EECS578 – Prof. Bertacco Fall 2015

Homework Quiz #1 Assigned: 9/27/2015 – Due: 10/2/2015

Name: ______

uniqname: _____

Paper: "Functional Correctness for CMP Interconnects" by R. Abdel-Khalek, R. Parikh, A. DeOrio, V. Bertacco, ICCD '11

Question 1 (2pts each). For each sentence, write "T" if it is true, or "F" if false.

(a) ____: SafeNoC can detect transient faults occurring in the primary network.

(b) ____: A signature for a packet is always different from that for other packets.

(c) ____: Signature calculations increase the average packet latency even when no error happens.

(d) ____: The proposed 5-step recovery process involves both hardware and software.

Question 2 (4pts). In a 4x4 mesh network with a uniformly random traffic, what is the average hop count (H) for signatures in the checker network? Choose the correct range for H.

 $\Box a. 0 \le H < 4$ $\Box b. 4 \le H < 8$ $\Box c. 8 \le H < 12$ $\Box d. H \ge 12$

Question 3 (1pt each). When can a false error detection (*i.e.*, a false positive) occur? Choose all that apply.

 \Box a. When delivery of a data packet in the primary network is significantly delayed.

 \Box b. When delivery of a signature in the checker network is significantly delayed.

 \Box c. When a data packet is corrupted.

 \Box d. When a data packet is dropped.

Question 4 (1pt each). What type(s) of functional errors can SafeNoC detect? Choose all that apply. \Box a. Deadlock.

 \Box b. Livelock.

 \Box c. Packet drop.

 \Box d. Packet reordering in a system with deterministic routing (*i.e.*, a packet is delivered before another packet that was transmitted before it).

Paper: "Formally Enhanced Runtime Verification to Ensure NoC Functional Correctness" by R. Parikh and V. Bertacco, MICRO '11

Question 1 (2pts each). For each sentence, write "T" if it is true, or "F" if false.

- (a) _____: The correctness of an NoC is easily verifiable if it has a regular topology.
- (b) ____: ForEVeR formally verifies the operation of an entire network-on-chip unit.
- (c) ____: The checker network performs signature matching to verify the integrity of packets.
- (d) _____: Recovery from a functional bug usually takes a few thousand clock cycles.

Question 2 (1pt each). Which of the following is a goal of formal verification in ensuring the correctness of a **router**? Choose all that apply.

- \Box a. A packet should not be duplicated.
- \Box b. A packet should not be dropped.
- \Box c. The delivery of a packet should be completed in a certain amount of time.
- \Box d. The data of a packet should not be corrupted.

Question 3 (1pt each). Which of the statements below is correct about the use of counters in ForEVeR? Choose all that apply.

 \Box a. A counter is increased when the router receives a notification packet.

 \Box b. A counter is decreased when the router sends a notification packet.

 \Box c. A counter's value is compared with zero at the end of every epoch.

 \Box d. A counter's value indicates the expected number of packets at each destination.

Question 4 (1pt each). Which one is correct about ForEVeR's detection accuracy? Choose all that apply.

 \Box a. False positives decrease as the check-epoch size increases.

 \Box b. False negatives increase as the check-epoch size increases.

 \Box c. A long check-epoch helps more in reducing false positives when the network is subjected to a high injection rate than when to a low injection rate.

 \Box d. Detection latency increases as the check-epoch size increases.

Paper: "Brisk and Limited-Impact NoC Routing Reconfiguration" by D. Lee, R. Parikh and V. Bertacco, DATE '14

Question 1 (2pts each). For each sentence, write "T" if it is true, or "F" if false.

(a) ____: The proposed reconfiguration process is used to recover from transient faults.

(b) ____: For a fault-free 8x8 mesh, spanning segments in a breadth-first search (BFS) fashion with a root node at the corner of the mesh results in more than 49 segments.

(c) ____: If we do not apply the segmentation algorithm after each fault occurrence, in the best case

scenario, BLINC can sustain one fault for each segment in the network.

(d) ____: BLINC uses a dedicated virtual channel to recover from deadlocks.

Question 2 (1pt each). Which one is correct about routing metadata? Choose all that apply.

 \Box a. Port types (parent, child and intra-segment) are assigned based on the hierarchical tree for the segmented network.

 \Box b. Each entry of the preference list indicates which input port is preferable to others.

 \Box c. For a 10x10 mesh, each router requires 400 bits to store children sets.

□ d. Routing metadata is generated through a software computation (*i.e.*, not in hardware).

Question 3 (1pt each). Which one is correct about the proposed online reconfiguration process? Choose all that apply.

 \Box a. The process enables emergency routes, and disables invalid routes from routing tables.

 \Box b. The reconfiguration process always impacts all routers in the network.

 \Box c. The emergency routes are often non-minimal and thus non-optimal.

□ d. Reconfiguration messages are delivered via a dedicated recovery network.

Question 4 (1pt each). Which one is correct about the application of BLINC that is discussed in Section IV-B of the paper ("Uninterrupted Availability with BLINC")? Choose all that apply.

 \Box a. BLINC minimally increases packet latency even with an extremely aggressive testing scenario (*e.g.*, 100% testing rate) compared to the "Stall" solution described in the paper.

 \Box b. BLINC can deliver packets even using links that are currently changing their routing metadata during reconfiguration.

 \Box c. The goal of the aggressive testing is to predict upcoming faults in advance of their occurrence.

 \Box d. The proposed aggressive testing switches routers off, one router at a time.

Paper: "ARIADNE: Agnostic Reconfiguration In A Disconnected Network Environment" by K. Aisopos, A. DeOrio, L.-S. Peh and V. Bertacco, PACT '11

Question 1 (2pts each). For each sentence, write "T" if it is true, or "F" if false.

(a) ____: Upon detection of a fault occurrence, a controller that monitors all network components triggers a routing reconfiguration.

(b) ____: ARIADNE uses logic-based route-computation hardware, but not routing tables.

(c) ____: ARIADNE allows only one output direction for a packet.

(d) ____: A root node is more likely to experience traffic congestion than a leaf node.

Question 2 (4pts). How long does ARIADNE take to reconfigure a 4x4 mesh network? Choose one.

 \Box a. 16 cycles.

 \Box b. 64 cycles.

 \Box c. 256 cycles.

 \Box d. 1024 cycles.

Question 3 (4pts). How does ARIADNE synchronize the transmission of flags during reconfiguration? Choose the option that best describes the process.

 \Box a. A centralized controller arbitrates the order of flag transmission, allowing only one node at a time. \Box b. Nodes are activated one-by-one, by increasing index order. (*i.e.*, Node 0 notifies its completion of transmission to node 1, node 1 notifies to node 2, etc.)

 \Box c. Each node waits for its turn based on a global cycle counter.

 \Box d. A node that detects a fault occurrence immediately starts broadcasting flags, notifying its neighbor node upon broadcasting completion, then the neighbor node starts broadcasting flags, etc.

Question 4 (1pt each). Which of the following route is NOT allowed? Choose all that apply.

 \Box a. A route from a "down" link to a "down" link.

 \Box b. A route from a "down" link to an "up" link.

 \Box c. A route from an "up" link to a "down" link.

 \Box d. A route from an "up" link to an "up" link.