
Secure Systems 2.0:

Revisiting and Rethinking
the Challenges of Secure System Design

Todd Austin

University of Michigan



The Security Arms Race

• Question: Why are systems 
never safe?
• We deploy our designs

• Attackers attack

• We deploy countermeasures

• Rinse and repeat

2

Develop/Debug
Applications

and Platforms

Deploy
Counter-
measures

Attackers
Attack
Users



Out-of-Core
Accelerators

Maltiel estimates Our estimates

A10

• Industry is based on a patch-based 
approach to security

• Find and fix vulnerabilities (i.e., bugs in S/W 
that can be exploited)

• S/W and H/W complexity growth massively 
outstrips security bug verification capabilities

• Verifying protections requires a 
nonexistence proof

• For all <programs, inputs>, there exists no 
unchecked vulnerability

• Key unaddressed challenge: how 
do we protect against unknown (0-
day) attacks?
• Known vulnerabilities that have not been 

found and as yet unknown vulnerabilities

3

Why is Security So Hard to Get Right?

vulnerabilities
^



• Jeep hacked remotely while driving

• DHS attacks Boeing 757, details classified

• Pacemaker wirelessly infiltrated

• Mirai botnet disables DynDNS

• Entire baby monitor market hacked

• Fish tank thermometer data exfiltration

4

How Weak is Security Today?

Bruce Schneier:

The growth of IoT is transforming 
Computer Security into Everything Security



Hardware is Catching Up Fast

• Growing list of hardware 
vulnerabilities calls into 
question the extent to 
which hardware can 
establish a root of trust 

5

Rowhammer

Flush+Reload

Cold Boot (DDR3/4)

A2 Malicious HardwareSpectre and
Meltdown



When Good Protections Go Bad:
We Have Yet to Address Composability!

6

• Current rowhammer
protections are effective

• When used in tandem

• CAT technology was made (in part) to 
prevent VM denial-of-service

• Works well in this regard
• Also works well to speed up rowhammer!

• Rowhammer attack approach:
1. Pose as a VM “noisy neighbor” and get LLC 

cache access restricted by CAT
2. Rowhammer using single-ended CFLUSH-

free attack mode

• Defenses?
• Most recent defenses work: ANVIL, PARA



• Attacking is fundamentally easier than 
protecting against attacks

• Attacking requires one vulnerability

• Protecting requires 100% 
coverage
of all vulnerabilities (impractical to 
achieve)

• Related software growth rates:

• Protections: ~2x LoC every 2 years

• Attacks: ~1.4x LoC in 30 years

• Thus, vulnerabilities are on the rise

• And, rate of attacks is exploding

7

Today’s Security Strategy Favors the Attacker



My Goal Today is to Suggest Better Ways

• Let’s work toward principled approaches for achieving 
complete coverage of all vulnerabilities for non-trivial systems

• Two approaches
• Subtractive security techniques remove functionality necessary to 

implement attacks, leaving a single-instance constructive proof

• High-entropy randomization with churn uses unspecified semantics 
randomization to make programs impractically difficult to attack

8



Subtractive Security

9



Subtractive Security Techniques

10

• Additive methods add protections to thwart attacks

• Verifying additive measures requires a nonexistence proof

• For all <programs, inputs, vulnerabilities>, there exists
no unchecked vulnerability

• Subtractive methods remove “functionality” needed
to implement a class of attacks

• Rebuild the subtractive design to work without functionality

• Implementation is an constructive proof that approach works

• Optimize subtractive design to negate overheads

• Resulting system is immune to targeted class of attacks

• Why does this work so well?

• Attack functionality differs radically from normal activity

• Constructive proofs are naturally scalable and approachable proof techniques



Two Examples…

• Control-data isolation (CDI), to stop code injection

• Ozone zero-leakage execution mode, to stop timing side 
channels

11



Example: Control-Data Isolation

• Code injection requires
indirection

• All indirection removed, uses 
whitelisted direct jumps to 
thwart all code injection
• Direct, as specified by programmer

• Validated, via whitelisting

• Complete, no indirection remains

• System supports run-time code 
gen and dynamic libraries

12

ret

jreg

[CGO’15]



Hardware Support Erases Overheads

• Software-only approach 
experiences 7% slowdown

• Due to indirect whitelist validation 
that occurs at all indirect jumps

• Edge cache memoizes edge 
validations, doubles as predictor

• With range table, 6kB edge cache 
reduces slowdowns to 0.3%

• Indirect target prediction cuts 
misprediction rate in half over 
simple BTB

13

PC

GHR

BTB

Predictor 
Array Edge 

Cache 
with

Range Table
Commit

Fetch

<src,target>

=

Squash, 
execute 

sled

No

YesRetire

[MICRO’15]



Example #2:
Ozone Zero-Timing-Leakage Architecture

• Even carefully designed systems leak 
info about internal computation
• Example: safes can be cracked by carefully 

listening to the tumblers

• Clever attackers can utilize leaked 
information to gain secrets
• If not directly, use statistical methods

• Current protections are additive
• Add delays to the system to hide timing

• Add superfluous activities to hide actions

• Side channels persist despite measures

14



Ozone Zero-Timing-Leakage Architecture

• Functionality removed: all characteristics 
that create timing channels
• Common case not optimized
• No resource sharing
• No fine-grained timing analysis

• Implementation approach:
• Ozone H/W thread runs in fixed time
• No complex (hammock) control, use static predictor
• Only access to scratchpad memory
• Does not share resources
• Not subject to context switches

• Zero timing leakage and 10x faster than 
additive approaches

15

L
a
te

n
cy

Random Inputs

Execution Characteristics

Normal execution

Ozone execution

H/W 
Thread

H/W 
Thread

Ozone Architecture

H/W 
Thread Ozone

Thread

Cache/DRAM

Scratchpad

[HOST’17]



Challenges and Opportunities
• To what extent can subtractive security stop vulnerabilities?

• Demonstrated for code injection and timing leakage

• Could it work for rowhammer, memory side channels, and malicious 
hardware?

• To what extent will these techniques be composable?
• prot(code injection) + prot(timing leakage) ?= no code inject, no leakage

• To what extent will these techniques be deployable?
• Code-data isolation requires complete overhaul of build tool chain

• Ozone zero-leakage architecture somewhat restricts code expression

• Will system designers pay for these technologies?

16



Conclusions
• My challenge to you: let’s get the upper hand back from attackers

• This is simply intractable for patch-based security measures

• Requires a principled approach that shuts down vulnerabilities

• Subtractive security measures are a principled approach that are 
simpler to validate
• Creation of a working system constitutes a constructive proof

• Has already been demonstrated for multiple vulnerabilities

• High-entropy randomization with churn make programs impractically 
difficult to attack
• By randomizing unspecified program semantics as programs run

• Breaks today’s attacks and makes attackers brute-force search high-entropy spaces

26


