Designing and Implementing Malicious Hardware

Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier, Weihang Jiang, and Yuanyuan Zhou

Andrew De Zeeuw
Matthew Lindstrom
Outline

● Motivation
● Goal
● Approach
 ○ General Purpose Hardware
 ○ Implemented Attacks
● Results/Overhead
● Possible Defense
● Discussion Points
Motivation

● DoD Report
 ○ High performance ICs are expensive to produce
 ○ IC production limited to consumer suppliers
 ○ Consumer suppliers are moving design, manufacturing, and testing to other countries

● Software / Hardware Hacks
 ○ Apple - RavMonE virus
 ○ IBM Trojan Circuit
Goal

- Discuss locations for potential circuit level attacks
- Design and Implement potential attacks
- Promote future research for malicious hardware attacks
Approaches

● General purpose hardware:
 ○ Memory Access
 ○ Shadow Mode

● Implemented attacks:
 ○ Privilege Escalation
 ○ Login Backdoor
 ○ Stealing Passwords
Memory Access

- State machine monitors data bus for a magic value enabling the attack
- Memory management unit allows access to privileged data for attackers
Privilege Escalation Attack

- Escalate user to root using memory access
- Search protected kernel memory and elevate effective user to root
Shadow Mode

- Instructions have full processor privilege and are invisible to the system
- Instruction and Data cache lines reserved for attack
 - Timing perturbed during attack
- Two Bootstrap Mechanisms
 - Bootstrap Code / Bootstrap Trigger
Login Backdoor Attack

1. Attacker sends unsolicited UDP packet

2. Monitor notices the magic byte sequence

3. Firmware is copied to reserved cache area and activated.

4.

   ```
   login: root
   password: letmein
   
   Last login: Mon Apr 1 [root@victim ~]
   ```

 Attacker logs in as root. Shadow firmware uninstalls.
Stealing Passwords Attack

- Monitor write system call for “Password:” string
- Grab corresponding read value
- Store them in shadow memory
- Send passwords using one of two options:
 - System calls to network interface
 - Overwrite UDP packet with predetermined IP
Circuit-Level Implementation

- FPGA with a modified Leon3 processor
- Memory Access Modifications
 - Data Cache
 - Memory Management Unit
- Shadow Mode Modifications
 - Instruction and Data Cache
 - Watchpoint to trap load/store values (i.e. passwords)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline CPU</td>
<td>1,787,958</td>
<td>11,195</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>CPU + Memory Access</td>
<td>1,788,917</td>
<td>11,263</td>
<td>959</td>
<td>68</td>
</tr>
<tr>
<td>CPU + Shadow Mode</td>
<td>1,789,299</td>
<td>11,312</td>
<td>1,341</td>
<td>117</td>
</tr>
</tbody>
</table>
Performance - Login Backdoor

Timing Perturbations

<table>
<thead>
<tr>
<th>Program</th>
<th>Baseline</th>
<th>Known Root</th>
<th>Transient</th>
<th>Persistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>gcc</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parser</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>twolf</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bzip2</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wget</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVG</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AVG	Overhead
Known Root	| 1.32% |
Transient	| 1.34% |
Persistent	| 13.00% |
Possible Defenses

- Defenses against malicious hardware developed after this paper was published
- Detection of malicious hardware using analog and digital perturbations introduced by attack
 - Analog
 - Side-channel analysis to detect
 - Difficult to hide signal distortions due to malicious hardware
 - However side-channel analysis started as an attack
 - Digital
 - Digital testing may fail to detect hardware
 - Reverse engineering complete IC
 - Redundant hardware
Conclusion

- Designed two general purpose malicious hardware circuits
- Implemented three attacks with low area overhead and timing cost
- Further research in malicious hardware is necessary to prevent future attacks
Discussion Points

● Hardware attacks are hard coded and therefore single purposed, discuss the pros and cons of this attack.
● Hardware attacks are expensive to implement and defend against, for what applications might this attack be best suited?
● Are there any simple techniques the OS could use to nullify the attacks listed in this paper?
● How feasible is it to maliciously insert hardware?