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EECS578 – Prof. Bertacco           

Fall 2015 

 

EECS 578 – RSA mini-project 

Assigned: 11/04/15 – Due: 11/17/15 

1. Overview 

This mini-project focuses on the RSA (Rivest-Shamir-Adleman) cryptographic algorithm. The 

RSA algorithm is asymmetric, which means that there are two different keys: public and private 

keys. A public key is used when encrypting messages, and it can be distributed to everyone. A 

private key is used when decrypting messages, but it is never distributed to anyone. A pair of 

public and private keys are generated using two large prime numbers. While it is theoretically 

possible to derive a private key from a public key, this process, called brute-forcing, can take 

tremendous time when the prime numbers are sufficiently large: for instance in 2010 a team of 

research managed to brute-force a 768-bit RSA private key after 1,500 computer-years of effort. 

Nowadays, most RSA implementations use 1,024 bits or more. Thus, attackers often try to guess 

a private key by observing the running time during decryption. These attacks are called timing 

attacks. 

 

The key computation of the RSA decryption is a modular exponentiation. Here is an equation that 

computes the plaintext (M) from a ciphertext (C). 

𝑀 = 𝐶𝑑  mod 𝑛 
where n is the product of two prime numbers, and d is a secret key. 

 

In this mini-project, you need to evaluate a few implementations of modular exponentiation to 

determine if they are secure against timing attacks. We start with the simplest software 

implementation, and move to a sophisticated hardware implementation. 

 

If you would like to learn the RSA algorithm in detail, check: 

- https://simple.wikipedia.org/wiki/RSA_(algorithm) 

- Chapter 9 “Public-key Cryptography and RSA” of the book “Cryptography and Network 

Security” by William Stallings. 

2. Setting up for the mini-project 

In this mini-project, you need to compile and run (1) C++ code and (2) Verilog code. For the 

C++ code, you can use any machine you want, including your laptop. For the Verilog code, 

however, you need to run VCS in either a CAEN machine or the host oncampus-

course.engin.umich.edu. Note that this host is accessible only on campus. 

 

To get started with this mini-project, download the file mod_exp.tar.gz from the class 

website and copy it to a local directory in your engin account. Unzip the file; it will create a 

directory mod_exp. 

https://simple.wikipedia.org/wiki/RSA_(algorithm)
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3. Part 1: Software implementations 

If you go to a subdirectory sw in the directory mod_exp, you will find the file mod_exp.cpp 

that contains 4 different implementations of modular exponentiation: (1) a straightforward 

exponentiation (Section 3.1), (2) an exponentiation by squaring (square-and-multiply) (Section 

3.2), (3) an exponentiation by Montgomery modular multiplication, paired with square-and-

multiply (Section 3.3), and (4) another exponentiation by Montgomery modular multiplication, 

paired with Montgomery ladder (Section 4.3). You do not need to modify this file to complete the 

mini-project. 

 

To compile the source code, go to the directory mod_exp and 

make sw_impl  (or make) 

 

The above command will create the binary file mod_exp in the same directory. To run this binary, 

./mod_exp [input file] [method index] [repeat count] 

 

[input file] is a text file that contains a list of test vectors. Each test vector includes a base, 

an exponent and a modulus, separated by commas, and forms an exponentiation equation in the 

following: 𝑏𝑎𝑠𝑒𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 mod 𝑚𝑜𝑑𝑢𝑙𝑢𝑠. These numbers are unsigned 32-bit, and must be less 

than 232. Please see examples in the file input/sample.txt. [method index] is an integer 

indicating which method will be used for exponentiation. It can be one of the four methods in the 

following table. [repeat count] is a positive integer indicating how many times the 

exponentiation computation should be repeated. 

