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Section 17 
Assertions

17.1 Introduction (informative)

SystemVerilog adds features to specify assertions of a system. An assertion specifies a behavior of the system.
Assertions are primarily used to validate the behavior of a design. In addition, assertions can be used to pro-
vide functional coverage and generate input stimulus for validation. 

There are two kinds of assertions: concurrent and immediate.

— Immediate assertions follow simulation event semantics for their execution and are executed like a state-
ment in a procedural block. Immediate assertions are primarily intended to be used with simulation. 

— Concurrent assertions are based on clock semantics and use sampled values of variables. One of the goals
of SystemVerilog assertions is to provide a common semantic meaning for assertions so that they can be
used to drive various design and verification tools. Many tools, such as formal verification tools, evaluate
circuit descriptions using cycle-based semantics, which typically relies on a clock signal or signals to drive
the evaluation of the circuit. Any timing or event behavior between clock edges is abstracted away. Con-
current assertions incorporate these clock semantics. While this approach generally simplifies the evalua-
tion of a circuit description, there are a number of scenarios under which this cycle-based evaluation
provides different behavior from the standard event-based evaluation of SystemVerilog. 

This section describes both types of assertions.  

17.2 Immediate assertions

The immediate assertion statement is a test of an expression performed when the statement is executed in the
procedural code. The expression is non-temporal and is interpreted the same way as an expression in the con-
dition of a procedural if statement. That is, if the expression evaluates to X, Z or 0, then it is interpreted as
being false and the assertion is said to fail. Otherwise, the expression is interpreted as being true and the asser-
tion is said to pass. 

The immediate assert statement is a statement_item and can be specified anywhere a procedural statement is
specified.

 

Syntax 17-1—Immediate assertion syntax (excerpt from Annex A)

The action_block specifies what actions are taken upon success or failure of the assertion. The statement asso-
ciated with the success of the assert statement is the first statement. It is called the pass statement and is exe-
cuted if the expression evaluates to true. The pass statement can, for example, record the number of successes
for a coverage log, but can be omitted altogether. If the pass statement is omitted, then no user-specified action
is taken when the assert expression is true. The statement associated with else is called a fail statement and is
executed if the expression evaluates to false. The else statement can also be omitted. The action block is exe-
cuted immediately after the evaluation of the assert expression. 

procedural_assertion_statement ::= 
... 
| immediate_assert_statement 

immediate_assert_statement ::= 
assert ( expression ) action_block 

action_block ::= 
statement _or_null 

| [ statement ] else statement 

// from Annex A.6.10

// from Annex A.6.3
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The optional statement label (identifier and colon) creates a named block around the assertion statement (or
any other SystemVerilog statement) and can be displayed using the %m format specification.

assert_foo : assert(foo) $display("%m passed"); else $display("%m failed");

Note: The assertion control system tasks are described in Section 23.9.

Since the assertion is a statement that something must be true, the failure of an assertion shall have a severity
associated with it. By default, the severity of an assertion failure is error. Other severity levels can be specified
by including one of the following severity system tasks in the fail statement:

— $fatal is a run-time fatal.

— $error is a run-time error. 

— $warning is a run-time warning, which can be suppressed in a tool-specific manner.

— $info indicates that the assertion failure carries no specific severity.

The syntax for these system tasks is shown in Section 23.8.

If an assertion fails and no else clause is specified, the tool shall, by default, call $error, unless a tool-spe-
cific option, such as a command-line option, is enabled to suppress the failure.

All of these severity system tasks shall print a tool-specific message indicating the severity of the failure, and
specific information about the specific failure, which shall include the following information:

— The file name and line number of the assertion statement.

— The hierarchical name of the assertion, if it is labeled, or the scope of the assertion if it is not labeled.

For simulation tools, these tasks shall also include the simulation run-time at which the severity system task is
called.

Each system task can also include additional user-specified information using the same format as the Verilog
$display. 

If more than one of these system tasks is included in the else clause, then each shall be executed as specified.

If the severity system task is executed at a time other than when the assertion fails, the actual failure time of the
assertion can be recorded and displayed programmatically. For example:

time t;

always @(posedge clk)
if (state == REQ)

assert (req1 || req2)
else begin 

t = $time;
#5 $error("assert failed at time %0t",t);

end 

If the assertion fails at time 10, the error message shall be printed at time 15, but the user-defined string printed
shall be “assert failed at time 10”.

The display of messages of warning and info types can be controlled by a tool-specific option, such as a com-
mand-line option.

Since the fail statement, like the pass statement, is any legal SystemVerilog procedural statement, it can also be
used to signal a failure to another part of the testbench.

assert (myfunc(a,b)) count1 = count + 1; else ->event1;
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assert (y == 0) else flag = 1;

17.3 Concurrent assertions overview

Concurrent assertions describe behavior that spans over time. Unlike immediate assertions, the evaluation
model is based on a clock such that a concurrent assertion is evaluated only at the occurrence of a clock tick.
The values of variables used in the evaluation are the sampled values. This way, a predictable result can be
obtained from the evaluation, regardless of the simulator’s internal mechanism of ordering events and evaluat-
ing events. This model of execution also corresponds to the synthesis model of hardware interpretation from an
RTL description. 

The values of variables used in assertions are sampled in the Preponed region of a time slot and the assertions
are evaluated during the Observe region. This is explained in Section 14, Scheduling Semantics.

The timing model employed in a concurrent assertion specification is based on clock ticks and uses a general-
ized notion of clock cycles. The definition of a clock is explicitly specified by the user and can vary from one
expression to another. 

A clock tick is an atomic moment in time that itself spans no duration of time. A clock shall tick only once at
any simulation time and the sampled values for that simulation time are used for evaluation of concurrent
assertions. In an assertion, the sampled value is the only valid value of a variable at a clock tick. Figure 17-1
shows the values of a variable as the clock progresses. The value of signal req is low at clock ticks 1 and 2.
At clock tick 3, the value is sampled as high and remains high until clock tick 6. The sampled value of variable
req at clock tick 6 is low and remains low until clock tick 10. Notice that the simulation value transitions to
high at clock tick 9. However, the sampled value at clock tick 9 is low. 

