Secure Systems 2.0:

Revisiting and Rethinking
the Challenges of Secure System Design

Todd Austin
University of Michigan

The Security Arms Race

- Question: Why are systems
never safe? Develop/Debug Attackers
- We deploy our designs Applications ﬁtézf's‘
- Attackers attack and Platforms
- We deploy countermeasures
- Rinse and repeat

Deploy
Counter-
measures

Why is Security So Hard to Get Right?

- Industry is based on a patch-based
approach to security

Find and fix vulnerabilities (i.e., bugs in S/W
that can be exploited)

- S/W and H/W complexity growth massively
outstrips security bug verification capabilities

- Verifying protections requires a

nonexistence proof mewy
- For all <programs, inputs>, there exists no

unchecked vulnerability

- Key unaddressed challenge: how
do we protect against unknown (0-
day) attacks”?

- Known vulnerabilities that have not been
found and as yet unknown vulnerabilities

Ln (Onboard SLOC)

20
18

R S S
o N A O

8
6

Curve Implies SLOC doubles about every 4 years

T[] 299M
‘ : ; o 134M
| B777:4M 2_M’
B737: 470K Lip-
B747:370K | A220/A340:2M
B767: 190K \ =—A320; 800K
B757: 190K - .
m-<—A300FF: 40K
-«—A300B 4.6K
“«INS: 0.8K
1960 1970 1980 1990 2000 2010 2020

How Weak is Security Today?

- Jeep hacked remotely while driving

. DHS, bhmbon etz il o e

Bruce Schneier:
- Pac{ The growth of loT is transforming !
. Iv”ra\\Computer Security into Everythl Security 'k

- Entire baby monitor market hacked

- Fish tank thermometer data exfiltration

Hardware is Catching Up Fast

Rowhammer Cold Boot (DDR3/4)
:1-1,_ |

- Growing list of hardware
vulnerabilities calls into

et
question the extent to =
[W. %

which hardware can
establish a rooft of trust

AR RAS|Datq |R

Spectre and
Meltdown ... lush*Reload

When Good Protections Go Bad:
We Have Yet to Address Composability!

CLFLUSH-based

Current rowhammer

protections are effective F_—“
¢ When used In tandem Restricted Pagemap v x *
Disabled CLFLUSH *x v
- CAT technology was made (in part) to o o
prevent VM denial-of-service E
- Works well in this regard @ @ @ @

- Also works well to speed up rowhammer! -
- Rowhammer attack approach:
1. Pose as a VM “noisy neighbor” and get LLC '
cache access restricted by CAT
2. Rowhammer using single-ended CFLUSH-
free attack mode

- Defenses?

- Most recent defenses work: ANVIL, PARA 1: II II II

Min. Time to Induce Flips (ms)

Today’s Security Strategy Favors the Attacker

- Attacking is fundamentally easier than
protecting against attacks

- Attacking requires one vulnerability

- Protecting requires 100%
coverage

of all vulnerabilities (impractical to
achieve)

- Related software growth rates:
- Protections: ~2x LoC every 2 years
- Attacks: ~1.4x LoC in 30 years

- Thus, vulnerabilities are on the rise
- And, rate of attacks is exploding

10 000 0NN il s _ . ~

Vulnerabllltles By Year 14714

12442

7946
6610 6520 64806447

56325736
HoaE s 4155 5297 5191
2156 2451
894 1020 o1l 1527
D O ~ N ™M ¥ v 0 0O O «~ N MM < 0 O M
oD ©0 © © © © © O O ™ ™ ™ ™ ™ ™ ™ ™
O ©0 O © © © O ©C O O O O O ©0 ©0 © O
FNNNNNNNNNNNNNNNNNNN
security” s Peter
gﬂﬁﬂbmnn& 1985 1991 197 2003 2009 2015

My Goal Today is to Suggest Better Ways

- Let’'s work toward principled approaches for achieving
complete coverage of all vulnerabilities for non-trivial systems

- Two approaches
- Subtractive security techniques remove functionality necessary to
implement attacks, leaving a single-instance constructive proof

- High-entropy randomization with churn uses unspecified semantics
randomization to make programs impractically difficult to attack

Subtractive Security

Subtractive Security Techniques

- Additive methods add protections to thwart attacks
- Verifying additive measures requires a nonexistence proof

- For all <programs, inputs, vulnerabilities>, there exists
no unchecked vulnerability

- Subtractive methods remove “functionality” needed
to implement a class of attacks
- Rebuild the subtractive design to work without functionality
- Implementation is an constructive proof that approach works
- Optimize subtractive design to negate overheads
- Resulting system is immune to targeted class of attacks

- Why does this work so well?

