
SystemVerilog Assertions (SVA)
EZ-Start Guide
August 2006

 1995-2006 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this
document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 800.862.4522.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission statement,
this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or
distributed in any way, without prior written permission from Cadence. This statement grants you permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s customer
in accordance with, a written agreement between Cadence and its customer. Except as may be explicitly set
forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties
as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does
not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any
liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

SystemVerilog Assertions (SVA)
EZ-Start Guide

In general, there are three components to efficient verification: stimulus generation,
coverage, and checking. Cadence Design Systems, Inc. provides companion EZ-Start
packages for each of these three areas. The focus of this EZ-Start package and its
accompanying executable example is assertion-based verification (ABV). Specifically,
dynamic ABV simulation using the SystemVerilog assertion language (SVA).

This document is a self-guided introduction to using dynamic ABV and writing SVA. The
following sections describe the three major steps involved in ABV:
! Picking a focus area
! Identifying behavior and mapping to property types
! Implementing assertions

Picking a Focus Area
The first step in ABV is to pick a focus area for your assertions. In general, you want to start
with areas that are likely to contain bugs or that will benefit from additional visibility. For
example, the following lists areas that typically have a good ROI for assertions and,
therefore, represent good starting points for assertions.
! Interfaces between blocks
! Control logic that contains corner cases
! Critical functions within the design

Note: If the schedule permits, this list can be expanded to include other areas within the
design.

Identifying Behavior and Mapping to Property Types
After you choose a focus area, you can then identify interesting behavior within the focus
area and then express them in natural language form. Once you have expressed the
behavior in natural language form, you can map the behavior to various property types. A
property is a description of the functional behavior of signals over time. An assertion states
that a given property is an important aspect of the behavior of the design, and that the
design must behave consistently with this property. Writing assertions starts with defining
the properties of a design.

August 2006 1

SystemVerilog Assertions (SVA)
EZ-Start Guide

The following table lists questions that can help identify the different types of properties in a
design. Each of these questions map to a property type that can be used to create
templates for your assertions.

Table 1 Basic Questions and Property Types

Question Property Type

Are there signals that have a set behavior that
must occur independent of time?

Invariants

Are there signals that have a set behavior that
must occur within a certain time frame?

Bounded Invariants

Does the design contain boundary conditions
that must trigger a set behavior?

Boundary Cases

Are there ways to specify values or sequences
that would describe an error condition?

Bug Identification

Is the behavior of certain signals critical to the
functionality of the design?

Signal Values

Note: Although this set of questions is not exhaustive, it is a good starting point for
developing assertions.

The following sections describe each of these property types.

Invariants

An invariant is a condition that must always (or never) occur. Invariants are one of the
easier property types to describe, because they do not involve time. Examples of invariants
are:
! One-hot signals
! Boolean conditions that must always occur, or never occur
! Special cases where an object must hold true, given a particular condition

Bounded Invariants

A bounded invariant is a condition that must be invariant during a bounded period of time.
Most often there are signals within the register transfer level (RTL) that can help identify
this window of time. Otherwise, you can use auxiliary code to create a start and end signal
that will identify this window and improve readability.

August 2006 2

SystemVerilog Assertions (SVA)
EZ-Start Guide

Boundary Cases

Bugs often hide in boundary cases. You can develop an assertion that ensures a boundary
condition produces the expected behavior.

Bug Identification

Bug identification assertions describe behavior that must never occur in a design. The
advantage of this type of assertion, opposed to describing behavior that must happen, is
that RTL code does not get duplicated, which is usually a concern when you are writing
RTL assertions.

Signal Values

One of the most basic ways to describe a signal’s behavior is to identify when the signal:
! Must have a value of 0 or 1
! Transitions from 0 to 1, and from 1 to 0
! Retains its current value
! Changes value

If this can be done without duplicating the RTL (or by a person other than the designer),
then this is the most complete way to develop an assertion. This technique might be best
for critical signals.