Figure 17-1 — Sampling a variable on simulation ticks

An expression used in an assertion is always tied to a clock definition. The sampled values are used to evaluate
value change expressions or boolean subexpressions that are required to determine a match of a sequence.

Note:

— It is important to ensure that the defined clock behavior is glitch free. Otherwise, wrong values can be sam-
pled. 

— If a variable that appears in the expression for clock also appears in an expression with an assertion, the
values of the two usages of the variable can be different. The current value of the variable is used in the
clock expression, while the sampled value of the variable is used within the assertion.

The clock expression that controls evaluation of a sequence can be more complex than just a single signal
name. Expressions such as (clk && gating_signal) and (clk iff gating_signal) can be used to
represent a gated clock. Other more complex expressions are possible. However, in order to ensure proper
behavior of the system and conform as closely as possible to truly cycle-based semantics, the signals in a clock
expression must be glitch-free and should only transition once at any simulation time. 

An example of a concurrent assertion is:

base_rule1: assert property (cont_prop(rst,in1,in2)) pass_stat else fail_stat;

1 2 3 4 5 6 7 8 9 10 11 12 13 14clock ticks

req

simulation
ticks
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The keyword property distinguishes a concurrent assertion from an immediate assertion. The syntax of con-
current assertions is discussed in 17.13.

17.4 Boolean expressions

The expressions used in sequences are evaluated over sampled values of the variables that appear in the
expressions. The outcome of the evaluation of an expression is boolean and is interpreted the same way as an
expression is interpreted in the condition of a procedural if statement. That is, if the expression evaluates to X,
Z, or 0, then it is interpreted as being false. Otherwise, it is true.

There are certain restrictions on the expressions that can appear in concurrent assertions. The restrictions on
operand types, variables, and operators are specified in the following sections.

Expressions are allowed to include function calls, but certain semantic restrictions are imposed.

— Functions that appear in expressions cannot contain output or ref arguments (const ref are allowed).

— Functions should be automatic (or preserve no state information) and have no side effects.

17.4.1 Operand types

The following types are not allowed: 

— non-integer types (shortreal, real and realtime) 

— string 

— event 

— chandle 

— class 

— associative arrays

— dynamic arrays

Fixed size arrays, packed or unpacked, can be used as a whole or as part selects or as indexed bit or part
selects. The indices can be constants, parameters, or variables. 

The following example shows some possible forms of comparison of members of structures and unions:

typedef int [4] array;
typedef struct { int a, b, c,d } record;
union { record r; array a; } p, q; 

The following comparisons are legal in expressions:

p.a == q.a

and

p.r == q.r

The following example provides further illustration of the use of arrays in expressions.

logic [7:0] arrayA [0:15], arrayB[0:15];

The following comparisons are legal:

arrayA == arrayB; 
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arrayA != arrayB;
arrayA[i] >= arrayB[j]; 
arrayB[i][j+:2] == arrayA[k][m-:2];
(arrayA[i] & (~arrayB[j])) == 0;

17.4.2 Variables

The variables that can appear in expressions must be static design variables or function calls returning values
of types described in Section 17.4.1. Static variables declared in programs, interfaces or clocking blocks can
also be accessed. If a reference is to a static variable declared in a task, that variable is sampled as any other
variable, independent of calls to the task. 

17.4.3 Operators

All operators that are valid for the types described in Section 17.4.1 are allowed with the exception of assign-
ment operators and increment and decrement operators. SystemVerilog includes the C assignment operators,
such as +=, and the C increment and decrement operators, ++ and --. These operators cannot be used in expres-
sions that appear in assertions. This restriction prevents side effects.
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17.5 Sequences
  

Syntax 17-2—Sequence syntax (excerpt from Annex A)

sequence_expr ::= 
cycle_delay_range sequence_expr { cycle_delay_range sequence_expr }

| sequence_expr cycle_delay_range sequence_expr { cycle_delay_range sequence_expr }
| expression_or_dist [ boolean_abbrev ] 
| ( expression_or_dist {, sequence_match_item } ) [ boolean_abbrev ] 
| sequence_instance [ sequence_abbrev ] 
| ( sequence_expr {, sequence_match_item } ) [ sequence_abbrev ] 
| sequence_expr and sequence_expr 
| sequence_expr intersect sequence_expr 
| sequence_expr or sequence_expr 
| first_match ( sequence_expr {, sequence_match_item} ) 
| expression_or_dist throughout sequence_expr 
| sequence_expr within sequence_expr 
| clocking_event sequence_expr 

cycle_delay_range ::= 
## integral_number 

| ## identifier 
| ## ( constant_expression ) 
| ## [ cycle_delay_const_range_expression ] 

sequence_match_item ::= 
operator_assignment 

| inc_or_dec_expression 
| subroutine_call 

sequence_instance ::= 
ps_sequence_identifier [ ( [ actual_arg_list ] ) ] 

actual_arg_list ::= 
actual_arg_expr { , actual_arg_expr } 

| . formal_identifier ( actual_arg_expr ) { , . formal_identifier ( actual_arg_expr ) } 
actual_arg_expr ::= 

event_expression 
| $ 

boolean_abbrev ::= 
consecutive_repetition 

| non_consecutive_repetition
| goto_repetition

sequence_abbrev ::= consecutive_repetition 
consecutive_repetition ::= [* const_or_range_expression ] 
non_consecutive_repetition ::= [= const_or_range_expression ] 
goto_repetition ::= [-> const_or_range_expression ] 
const_or_range_expression ::= 

constant_expression 
| cycle_delay_const_range_expression 

cycle_delay_const_range_expression ::= 
constant_expression : constant_expression 

| constant_expression : $ 
expression_or_dist ::= expression [ dist { dist_list } ] 

// from Annex A.2.10
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Properties are often constructed out of sequential behaviors. The sequence feature provides the capability to
build and manipulate sequential behaviors. The simplest sequential behaviors are linear. A linear sequence is a
finite list of SystemVerilog boolean expressions in a linear order of increasing time. The linear sequence is said
to match along a finite interval of consecutive clock ticks provided the first boolean expression evaluates to
true at the first clock tick, the second boolean expression evaluates to true at the second clock tick, and so
forth, up to and including the last boolean expression evaluating to true at the last clock tick. A single boolean
expression is an example of a simple linear sequence, and it matches at a single clock tick provided the bool-
ean expression evaluates to true at that clock tick. 

