti 1 2%
- Big step for parallelization £ 2

- 2x speedup over parallelizing g i
compilers, 6x over serial, < 7% Z,
diStOf’tiOll 0 77mesa 179.at  183.equake  256.bzip2  blackscholes  swaptions  Geomean
— 30
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Association Rule Mining with the
Automata Processor

- Micron’s Automata processor
+ Implements FSMs at memory
- Massively parallel with accelerators

Kevin Skadron @ UVA

- Mapped data-mining ARM rules
to memory-based FSMs

- ARM algorithms identify relationships
between data elements

Level OF Level 1 1 Level 2§ Level 3
1 ]

CEAR

- Implementations are often memory [ e
bottlenecked @ @ o=
- Big-data sets had big speedups @@@@ o
- 90x+ over Single CPU performance Level OF Level 1 1 Level 2 1 Level 3 :Leve\;l
- 2-9x+ speedups over CMPs and GPUs @ i@v‘i @ @ m
- Joint effort with UVAand Micron @@ i© 0 ©

(b) Automaton for itemset {1. 3. 5}
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2) Reduce the cost to design
custom hardware

Shared Memory/Interconnect

OBALADDIN Models
Unmodified |/— [ ! 1 ™

1
C-Code = 1
I I :
| Accelerator Private L1/ | | David Brooks
Accelerator Design | Specific Scratchpad | 1 @ Harvard
|
I

Parameters =3l Datapath
(e.g., # FU, mem. BW) '\ A |

. Better tools and infrastructure

- Scalable accelerator synthesis and compilation, generate code and H/W for
highly reusable accelerators

- Composable design space exploration, enables efficient exploration of
highly complex design spaces

- Well put-together benchmark suites to drive development efforts

- Embrace open-source concepts
- Example; Berkeley's RISC-V architecture

CEAR ;
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Berkeley’s RISC V Open-Source ISA

Krste Asanovic @ UC-Berkeley

33

CortexSuite:
A Synthetic Brain Benchmark Suite

Michael Taylor @ UCSD
CMU SPHINX

Leamlny/Feazure language l wa| AP

sem,o” Processing

2=\ A

UGSG VISION LAB

Texture

Synthesis

Vector
Machines

CEAR 5

2

17



3) Widen the Applicability of
customized HIW Krste Asanovic @ UC-Berkeley

Computer Multimedia Machine
Vision Analysis ' Learning

Computational Patterns[ Dense ][ Sparse ]"' Graph

Applications

Specializers\with custom imple mentatlons and autotuning
Glue Spatse Graph ok
Code Code Code_| Code
ILP Dense || Sparse |[ Graph | ESP

Engine J| Engine J| Engine J|{ Engine Core

- ESP: Ensembles of Specialized Processors

- Ensembles are algorithmic-specific processors optimized for code “patterns”

- Patterns capture common operations across many applications, each with
unique communication and computation structure

- Approach has the promise of custom accelerator speed and efficiency
that is widely applicable to general purpose programs

A

CEAR :

4) Reduce the cost of manufacturing
customized HW Martha Kim @ Columbia

- Brick-and-mortar silicon explores assembly-time
customization, i.e., MCMs + 3D + FPGA interconnect

Ao
«‘N:M‘N:M‘N:M‘» Brick-and-mortar silicon

design flow:
1) Assemble brick layer
“N:”‘N:N‘N:N“ 2) Connect with mortar layer
«‘»c:w‘»c:w‘m:n‘» 3) Package assembly
)

4) Deploy software

- Diversity via brick ecosystem & interconnect flexibility
- Brick design costs amortized across all designs
- Robust interconnect and custom bricks rival ASIC speeds

=
A
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Conclusions

- Heterogeneous design could continue
Moore’s law perf. scaling via innovation alone

- But, it requires a diverse hardware ecosystem with
affordable customization

- Effective and affordable customization won’t
happen without our help
1. Raise your expectations for scaling innovation
2. Reduce the cost to design customized design
3. Widen the applicability of customization
4. Reduce the cost of custom manufacturing

- Increasing “nanodiversity” is a good thing
- Better perf., power, cost, capability
- More jobs, companies, and students
- More competition and scalable innovation

CEaA=

37

Questions
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