- Attack functionality differs radically from normal activity
- Constructive proofs are naturally scalable and approachable proof techniques

10

Two Examples...

- Control-data isolation (CDI), to stop code injection

- Ozone zero-leakage execution mode, to stop timing side
channels

11

Example: Control-Data Isolation

- Code injection requires
iIndirection

- All indirection removed, uses
whitelisted direct jumps to
thwart all code injection

- Direct, as specified by programmer
- Validated, via whitelisting
- Complete, no indirection remains

- System supports run-time code
gen and dynamic libraries

[CGO'15]

Vulnerable Code

Int foo() { Int bar() {
/* fptr */ return; }
fptr = %cx;
call *fptr; Int baz() {
Work: return; }
}
Control-Data Isolated Code
Int foo () { Int bar() {
/* fptr */ if ([%sp] == Ret_1)
fptr = %cx; inc %sp;
if (*fptr==bar) jump Ret 1;
call bar; else
Ret 1: call InvalidCFG!;}
else if (*fptr==baz)
call baz; Int baz() {
Ret 2: if ([¥sp] == Ret 2)
else inc %sp;
call InvalidCFG! jump Ret 2;
Work: else

}

call InvalidCFG!;}

12

Hardware Support Erases Overheads

- [MICRO’15]
- Software-only approach
experiences 7% slowdown [Pc [B8] Forn |«
- Due to indirect whitelist validation a» —A—
. . . Array Ed
that occurs at all indirect jumps 1 code | squash,
. with execute
- Edge cache memoizes edge] <srctarget> | RenseTabk | " gleq
ommit >

No

Yes

validations, doubles as predictor T
Retire

- With range table, 6kB edge cache
reduces slowdowns to 0.3%

- Indirect target prediction cuts
misprediction rate in half over
simple BTB

13

Example #2:
Ozone Zero-Timing-Leakage Architecture

- Even carefully designed systems leak
info about internal computation

- Example: safes can be cracked by carefully
listening to the tumblers

- Clever attackers can utilize leaked
information to gain secrets
- If not directly, use statistical methods

- Current protections are additive
- Add delays to the system to hide timing
- Add superfluous activities to hide actions
- Side channels persist despite measures

Ozone Zero-Timing-Leakage Architecture

- Functionality removed: all characteristics
that create timing channels
- Common case not optimized

- No resource sharing
- No fine-grained timing analysis

- Implementation approach:
- Ozone H/W thread runs in fixed time
- No complex (hammock) control, use static predictor

- Only access to scratchpad memory

- Does not share resources
- Not subject to context switches

- Zero timing leakage and 10x faster than
additive approaches

[HOST'17]

Ozone Architecture

H/W
Thread Ozone
Thread

Cache/DRA -~
Scratchpad

Execution Characteristics

Latency

Normal execution

/

Ozone execution

Random Inputs

15

Challenges and Opportunities

- To what extent can subtractive security stop vulnerabilities?
- Demonstrated for code injection and timing leakage

- Could it work for rovhammer, memory side channels, and malicious
hardware?

- To what extent will these techniques be composable?
- prot(code injection) + prot(timing leakage) ?= no code inject, no leakage

- To what extent will these techniques be deployable?
- Code-data isolation requires complete overhaul of build tool chain
- Ozone zero-leakage architecture somewnhat restricts code expression
- Will system designers pay for these technologies?

16

Conclusions

- My challenge to you: let’s get the upper hand back from attackers
- This is simply intractable for patch-based security measures
- Requires a principled approach that shuts down vulnerabilities

- Subtractive security measures are a principled approach that are
simpler to validate

- Creation of a working system constitutes a constructive proof
- Has already been demonstrated for multiple vulnerabilities

- High-entropy randomization with churn make programs impractically
difficult to attack

- By randomizing unspecified program semantics as programs run
- Breaks today’s attacks and makes attackers brute-force search high-entropy spaces

26