More complex sequential behaviors are described by SystemVerilog sequences. A sequence is a regular
expression over the SystemVerilog boolean expressions that concisely specifies a set of zero, finitely many, or
infinitely many linear sequences. If at least one of the linear sequences from this set matches along a finite
interval of consecutive clock ticks, then the sequence is said to match along that interval.

A property may involve checking of one or more sequential behaviors beginning at various times. An
attempted evaluation of a sequence is a search for a match of the sequence beginning at a particular clock tick.
To determine whether such a match exists, appropriate boolean expressions are evaluated beginning at the par-
ticular clock tick and continuing at each successive clock tick until either a match is found or it is deduced that
no match can exist.

Sequences can be composed by concatenation, analogous to a concatenation of lists. The concatenation speci-
fies a delay, using ##, from the end of the first sequence until the beginning of the second sequence. 

The following is the syntax for sequence concatenation.
 

Syntax 17-3—Sequence concatenation syntax (excerpt from Annex A)

In this syntax: 

— constant_expression is computed at compile time and must result in an integer value.

— constant_expression can only be 0 or greater.

— The $ token is used to indicate the end of simulation. For formal verification tools, $ is used to indicate a
finite, unbounded, range.

— When a range is specified with two expressions, the second expression must be greater or equal to the first
expression.

The context in which a sequence occurs determines when the sequence is evaluated. The first expression in a
sequence is checked at the first occurrence of the clock tick at or after the expression that triggered evaluation
of the sequence. Each successive element (if any) in the sequence is checked at the next subsequent occurrence
of the clock.

A ## followed by a number or range specifies the delay from the current clock tick to the beginning of the

sequence_expr ::= 
cycle_delay_range sequence_expr { cycle_delay_range sequence_expr }

| sequence_expr cycle_delay_range sequence_expr { cycle_delay_range sequence_expr }
... 

cycle_delay_range ::= 
## integral_number 

| ## identifier 
| ## ( constant_expression ) 
| ## [ cycle_delay_const_range_expression ] 

cycle_delay_const_range_expression ::= 
constant_expression : constant_expression 

| constant_expression : $ 

// from Annex A.2.10
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sequence that follows. The delay ##1 indicates that the beginning of the sequence that follows is one clock tick
later than the current clock tick. The delay ##0 indicates that the beginning of the sequence that follows is at
the same clock tick as the current clock tick.

When used as a concatenation between two sequences, the delay is from the end of the first sequence to the
beginning of the second sequence. The delay ##1 indicates that the beginning of the second sequence is one
clock tick later than the end of the first sequence. The delay ##0 indicates that the beginning of the second
sequence is at the same clock tick as the end of the first sequence.

The following are examples of delay expressions. ‘true is a boolean expression that always evaluates to true
and is used for visual clarity. It can be defined as: 

‘define true 1 

##0 a // means a
##1 a // means ‘true ##1 a 
##2 a // means ‘true ##1 ‘true ##1 a
##[0:3]a // means (a) or (‘true ##1 a) or (‘true ##1 ‘true ##1 a) or 

 (‘true ##1 ‘true ##1 ‘true ##1 a)
a ##2 b // means a ##1 ‘true ##1 b

The sequence:

req ##1 gnt ##1 !req

specifies that req be true on the current clock tick, gnt shall be true on the first subsequent tick, and req shall
be false on the next clock tick after that. The ##1 operator specifies one clock tick separation. A delay of more
than one clock tick can be specified, as in:

req ##2 gnt

This specifies that req shall be true on the current clock tick, and gnt shall be true on the second subsequent
clock tick, as shown in Figure 17-2.

Figure 17-2 — Concatenation of sequences

The following specifies that signal b shall be true on the Nth clock tick after signal a:

a ##N b // check b on the Nth sample

To specify a concatenation of overlapped sequences, where the end point of one sequence coincides with the
start of the next sequence, a value of 0 is used, as shown below.

a ##1 b ##1 c // first sequence seq1
d ##1 e ##1 f // second sequence seq2
(a ##1 b ##1 c) ##0 (d ##1 e ##1 f) // overlapped concatenation 

In the above example, c must be true at the endpoint of sequence seq1, and d must be true at the start of
sequence seq2. When concatenated with 0 clock tick delay, c and d must be true at the same time, resulting in
a concatenated sequence equivalent to:

clk
req
gnt

s0 s1 s2
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a ##1 b ##1 c&&d ##1 e ##1 f

It should be noted that no other form of overlapping between the sequences can be expressed using the concat-
enation operation.

In cases where the delay can be any value in a range, a time window can be specified as follows:

req ##[4:32] gnt

In the above case, signal req must be true at the current clock tick, and signal gnt must be true at some clock
tick between the 4th and the 32nd clock tick after the current clock tick. 

The time window can extend to a finite, but unbounded, range by using $ as in the example below.

req ##[4:$] gnt

A sequence can be unconditionally extended by concatenation with ‘true. 

a ##1 b ##1 c ##3 ‘true

After satisfying signal c, the sequence length is extended by 3 clock ticks. Such adjustments in the length of
sequences can be required when complex sequences are constructed by combining simpler sequences.

17.6 Declaring sequences

A sequence can be declared in

— a module 

— an interface 

— a program 

— a clocking block 

— a package 

— a compilation-unit scope 

Sequences are declared using the following syntax.:
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Syntax 17-4—Declaring sequence syntax (excerpt from Annex A)

The clocking_event specifies the clock for the sequence.