Implementing Assertions
Now that you have selected your focus areas, extracted interesting behavior, translated
that behavior into natural language form, and mapped the behavior to the various property
types, you can express these property types in actual SVA syntax. Before doing this, you
need to understand some basic SVA syntax.

Basic SVA Syntax

This section uses a sample Signal Value assertion to illustrate the fundamental SVA
constructs.

The following assertion is derived from the following natural-language statement: “If there is
a rising edge on the request, then a grant must be issued within 1 to 3 cycles.”

August 2006 3

SystemVerilog Assertions (SVA)
EZ-Start Guide

1.

2.

3.
4.
5.

Figure 1 Sample Signal Value Assertion

You can then break down the example into the following:

Assertion Label—Identifies the assertion. This is used for reports and debugging.
(required)
Directive— Specifies how the assertion is used during the verification process--as an
assertion or constraint, or for collecting coverage information (required)
Clocking—Indicates how or when the signals in the assertion are sampled (required)
Disabling Condition—Disables the assertion during certain conditions (optional)
Property Expressions (required)

a. System Functions—Indicates one of the SVA system functions that are used to
automate some common operations. For example: $rose, $fell, $past, and
$onehot. Refer to the “Writing SystemVerilog Assertions” chapter of the Assertion
Writing Guide for information on the SVA system and sampled-value functions that
are supported in the current release.

b. Implication Operator (|-> or |=>)—Specifies that the behavior defined on the right-
hand side of the operator be checked only if the condition on the left-hand side
occurs. There are two forms of the implication operator: overlapping (|->) and non-
overlapping (|=>).

The overlapping operator indicates that the last cycle of the LHS sequence
overlaps the first cycle of the RHS sequence.

The non-overlapping operator indicates that there is no overlap and that the first
cycle of the RHS sequence must occur one cycle after the LHS sequence
completes.

assert_example : assert property (@(posedge clk)

 disable iff(rst_n) ($rose(req) |=> ##[1:3] gnt));

 1 2 3

a 4 b c d 9

5

August 2006 4

SystemVerilog Assertions (SVA)
EZ-Start Guide

6.

Note: When you are trying to capture an assertion in the standard written form,
the implication operator typically maps to the word “then”.

c. Cycle Operator (##)—Distinguishes between cycles of a sequence. Cycles are
relative to the clock defined in the clocking statement. Use a fixed number (##n) to
specify a specific delay or a range operator (as specified in the next sub-bullet) to
specify a range.

d. Non-consecutive repetition operator ([*])—Enables the repetition of signals. Use
the form [*n] to represent a fixed repetition, or [*n:m]to specify a range of
repetition from n to m. You can also apply the range operator to the cycle
operator.

End of Statement Delimiter—Indicates the end of an assertion (required)

Implementing Property Types
You can leverage the syntax described in the previous section to create templates for each
of the property types discussed earlier. The following table maps the different property
types to SVA constructs that you can use in property expressions.

Note: This table suggests SVA syntax that can be used in property expressions. This table
does not cover the other aspects on an assertion, which were discussed in the previous
section (such as assertion labels, directives, clocking, disabling conditions, and so on).

Table 2 Property Types and SVA Syntax

Question Property Type Useful SVA Syntax

Invariant (onehot) $onehot(), $onehot0()

Invariant (Illegal
Combinations)

! (Boolean condition)

Are there signals that
are supposed to
behave a certain way
independent of time?

Invariant
(Special Cases)

(special case) |-> (expected behavior)
(special case) |=> (expected behavior)

Are there signals that
are supposed to
behave a certain way
within some window
of time?

Bounded
Invariants

(start) |-> ((!finish && cond)[*n:m] ##1
finish && cond)
(start) |-> ((!finish && cond)[*n:m] ##1
finish)
(start && !finish) |=> ((!finish &&
cond)[*n:m] ##1 finish)

Note: ##1 indicates a delimiter—not a 1-cycle
delay

August 2006 5

SystemVerilog Assertions (SVA)
EZ-Start Guide

Are there any
boundary conditions
in the design in which
some behavior needs
to be exhibited when
that condition is
reached?