[method index] exponentiation method 

0 straightforward exponentiation 

1 exponentiation by squaring (square-and-multiply) 

2 exponentiation by Montgomery multiplication with square-and-multiply 

3 exponentiation by Montgomery multiplication with Montgomery ladder 

 

For instance, if you want to measure the total execution time of 10,000 executions of the 

straightforward exponentiation for test vectors in the file input/sample.txt, 

./mod_exp input/sample.txt 0 10000 

3.1. Straightforward method 

The most straightforward calculation is to multiply the base number repeatedly and then perform 

a modulo operation afterwards. However, this calculation possibly generates values that are too 

large, due to the repeated multiplications. Instead, we apply the modulo operation after every 

multiplication. 

 

 
(𝑏𝑎𝑠𝑒 × 𝑏𝑎𝑠𝑒 × ⋯ × 𝑏𝑎𝑠𝑒) mod 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 
= (((𝑏𝑎𝑠𝑒 × 𝑏𝑎𝑠𝑒 mod 𝑚𝑜𝑑𝑢𝑙𝑢𝑠) × 𝑏𝑎𝑠𝑒 mod 𝑚𝑜𝑑𝑢𝑙𝑢𝑠)  × ⋯ × 𝑏𝑎𝑠𝑒 mod 𝑚𝑜𝑑𝑢𝑙𝑢𝑠) 

 

The function straightforward() in the source code mod_exp.cpp performs an 

exponentiation following the above equation. 

 

exponent times 
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Question 1 (8pts). What is the total elapsed time for 10,000 executions of each test vector in the 

file input/sample.txt when using this straightforward method? Use the command: “make 

go0”. 

 

Question 2 (12pts). In the file input/question2.txt, create a set of 10 test vectors that can 

help reveal a secret exponent in this implementation. Briefly explain how you can guess the secret 

exponent with your test vectors. Report the total elapsed time of 10,000 executions for each of 

your test vectors. Use the command: “make q2”. 

3.2. Square-and-multiply algorithm 

The straightforward implementation in the previous subsection requires many multiplications 

depending on the exponent. The square-and-multiply algorithm, on the contrary, removes such 

repeated multiplications. Instead, this algorithm takes an iterative approach where each iteration 

corresponds to a bit of the exponent. The algorithm starts from the most significant bit, and moves 

to the least significant bit. At every iteration, it calculates a partial product by squaring the partial 

product obtained from the previous iteration, and then multiplies the partial product by the base 

number only if the current bit is 1. Below is a pseudocode of this algorithm. 

Question 3 (8pts). What is the total elapsed time for 10,000 executions of each test vector in the 

file input/sample.txt when using this square-and-multiply algorithm? Use the command: 

“make go1”. 

 

Question 4 (12pts). In the file input/question4.txt, create a set of 10 test vectors that can 

help reveal a secret exponent in this implementation. Briefly explain how you can guess the secret 

exponent with your test vectors. Report the total elapsed time of 10,000 executions for each of 

your test vectors. Use the command: “make q4”. 

3.3. Montgomery modular multiplication with square-and-multiply algorithm 

Montgomery modular multiplication is a fast modular-multiplication method that is widely used 

in cryptography. Its speed-up comes from the fact that it can replace the given modulus (e.g., 

0x12345678) with another one (e.g., 0x10000000) whose division and modular operation can be 

substituted with cheaper operations such as addition and multiplication. The below figure 

summarizes how it works, followed by brief descriptions for each step. 

function square_and_multiply(b, e)  // b: base, e: exponent (et-1 et-2 … e0)2 

    p  1 

    for j = t – 1 downto 0 do 

        p  p×p 

        if ej = 1 then 

            p  p×b 

    return p    // p = be 
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Step 1: Compute R-1, and N’. (This step is not shown in the figure.) 

To begin with, Montgomery modular multiplication needs a couple of extra values, which can be 

calculated from the original and new moduli (N and R). R must be chosen carefully so that these 

moduli are coprime. Using these moduli, we calculate the modular multiplicative inverse of R, 

called R-1 where R×R-1 ≡ 1 (mod N), using the extended Euclidean algorithm. Then, we calculate 

N’ that satisfies R×R-1 － N×N’= 1. 