A sequence is declared with optional formal arguments. When a sequence is instantiated, actual arguments can
be passed to the sequence. The sequence gets expanded with the actual arguments by replacing the formal
arguments with the actual arguments. Semantic checks are performed to ensure that the expanded sequence
with the actual arguments is legal. 

An actual argument can replace an:

— identifier

— expression

— event control expression

— upper range as $ 

Note that variables used in a sequence that are not formal arguments to the sequence are resolved according to
the scoping rules from the scope in which the sequence is declared.

sequence s1;
@(posedge clk) a ##1 b ##1 c;

endsequence 
sequence s2;

@(posedge clk) d ##1 e ##1 f;
endsequence 
sequence s3;

@(negedge clk) g ##1 h ##1 i;
endsequence 

In this example, sequences s1 and s2 are evaluated on successive posedge events of clk. The sequence s3 is
evaluated on successive negedge events of clk.

Another example of sequence declaration, which includes arguments is shown below:

concurrent_assertion_item_declaration ::= 
... 
| sequence_declaration 

sequence_declaration ::= 
sequence sequence_identifier [ ( [ list_of_formals ] ) ] ; 

{ assertion_variable_declaration } 
sequence_expr ; 

endsequence [ : sequence_identifier ] 
sequence_instance ::= 

ps_sequence_identifier [ ( [ actual_arg_list ] ) ] 
actual_arg_list ::= 

actual_arg_expr { , actual_arg_expr } 
| . formal_identifier ( actual_arg_expr ) { , . formal_identifier ( actual_arg_expr ) } 

actual_arg_expr ::= 
event_expression 

| $ 
assertion_variable_declaration ::= 

data_type list_of_variable_identifiers ; 

// from Annex A.2.10
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sequence s20_1(data,en);
(!frame && (data==data_bus)) ##1 (c_be[0:3] == en);

endsequence 

Sequence s20_1 does not specify a clock. In this case, a clock would be inherited from some external source,
such as a property or an assert statement. A sequence can be referred to by its name. A hierarchical name
can be used, consistent with the SystemVerilog naming conventions. A sequence can be referenced in a prop-
erty, an assert statement, or a cover statement.

To use a named sequence as a subsequence of another sequence, simply reference its name. The evaluation of
a sequence that references a named sequence is performed in the same way as if the named sequence was con-
tained as a lexical part of the referencing sequence, with the formal arguments of the named sequence replaced
by the actual ones and the remaining variables in the named sequence resolved according to the scope of the
declaration of the named sequence. An example is shown below:

sequence s;
a ##1 b ##1 c;

endsequence 
sequence rule;

@(posedge sysclk)
trans ##1 start_trans ##1 s ##1 end_trans;

endsequence 

Sequence rule in the preceding example is equivalent to:

sequence rule;
@(posedge sysclk) 
trans ##1 start_trans ##1 a ##1 b ##1 c ##1 end_trans ;

endsequence 

Any form of syntactic cyclic dependency of the sequence names is disallowed. The example below illustrates
an illegal dependency of s1 on s2 and s2 on s1, because it creates a cyclic dependency.

sequence s1;
@(posedge sysclk) (x ##1 s2);

endsequence 
sequence s2;

@(posedge sysclk) (y ##1 s1);
endsequence 

17.7 Sequence operations

17.7.1 Operator precedence

Operator precedence and associativity are listed in Table 17-1, below. The highest precedence is listed first.

Table 17-1: Operator precedence and associativity

SystemVerilog expression operators Associativity 

[* ] [= ] [-> ] ---- 

## left 

throughout right

within left 
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17.7.2 Repetition in sequences

Following is the syntax for sequence repetition.

Syntax 17-5—Sequence repetition syntax (excerpt from Annex A)

The number of iterations of a repetition can either be specified by exact count or be required to fall within a
finite range. If specified by exact count, then the number of iterations is defined by a non-negative integer con-
stant expression. If required to fall within a finite range, then the minimum number of iterations is defined by a
non-negative integer constant expression and the maximum number of iterations is either defined by a non-
negative integer constant expression or is $, indicating a finite, but unbounded maximum.

If both the minimum and maximum numbers of iterations are defined by non-negative integer constant expres-
sions, then the minimum number must be less than or equal to the maximum number.

Three kinds of repetition are provided:

— consecutive repetition ( [* ): Consecutive repetition specifies finitely many iterative matches of the oper-
and sequence, with a delay of one clock tick from the end of one match to the beginning of the next. The
overall repetition sequence matches at the end of the last iterative match of the operand. 

— goto repetition ( [-> ): Goto repetition specifies finitely many iterative matches of the operand boolean
expression, with a delay of one or more clock ticks from one match of the operand to the next successive

intersect left

and left

or left

Table 17-1: Operator precedence and associativity

sequence_expr ::= 
...
| expression_or_dist [ boolean_abbrev ] 
| ( expression_or_dist {, sequence_match_item } ) [ boolean_abbrev ] 
| sequence_instance [ sequence_abbrev ] 
| ( sequence_expr {, sequence_match_item} ) [ sequence_abbrev ] 
... 

boolean_abbrev ::= 
consecutive_repetition 

| non_consecutive_repetition
| goto_repetition

sequence_abbrev ::= consecutive_repetition 
consecutive_repetition ::= [* const_or_range_expression ] 
non_consecutive_repetition ::= [= const_or_range_expression ] 
goto_repetition ::= [-> const_or_range_expression ] 
const_or_range_expression ::= 

constant_expression 
| cycle_delay_const_range_expression 

cycle_delay_const_range_expression ::= 
constant_expression : constant_expression 

| constant_expression : $ 

// from Annex A.2.10
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match and no match of the operand strictly in between. The overall repetition sequence matches at the last
iterative match of the operand. 

— non-consecutive repetition ( [= ): Non-consecutive repetition specifies finitely many iterative matches of
the operand boolean expression, with a delay of one or more clock ticks from one match of the operand to
the next successive match and no match of the operand strictly in between. The overall repetition sequence
matches at or after the last iterative match of the operand, but before any later match of the operand. 

