Application-Specific Hardware

... in the real world

1

http://warfarehistorynetwork.com/wp-content/uploads/Military-Weapons-the-Catapult.jpg

Google - Tensor Processing Unit

- Why?
 - 2006:
 - First considered datacenter ASIC/FPGA/GPU, decided excess capacity would suffice
 - 2013 projection:
 - Search by voice for 3min/day using DNNs → double datacenter computation needs
- Goals:
 - 10x better cost-performance vs GPUs
 - Deployment ASAP

http://cs231n.github.io/neural-networks-1/

TPU architecture

- PCle coprocessor
- No internal instruction fetch
 - CISC-like instructions from host:
 - Read_Host_Memory
 - Read_Weights
 - MatrixMultiply/Convolve
 - Activate
 - Write_Host_Memory
- Off-chip DDR3 weight memory

TPU architecture

- MACs for core computation
- 24MB Unified Buffer
 - Store intermediate results
 - Sized to match pitch of matmult unit, simplify compilation w/ specific apps
- Tiny control logic

TPU architecture – systolic structure

System configurations

Model	Die										Benchmarked Servers				
	mm ²	nm	MHz.	TDP	Measured		TOPS/s		GR/s	On-Chip	Dies	DRAM Size	TDP	Measured	
					Idle	Busy	8b	FP	UD/3	Memory	Dies	DIAM SILE	IDF	Idle	Busy
Haswell E5-2699 v3	662	22	2300	145W	41W	145W	2.6	1.3	51	51 MiB	2	256 GiB	504W	159W	455W
NVIDIA K80 (2 dies/card)	561	28	560	150W	25W	98W	Ľ.	2.8	160	8 MiB	8	256 GiB (host) + 12 GiB x 8	1838W	357W	991W
TPU	<331*	28	700	75W	28W	40W	92		34	28 MiB	4	256 GiB (host) + 8 GiB x 4	861W	290W	384W

Performance

- "Roofline curves" computation vs memory-intensity
 - "Ridge point" at intensity where app becomes compute-bound
 - Before ridge = memory-bound
 - After ridge = compute-bound
- Below curve = response timeconstrained

Operational Intensity: Ops/weight byte (log scale)

Log-Log Scale

Performance – energy efficiency

Performance – energy proportionality

Design space exploration

Weighted Mean

Scale Relative to Original TPU

12

TPU v2

- At HotChips 2017:
 - 2x 128x128x32b "mixed multiply units" (MXUs)
 - 64GB HBM
 - 64x TPU modules per "pod" → 4TB HBM
 - Some available in TensorFlow cloud svc

http://www.tomshardware.com/news/tpu-v2-google-machine-learning,35370.html

Microsoft - Catapult

Google v. Microsoft

- Why Google ASIC? Why Microsoft FPGA?
- Flexibility? Programmability?
- Cost and usefulness over time?

• Industry and academia have very different constraints

• Industry and academia have very different constraints

- Industry and academia have very different constraints
- Different goals may require fundamentally different tech

- Industry and academia have very different constraints
- Different goals may require fundamentally different tech
- Time and money dominate
 - (In academia, too!)

"Get me 10x in 15 months"