 

Step 2: Convert multiplication operands into Montgomery form. 

We convert two operands in multiplication, a and b, into their Montgomery form, A and B. This 

transformation is done by the following equation. 

𝐴 = (𝑎 × 𝑅) mod 𝑁,  𝐵 = (𝑏 × 𝑅) mod 𝑁 

 

Step 3: Multiply the two transformed operands. T = A×B. (This step is not shown in the figure.) 

For your information, note that T is not equal to the product a × b in Montgomery form, because 

T = 𝐴 × 𝐵 = ((𝑎 × 𝑏) × 𝑅) × 𝑅 mod 𝑁 ≠ (𝑎 × 𝑏) × 𝑅 mod 𝑁. Thus, we need to multiply T by 

R-1 to remove the additional R in the equation, and we also need to perform a modulo operation to 

keep the product less than N. Fortunately, Montgomery reduction in the next step can reduce the 

product T into the Montgomery form without the modulo operation. 

 

Step 4: Perform Montgomery reduction. 

This step calculates the product of two operands in Montgomery form. It takes T from the previous 

step, and performs operations in the following pseudocode. Note that the two modulo operations 

and one division can be substituted with shift and logical operations. 

Step 5: Convert the product back to the original form. 

𝑝 = (𝑃 × 𝑅−1)mod 𝑁 

Note that the product p must be equal to (𝑎 × 𝑏) mod 𝑁. 

 

function REDC(T) 

    m  (T mod R)×N’ mod R 

    P  (T + m×N) / R 

    if P ≥ N then 

        return P – N 

    else 

        return P 



 5 

Montgomery multiplication example. In this example, we perform a multiplication of two 32-

bit integer operands: a=305,419,896 and b=2,271,560,481, with a 32-bit modulus 

N=4,292,870,399=65,519×65,521. Because a modulus can be as large as 232–1, R must be larger 

than 232–1. Let’s pick R=0x100000000=232 in this example. Note that R and N are coprime. 

Step 1: R-1=3,234,391,457 and N’=3,235,971,329. (Using the extended Euclidean algorithm, you 

can find R-1 where R×R-1≡1 (mod N), and you can also find N’ where R×R-1－N×N’= 1.) 

Step 2: A=2,193,187,897 and B=1,027,920,224. (A=a×R mod N, and B=b×R mod N.) 

Step 3: T=2,254,422,194,358,328,928. (T=A×B.) 

Step 4: P=3,794,497,757 (P=REDC(T).) 

Step 5: p=4,290,335,667 (p=P×R-1 mod N=a×b mod N.) 

 

In this mini-project, we pick R=0x100000000=232, and keep it fixed for all the problems below. 

Thus, be aware that you need to carefully choose N, so that (1) R and N do not share any common 

divisor except 1, and (2) N is less than R. 

 

Note: It is not required for you to understand details of the Montgomery modular multiplication in 

this mini-project. If you want to know more, please check: 

- The original paper: “Modular Multiplication without Trial Division” by P. Montgomery 

(http://www.jstor.org/stable/2007970). 

-  https://en.wikipedia.org/wiki/Montgomery_modular_multiplication 

 

Exponentiation using Montgomery modular multiplication. You can use the square-and-

multiply in Section 3.2 to perform the exponentiation in Montgomery form. To this end, you need 

to (1) convert a multiplier and a multiplicand into their Montgomery form, (2) perform 

Montgomery reduction, and (3) convert the result back to the original form, as shown in the 

following pseudocode. 

Question 5 (8pts). What is the total elapsed time for 10,000 executions of each test vector in the 

file input/sample.txt when using the Montgomery algorithm? Use the command: “make 

go2”. 