The effect of consecutive repetition of a subsequence within a sequence can be achieved by explicitly iterating
the subsequence, as: 

a ##1 b ##1 b ##1 b ##1 c

Using the consecutive repetition operator [*3], which indicates 3 iterations, this sequential behavior is speci-
fied more succinctly: 

a ##1 b [*3] ##1 c

A consecutive repetition specifies that the operand sequence must match a specified number of times. The con-
secutive repetition operator [*N] specifies that the operand sequence must match N times in succession. For
example:

a [*3] means a ##1 a ##1 a 

Using 0 as the repetition number, an empty sequence results, as:

a [*0]

An empty sequence is one that does not match over any positive number of clocks. The following rules apply
for concatenating sequences with empty sequences. An empty sequence is denoted as empty and a sequence is
denoted as seq.

— (empty ##0 seq) does not result in a match

— (seq ##0 empty) does not result in a match

— (empty ##n seq), where n is greater than 0, is equivalent to (##(n-1) seq)

— (seq ##n empty), where n is greater than 0, is equivalent to (seq ##(n-1) 'true)

For example,

b ##1 ( a[*0] ##0 c) 

produces no match of the sequence.

b ##1 a[*0:1] ##2 c

is equivalent to

(b ##2 c) or (b ##1 a ##2 c)

The syntax allows combination of a delay and repetition in the same sequence. The following are both
allowed:

‘true ##3 (a [*3]) // means ‘true ##1 ‘true ##1 ‘true ##1 a ##1 a ##1 a 
(‘true ##2 a) [*3] // means (‘true ##2 a) ##1 (‘true ##2 a) ##1 

// (‘true ##2 a), which in turn means ‘true ##1 ‘true ##1
// a ##1 ‘true ##1 ‘true ##1 a ##1 ‘true ##1 ‘true ##1 a

A sequence can be repeated as follows:
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(a ##2 b) [*5]

This is the same as:

(a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b)

A repetition with a range of min minimum and max maximum number of iterations can be expressed with the
consecutive repetition operator [* min:max]. 

As an example, 

(a ##2 b)[*1:5] 

is equivalent to 

(a ##2 b)
or (a ##2 b ##1 a ##2 b) 
or (a ##2 b ##1 a ##2 b ##1 a ##2 b) 
or (a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b)
or (a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b)

Similarly, 

(a[*0:3] ##1 b ##1 c) 

is equivalent to 

(b ##1 c) 
or (a ##1 b ##1 c) 
or (a ##1 a ##1 b ##1 c) 
or (a ##1 a ##1 a ##1 b ##1 c) 

To specify a finite, but unbounded, number of iterations, the dollar sign ( $ ) is used. For example, the repeti-
tion:

a ##1 b [*1:$] ##1 c

matches over an interval of three or more consecutive clock ticks if a is true on the first clock tick, c is true on
the last clock tick, and b is true at every clock tick strictly in between the first and the last.

Specifying the number of iterations of a repetition by exact count is equivalent to specifying a range in which
the minimum number of repetitions is equal to the maximum number of repetitions. In other words, seq[*n]
is equivalent to seq[*n:n].

The goto repetition (non-consecutive exact repetition) takes a boolean expression rather than a sequence as
operand. It specifies the iterative matching of the boolean expression at clock ticks that are not necessarily con-
secutive and ends at the last iterative match. For example,

a ##1 b [->2:10] ##1 c

matches over an interval of consecutive clock ticks provided a is true on the first clock tick, c is true on the last
clock tick, b is true on the penultimate clock tick, and, including the penultimate, there are at least 2 and at
most 10 not-necessarily-consecutive clock ticks strictly in between the first and last on which b is true. This
sequence is equivalent to:

a ##1 ((!b[*0:$] ##1 b) [*2:10]) ##1 c

The non-consecutive repetition is like the goto repetition except that a match does not have to end at the last
iterative match of the operand boolean expression. The use of non-consecutive repetition instead of goto repe-
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tition allows the match to be extended by arbitrarily many clock ticks provided the boolean expression is false
on all of the extra clock ticks. For example,

a ##1 b [=2:10] ##1 c

matches over an interval of consecutive clock ticks provided a is true on the first clock tick, c is true on the last
clock tick, and there are at least 2 and at most 10 not-necessarily-consecutive clock ticks strictly in between the
first and last on which b is true. This sequence is equivalent to:

a ##1 ((!b [*0:$] ##1 b) [*2:10]) ##1 !b[*0:$] ##1 c

17.7.3 Sampled value functions

This section describes the system functions available for accessing sampled values of an expression. These
functions include the capability to access current sampled value, access sampled value in the past, or detect
changes in sampled value of an expression. Sampling of an expression is explained in Section 17.3. The fol-
lowing functions are provided. 

$sampled(expression [, clocking_event]) 

$rose( expression [, clocking_event])

$fell( expression [, clocking_event])

$stable( expression [, clocking_event])

$past( expression1 [, number_of_ticks] [, expression2] [, clocking_event]) 

The use of these functions is not limited to assertion features; they can be used as expressions in procedural
code as well. The clocking event, although optional as an explicit argument to the functions, is required for
their semantics. The clocking event is used to sample the value of the argument expression.

The clocking event must be explicitly specified as an argument, or inferred from the code where it is used. The
following rules are used to infer the clocking event:

— if used in an assertion, the appropriate clocking event from the assertion is used.

— if used in an action block of a singly-clocked assertion, the clock of the assertion is used.

— if used in a procedural block, the inferred clock, if any, for the procedural code (Section 17.13.5) is used.

Otherwise, default clocking (Section 15.11) is used.

When these functions are used in an assertion, the clocking event argument of the functions, if specified, shall
be identical to the clocking event of the expression in the assertion. In the case of multi-clock assertion, the
appropriate clocking event for the expression where the function is used, is applied to the function.

Function $sampled returns the sampled value of the expression with respect to the last occurrence of the
clocking event. When $sampled is invoked prior to the occurrence of the first clocking event, the value of X
is returned. The use of $sampled in assertions, although allowed, is redundant, as the result of the function is
identical to the sampled value of the expression itself used in the assertion.