Boundary Cases (boundary case sequence) |-> (expected
sequence)

Are there ways to
describe values or
sequences that would
describe an error
condition?

Bug Identification Not (sequence)

Are there signals that
are critical to the
functionality of the
design?

Signal Values (condition |=> $rose(sig))

(condition |=> $fell(sig))

(condition |=> sig == $past(sig))

(condition |=> sig != $past(sig))

Arbiter Example
You can now apply this ABV process to the arbiter example described in the Arbiter
Specification,.which is included with this document. The arbiter example is typically a very
good focus area for assertions, because it is control logic that often contains many corner
case conditions.

Mapping the Behavior

The following lists arbiter example’s interesting behavior and maps this behavior to the
various property types.

Table 3 Arbiter Behavior Mapping

Behavior Property Type

Grant signals are zero one hot. Invariant

Once granted, the Busy signal must be
asserted until Done.

Bounded invariant

The arbiter must be fair for B. Boundary Cases

August 2006 6

SystemVerilog Assertions (SVA)
EZ-Start Guide

You must never see a GntB, when only ReqA
is asserted.

Bug Identification

Busy must be asserted one cycle after a
grant.

Signal Values

Creating the Assertion Syntax

After you map the behavior to a property type (Table 3), you can create the actual syntax
for the assertion.

! Invariant—Grant signals are zero one hot.
assert_grant_zeroonehot : assert property (@(posedge clk)

disable iff (!ResetN) $onehot0({GntA, GntB}));

! Bounded invariant: Once granted, the Busy signal must be asserted until Done.
assert_Busy_until_Done : assert property (@(posedge clk)
disable iff (!ResetN) (GntA || GntB) |=> Busy[*0:$] ##1 Busy && Done);

! Boundary cases—The arbiter should be fair for B.
assert_fair_for_B : assert property (@(posedge clk) disable iff
 (!ResetN)(GntA ##1 Busy[*0:$] ##1 Done&&ReqA&&ReqB |=> GntB));

! Bug identification—You must never see a GntB, when only ReqA is asserted.
assert_never_grant_wo_req : assert property (@(posedge clk)

disable iff (!ResetN) not (ReqA && !ReqB ##1 GntB));

! Signal values—Busy must be asserted one cycle after a grant.
assert_Busy_active : assert property (@(posedge clk)

disable iff (!ResetN) (GntA || GntB) |=> $rose(Busy));

Running the Assertions in the Simulator

Use the following steps to run these assertions in the Incisive Design Team Simulator:

1.

2.

3.

Go to the directory that contains the arbiter example:
cd <example_install_dir>/ius

Use the following command to run the example:
run_sim

In the console window, observe that the assertion –summary command shows that
all the assertions have been executed, but one assertion fails.

From the toolbar, click the Assertion Browser button . The Assertion Browser
displays a flat list of all of the assertions in a design and provides the assertion’s name,

August 2006 7

SystemVerilog Assertions (SVA)
EZ-Start Guide

4.

5.

6.

module, instance, class, finished count, failed count, and so on. The assertions are
listed in table format.

Double-click any assertion. This displays the source code for the assertion. Notice how
the assertions are embedded directly into the arbiter RTL file.

Close the Source Browser.

Select the assert_fair_for_B assertion. Add it to the waveform by selecting it and

clicking on the Waveform button from the toolbar.

Note: The waveform displays the state of the given assertion. The red circle indicates
where the assertion fails and represents the starting point for debug.

7. Using the steps discussed in this document and in the arbiter specification, you can add

more assertions to the <example install dir>/rtl/arbiter.v file and rerun.

Conclusion
Through the course of this document, you have been exposed to an ABV process that uses
SVA. This includes picking focus areas for assertions, identifying properties that are
characteristic to the design, implementing assertions using SVA, and viewing assertions in
a real example. After completing these steps, you can try implementing SVA in your own
designs.

August 2006 8