 

Question 6 (12pts). In the file input/question4.txt, create a set of 10 test vectors that can 

help reveal a secret exponent in this implementation. Briefly explain how you can guess the secret 

exponent with your test vectors. Report the total elapsed time of 10,000 executions for each of 

your test vectors. Use the command: “make q6”. 

function Montgomery_square_and_multiply(b, e) 

    B  Montgomery(b)   // b×R mod N (see Step 2) 

    P  Montgomery(1)   // 1×R mod N (see Step 2) 

    for j = t – 1 downto 0 do 

        P  REDC(P×P) 

        if ej = 1 then 

            P  REDC(P×B) 

    p  Montgomery-1(P)   // P×R-1 mod N (see Step 5) 

    return p    // p = be 

http://www.jstor.org/stable/2007970
https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
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4. Part 2: Hardware implementations 

In this part of the mini-project, you need to implement hardware modular-exponentiation modules. 

The hardware implementations should be secure against timing attacks. We provide (1) a Verilog 

source code for Montgomery multiplication (the steps 3 and 4 in Section 3.3), (2) a Verilog source 

code for unsecure Montgomery exponentiation using the square-and-multiply algorithm, and (3) 

Verilog testbenches for this source code. You can find the source code in the subdirectory rtl, 

and the testbenches in the subdirectory testbench. 

 

For Sections 4.1 and 4.2, you can compile the source code and the testbench using the following 

command. 

make simv_square (or  make simv) 

The above command generates a binary file simv. To run this binary, 

 make run_square (or   make run) 

 

In the testbench, the input file input/sample.txt is read line-by-line, and test vectors are fed 

into the exponentiation module one at a time, reporting the exponentiation result and the elapsed 

number of clock cycles in the terminal. Note that the testbench also performs an additional 

computation to create inputs suitable for the exponentiation module. For instance, it generates A, 

B, R-1 and N’. The exponentiation module performs computation only in the Montgomery domain. 

4.1. Unsecure square-and-multiply implementation 

The first hardware implementation is a hardware counterpart of Section 3.3 (Montgomery modular 

multiplication with the square-and-multiply algorithm). There are two Verilog files that will be 

used in this section: montgomery_mult.v and montgomery_exp_square.v. They can 

be found in the subdirectory rtl. 

 

The file montgomery_mult.v defines a combinational-logic module that performs 

Montgomery modular multiplication. This module takes the following inputs: two integers (A and 

B) in Montgomery form, a modulus (N), and an N’ (N_prime). It also uses a bit width defined in 

the file defines.vh, which is used to calculate R = 2bit width. Again, in this assignment, R is set 

to 232. This module has one output: the multiplication result (P). You do not need to modify this 

file to complete the mini-project. 

 

The file montgomery_exp_square.v defines a sequential-logic module that performs 

exponentiation using the square-and-multiply algorithm explained in Section 3.2. This module 

takes the following input signals: 

- base_mont: a base converted in Montgomery form. 

- exponent: an exponent. 

- N and N_prime: a modulus and its corresponding N’. 

- one_mont: the number 1 converted in Montgomery form. 

- start: a start signal. 

There are two output signals in this module: a finish signal (finish) and the exponentiation result 

(exp_result). 
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To check if this implementation is secure to timing attacks, you need to analyze the source code 

and measure the execution time for several test vectors in the file input/sample.txt. We 

provide a testbench test_montgomery_square.v that reads this file line-by-line, and 

performs exponentiation for each test vector, showing the elapsed time in the terminal. You do not 

need to modify the testbench to complete the mini-project. 

 

Question 7 (8pts). How many clock cycles does this implementation take for each test vector in 

the file input/sample.txt? 

 

Question 8 (8pts). Draw a state-transition diagram for the square-and-multiply exponentiation in 

the source code montgomery_exp_square.v. Note that there are four states: IDLE, 

SQUARE, MULT and FINISH. 

4.2. Securing the implementation of the square-and-multiply exponentiation 

From Question 7, you may have realized a way to guess the secret key (i.e., the exponent in the 

exponentiation) by measuring the elapsed time. In this section, you need to modify the previous 

implementation so that its execution time does not vary depending on the secret key. 