Three functions are provided to detect changes in sampled values: $rose, $fell and $stable.

A value change function detects the change in the sampled value of an expression. The clocking event is used
to obtain the sampled value of the argument expression at a clock tick prior to the current simulation time unit.
Here, the current simulation time unit refers to the simulation time unit in which the function is evaluated. This
sampled value is compared against the value of the expression determined at the prepone time of the current
simulation time unit. The result of a value change expression is true or false and can be used as a boolean
expression.
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$rose returns true if the least significant bit of the expression changed to 1. Otherwise, it returns false.

$fell returns true if the least significant bit of the expression changed to 0. Otherwise, it returns false.

$stable returns true if the value of the expression did not change. Otherwise, it returns false.

When these functions are called at or before the first clock tick of the clocking event, the results are computed
by comparing the current sampled value of the expression to X.

Figure 17-3 illustrates two examples of value changes:

— Value change expression e1 is defined as $rose(req) 

— Value change expression e2 is defined as $fell(ack) 

Figure 17-3 — Value change expressions

The clock ticks used for sampling the variables are derived from the clock for the property, which is different
from the simulation ticks. Assume, for now, that this clock is defined elsewhere. At clock tick 3, e1 occurs
because the value of req at clock tick 2 was low and at clock tick 3, the value is high. Similarly, e2 occurs at
clock tick 6 because the value of ack was sampled as high at clock tick 5 and sampled as low at clock tick 6.

The example below illustrates the use of $rose in SystemVerilog code outside assertions.

always @(posedge clk)
reg1 <= a & $rose(b);

In this example, the clocking event (posedge clk) is applied to $rose. $rose is true whenever the sampled
value of b changed to 1 from its sampled value at the previous tick of the clocking event.

In addition to accessing value changes, the past values can be accessed with the $past function. The follow-
ing three optional arguments are provided:

expression2 is used as a gating expression for the clocking event

number_of_ticks specifies the number of clock ticks in the past

clocking_event specifies the clocking event for sampling expression1

expression1 and expression2 can be any expression allowed in assertions.

number_of_ticks must be one or greater. If number_of_ticks is not specified, then it defaults to 1. $past
returns the sampled value of the expression that was present number_of_ticks prior to the time of evaluation of
$past. A clock tick is based on clocking_event. If the specified clock tick in the past is before the start of sim-
ulation, the returned value from the $past function is a value of X.

1 2 3 4 5 6 7 8 9 10 11 12 13 14clock ticks

req

ack

e1

simulation

e2

ticks
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The optional argument clocking_event specifies the clock for the function. The rules governing the usage of
clocking_event are same as those described for the value change function.

When intermediate optional arguments between two arguments are not needed, a comma must be placed for
each omitted argument. For example,

$past(in1, , enable);

Here, a comma is specified to omit number_of_ticks. The default of one is used for the empty number_of_ticks
argument. Note that a comma for the omitted clocking_event argument is not needed, as it does not fall within
the specified arguments.

$past can be used in any System Verilog expression. An example is shown below.

always @(posedge clk)
reg1 <= a & $past(b);

In this example, the clocking event (posedge clk) is applied to $past. $past is evaluated in the current
occurrence of (posedge clk), and returns the value of b sampled at the previous occurrence of (posedge
clk).

When expression2 is specified, the sampling of expression1 is performed based on its clock gated with
expression2. For example,

always @(posedge clk)
if (enable) q <= d;

always @(posedge clk)
assert (done |=> (out == $past(q, 2,enable)) ;

In this example, the sampling of q for evaluating $past is based on the clocking expression

posedge clk iff enable

17.7.4 AND operation

The binary operator and is used when both operands are expected to match, but the end times of the operand
sequences can be different.

Syntax 17-6—and operator syntax (excerpt from Annex A)

The two operands of and are sequences. The requirement for the match of the and operation is that both the
operands must match. The operand sequences start at the same time. When one of the operand sequences
matches, it waits for the other to match. The end time of the composite sequence is the end time of the operand
sequence that completes last. 

When te1 and te2 are sequences, then the composite sequence:

te1 and te2

— Matches if te1 and te2 match.

— The end time is the end time of either te1 or te2, whichever matches last.

sequence_expr ::= 
...
| sequence_expr and sequence_expr

// from Annex A.2.10
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The following example is a sequence with operator and, where the two operands are sequences. 

(te1 ##2 te2) and (te3 ##2 te4 ##2 te5)

Figure 17-4 — ANDing (and) two sequences

The operation as illustrated in Figure 17-4 shows the evaluation attempt at clock tick 8. Here, the two operand
sequences are (te1 ##2 te2) and (te3 ##2 te4 ##2 te5). The first operand sequence requires that first
te1 evaluates to true followed by te2 two clock ticks later. The second sequence requires that first te3 evalu-
ates to true followed by te4 two clock ticks later, followed by te5 two clock ticks later. 

This attempt results in a match since both operand sequences match. The end times of matches for the individ-
ual sequences are clock ticks 10 and 12. The end time for the composite sequence is the later of the two end
times, so a match is recognized for the composite sequence at clock tick 12.

In the following example, the first operand sequence has a concatenation operator with range from 1 to 5: 

(te1 ##[1:5] te2) and (te3 ##2 te4 ##2 te5)

The first operand sequence requires that te1 evaluate to true and that te2 evaluate to true 1, 2, 3, 4, or 5 clock
ticks later. The second operand sequence is the same as in the previous example. To consider all possibilities of
a match of the composite sequence, the following steps can be taken: 

1) Five threads of evaluation are started for the five possible linear sequences associated with the first
sequence operand. 

2) The second operand sequence has only one associated linear sequence, so only one thread of evaluation is
started for it.

3) Figure 17-5 shows the evaluation attempt beginning at clock tick 8. All five linear sequences for the first
operand sequence match, as shown in a time window, so there are five matches of the first operand
sequence, ending at clock ticks 9, 10, 11, 12 and 13 respectively. The second operand sequence matches at
clock tick 12.
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te2
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te1 ##2 te2

te3 ##2 te4 ##2 te5

te4

te5

(te1 ##2 te2) and
(te3 ##2 te4 ##2 te5)
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4) Each match of the first operand sequence is combined with the single match of the second operand
sequence, and the rules of the and operation determine the end time of the resulting match of the composite
sequence. 

The result of this computation is five matches of the composite sequence, four of them ending at clock tick 12,
and the fifth ending at clock tick 13. Figure 17-5 shows the matches of the composite sequence ending at clock
ticks 12 and 13.

Figure 17-5 — ANDing (and) two sequences, including a time range

If te1 and te2 are sampled expressions (not sequences), the sequence (te1 and te2) matches if te1 and
te2 both evaluate to true.

An example is illustrated in Figure 17-6, which shows the results for attempts at every clock tick. The
sequence matches at clock tick 1, 3, 8, and 14 because both te1 and te2 are simultaneously true. At all other
clock ticks, match of the and operation fails because either te1 or te2 is false.

Figure 17-6 — ANDing (and) two boolean expressions
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17.7.5 Intersection (AND with length restriction)

The binary operator intersect is used when both operand sequences are expected to match, and the end
times of the operand sequences must be the same.

Syntax 17-7—intersect operator syntax (excerpt from Annex A)

The two operands of intersect are sequences. The requirements for match of the intersect operation are:

— Both the operands must match.

— The lengths of the two matches of the operand sequences must be the same.

The additional requirement on the length of the sequences is the basic difference between and and 
intersect.

An attempted evaluation of an intersect sequence can result in multiple matches. The results of such an
attempt can be computed as follows. 

— Matches of the first and second operands that are of the same length are paired. Each such pair results in a
match of the composite sequence, with length and endpoint equal to the shared length and endpoint of the
paired matches of the operand sequences. 

— If no such pair is found, then there is no match of the composite sequence.

Figure 17-7 is similar to Figure 17-5, except that and is replaced by intersect. In this case, unlike in Figure
17-5, there is only a single match at clock tick 12. 

sequence_expr ::= 
...
| sequence_expr intersect sequence_expr

// from Annex A.2.10
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Figure 17-7 — Intersecting two sequences
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17.7.6 OR operation

The operator or is used when at least one of the two operand sequences is expected to match.

Syntax 17-8—or operator syntax (excerpt from Annex A)

The two operands of or are sequences.

If the operands te1 and te2 are expressions, then 

te1 or te2

matches at any clock tick on which at least one of te1 and te2 evaluates to true. 

Figure 17-8 illustrates an or operation for which the operands te1 and te2 are expressions. The composite
sequence does not match at clock ticks 7 and 13 because te1 and te2 are both false at those times. At all other
clock ticks, the composite sequence matches, as at least one of the two operands evaluates to true.

Figure 17-8 — ORing (or) Two Sequences

When te1 and te2 are sequences, then the sequence

te1 or te2

matches if at least one of the two operand sequences te1 and te2 matches. Each match of either te1 or te2
constitutes a match of the composite sequence, and its end time as a match of the composite sequence is the
same as its end time as a match of te1 or of te2. In other words, the set of matches of te1 or te2 is the
union of the set of matches of te1 with the set of matches of te2. 

The following example shows a sequence with operator or where the two operands are sequences. Figure 17-9
illustrates this example. 

(te1 ##2 te2) or (te3 ##2 te4 ##2 te5)

sequence_expr ::= 
...
| sequence_expr or sequence_expr

// from Annex A.2.10
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Figure 17-9 — ORing (or) two sequences

Here, the two operand sequences are: (te1 ##2 te2) and (te3 ##2 te4 ##2 te5). The first sequence
requires that te1 first evaluates to true, followed by te2 two clock ticks later. The second sequence requires
that te3 evaluates to true, followed by te4 two clock ticks later, followed by te5 two clock ticks later. In
Figure 17-9, the evaluation attempt for clock tick 8 is shown. The first sequence matches at clock tick 10 and
the second sequence matches at clock tick 12. So, two matches for the composite sequence are recognized.

In the following example, the first operand sequence has a concatenation operator with range from 1 to 5 

(te1 ##[1:5] te2) or (te3 ##2 te4 ##2 te5)

The first operand sequence requires that te1 evaluate to true and that te2 evaluate to true 1, 2, 3, 4, or 5 clock
ticks later. The second operand sequence requires that te3 evaluate to true, that te4 evaluate to true 2 clock
ticks later, and that te5 evaluate to true another 2 clock ticks later. The composite sequence matches at any
clock tick on which at least one of the operand sequences matches. As shown in Figure 17-10, for the attempt
at clock tick 8, the first operand sequence matches at clock ticks 9, 10, 11, 12, and 13, while the second oper-
and matches at clock tick 12. The composite sequence therefore has one match at each of clock ticks 9, 10, 11,
and 13 and has two matches at clock tick 12. 
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Figure 17-10 — ORing (or) two sequences, including a time range

17.7.7 first_match operation

The first_match operator matches only the first of possibly multiple matches for an evaluation attempt of
its operand sequence. This allows all subsequent matches to be discarded from consideration. In particular,
when a sequence is a subsequence of a larger sequence, then applying the first_match operator has signifi-
cant effect on the evaluation of the enclosing sequence.

 

Syntax 17-9—first_match operator syntax (excerpt from Annex A)

An evaluation attempt of first_match (seq) results in an evaluation attempt for the operand seq beginning at
the same clock tick. If the evaluation attempt for seq produces no match, then the evaluation attempt for
first_match (seq) produces no match. Otherwise, the match of seq with earliest ending clock tick is a match
of first_match (seq). If there are multiple matches of seq with the same ending clock tick as the earliest one,
then all those matches are matches of first_match (seq). 