 

You should modify the file montgomery_exp_square.v. Please use the same file name in 

this section. (You might want to make a copy of the original file for your reference.) 

 

Question 9 (8pts). Provide a high-level explanation of how to secure the original implementation 

against timing attacks. Include your new state-transition diagram if you have changed it. (In this 

question, do not use the Montgomery ladder, which will be explained in Section 4.3.) 

 

Question 10 (8pts). Implement your secure module in Verilog. What is the execution time for each 

test vector in the file input/sample.txt? Your Verilog file should have the same name 

(montgomery_exp_square.v). Use only one Montgomery multiplier (i.e., the module 

montgomery_mult). 
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4.3. Implementing a Montgomery ladder 

In this section, you need to implement another hardware module that is also known to be secure 

against timing attacks, called Montgomery ladder. The Montgomery ladder is a method calculating 

exponentiation, which is similar to the square-and-multiplication algorithm. The difference is that 

the ladder always performs two Montgomery multiplications for every bit location. Also, its 

operands are more balanced than the square-and-multiplication algorithm. Here is a pseudocode. 

For your reference, you can also find a software implementation in the file mod_exp.cpp. 

If you want to learn more about the Montgomery ladder in the context of RSA, please check: “The 

Montgomery Powering Ladder” by M. Joye and S.-M. Yen 

(http://link.springer.com/chapter/10.1007%2F3-540-36400-5_22). 

 

We provide a skeleton Verilog file montgomery_exp_ladder.v that only contains 

definitions for inputs and outputs. You should modify this file to complete your implementation. 

We also provide a testbench test_montgomery_ladder.v that is similar to the previous 

testbench discussed in Section 4.1. 

 

You can compile the source code and the testbench using the following command. 
make simv_ladder 

The above command generates a binary file simv. To run this binary, 

 make run_ladder 

 

Question 11 (8pts). Implement your Montgomery ladder module in Verilog. What is the execution 

time for each test vector in the file input/sample.txt? Your Verilog file should have the 

name: montgomery_exp_ladder.v. Use only one Montgomery multiplier (i.e., the module 

montgomery_mult). You do not need to show a state diagram for this implementation. 

  

function Montgomery_ladder(b, e) 

    B  Montgomery(b) 

    P0  Montgomery(1) 

    P1  B 

    for j = t – 1 downto 0 do 

        if ej = 0 then 

            P1  REDC(P0×P1) 

            P0  REDC(P0×P0) 

        else 

            P0  REDC(P0×P1) 

            P1  REDC(P1×P1) 

    p  Montgomery-1(P0) 

    return p    // p = be 

http://link.springer.com/chapter/10.1007%2F3-540-36400-5_22
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5. How to submit 

You must use the answer sheet in the link: 

http://eecs.umich.edu/courses/eecs578/eecs578.f15/miniprojects/RSAproject/RSA_answer.doc 

 

To submit the project, follow the instructions on the submission webpage: 

http://eecs.umich.edu/courses/eecs578/submit 

 

You need to submit: 

(1) The answer sheet (RSA_answer.doc) 

(2) The test vector file for Question 2 (question2.txt) 

(3) The test vector file for Question 4 (question4.txt) 

(4) The test vector file for Question 6 (question6.txt) 

(5) The modified exponentiation module in Section 4.2 (montgomery_exp_square.v) 

(6) The Montgomery ladder module in Section 4.3 (montgomery_exp_ladder.v) 

 

Please create a single archive file that includes all the deliverables, and upload it to the submission 

webpage. We only accept the following file extensions: tar, gz, tgz, bz2 and zip. The file name 

will be automatically changed to your uniqname by the submission webpage. 

http://eecs.umich.edu/courses/eecs578/eecs578.f15/miniprojects/RSAproject/RSA_answer.doc
http://eecs.umich.edu/courses/eecs578/submit