The example below shows a variable delay specification.

sequence t1;
te1 ## [2:5] te2;

endsequence 
sequence ts1;

first_match(te1 ## [2:5] te2);
endsequence 

Here, te1 and te2 are expressions. Each attempt of sequence t1 can result in matches for up to four of the fol-
lowing sequences:

1 2 3 4 5 6 7 8 9 10 11 12 13 14clk

te1

te2

te3

te1 ##[1:5] te2

te3 ##2 te4 ##2 te5

te4

te5

(te1 ##[1:5] te2) or
(te3 ##2 te4 ##2 te5)

sequence_expr ::= 
...
| first_match ( sequence_expr {, sequence_match_item} ) 

// from Annex A.2.10
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te1 ##2 te2 
te1 ##3 te2 
te1 ##4 te2 
te1 ##5 te2

However, sequence ts1 can result in a match for only one of the above four sequences. Whichever match of
the above four sequences ends first is a match of sequence ts1. 

As another example:

sequence t2;
(a ##[2:3] b) or (c ##[1:2] d);

endsequence 
sequence ts2;

first_match(t2);
endsequence 

Each attempt of sequence t2 can result in matches for up to four of the following sequences:

a ##2 b
a ##3 b
c ##1 d
c ##2 d

Sequence ts2 matches only the earliest ending match of these sequences. If a, b, c, and d are expressions,
then it is possible to have matches ending at the same time for both. 

a ##2 b
c ##2 d

If both of these sequences match and (c ##1 d) does not match, then evaluation of ts2 results in these two
matches. 

Sequence match items can be attached to the operand sequence of the first_match operator.  The sequence
match items are placed within the same set of parentheses that encloses the operand. Thus, for example, the
local variable assignment x = e can be attached to the first match of seq via 

first_match(seq, x = e) 

which is equivalent to 

first_match((seq, x = e))

See Sections 17.8 and 17.9 for discussion of sequence match items. 

17.7.8 Conditions over sequences

Sequences often occur under the assumptions of some conditions for correct behavior. A logical condition
must hold true, for instance, while processing a transaction. Also, occurrence of certain values is prohibited
while processing a transaction. Such situations can be expressed directly using the following construct:

 

Syntax 17-10—throughout construct syntax (excerpt from Annex A)

sequence_expr ::= 
...
| expression_or_dist throughout sequence_expr

// from Annex A.2.10
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The construct exp throughout seq is an abbreviation for:

(exp) [*0:$] intersect seq 

The composite sequence, exp throughout seq, matches along a finite interval of consecutive clock ticks
provided seq matches along the interval and exp evaluates to true at each clock tick of the interval.

The following example is illustrated in Figure 17-11.

sequence burst_rule1;
@(posedge mclk)

$fell(burst_mode) ##0   
(!burst_mode) throughout (##2 ((trdy==0)&&(irdy==0)) [*7]);

endsequence 

Figure 17-11 — Match with throughout restriction fails

Figure 17-12 illustrates the evaluation attempt for sequence burst_rule1 beginning at clock tick 2. Since
signal burst_mode is high at clock tick 1 and low at clock tick 2, $fell(burst_mode) is true at clock tick
2. To complete the match of burst_rule1, the value of burst_mode is required to be low throughout a
match of the subsequence (##2 ((trdy==0)&&(irdy==0)) [*7]) beginning at clock tick 2. This subse-
quence matches from clock tick 2 to clock tick 10. However, at clock tick 9 burst_mode becomes high,
thereby failing to match according to the rules for throughout.

If signal burst_mode were instead to remain low through at least clock tick 10, then there would be a match
of burst_rule1 from clock tick 2 to clock tick 10, as shown in Figure 17-12.
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Figure 17-12 — Match with throughout restriction succeeds

17.7.9 Sequence contained within another sequence  

The containment of a sequence within another sequence is expressed as follows:

Syntax 17-11—within construct syntax (excerpt from Annex A)

The construct seq1 within seq2 is an abbreviation for:

(1[*0:$] ##1 seq1 ##1 1[*0:$]) intersect seq2 

The composite sequence seq1 within seq2 matches along a finite interval of consecutive clock ticks pro-
vided seq2 matches along the interval and seq1 matches along some sub-interval of consecutive clock ticks.
That is, the matches of seq1 and seq2 must satisfy the following: 

— The start point of the match of seq1 must be no earlier than the start point of the match of seq2. 

— The end point of the match of seq1 must be no later than the end point of the match of seq2. 

For example, the sequence 

!trdy[*7] within (($fell irdy) ##1 !irdy[*8]) 

matches from clock tick 3 to clock tick 11 on the trace shown in Figure 17-12.

17.7.10 Detecting and using endpoint of a sequence

There are two ways in which a complex sequence can be decomposed into simpler subsequences.

One is to instantiate a named sequence by referencing its name. Evaluation of such a reference requires the
named sequence to match starting from the clock tick at which the reference is reached during the evaluation
of the enclosing sequence. For example: 

sequence s;
a ##1 b ##1 c;

endsequence 
sequence rule;

@(posedge sysclk)
trans ##1 start_trans ##1 s ##1 end_trans;

endsequence 

Sequence s is evaluated beginning one tick after the evaluation of start_trans in the sequence rule.

Another way to use a sequence is to detect its end point in another sequence. The end point of a sequence is
reached whenever the ending clock tick of a match of the sequence is reached, regardless of the starting clock
tick of the match. The reaching of the end point can be tested in any sequence by using the method ended.

The syntax of the ended method is:

sequence_instance.ended 

ended is a method on a sequence. The result of its operation is true or false. When method ended is evaluated
in an expression, it tests whether its operand sequence has reached its end point at that particular point in time.

sequence_expr ::= 
...
| sequence_expr within sequence_expr

// from Annex A.2.10
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The result of ended does not depend upon the starting point of the match of its operand sequence. An example
is shown below:

sequence e1;
@(posedge sysclk) $rose(ready) ##1 proc1 ##1 proc2 ;

endsequence 
sequence rule;

@(posedge sysclk) reset ##1 inst ##1 e1.ended ##1 branch_back;
endsequence 

In this example, sequence e1 must match one clock tick after inst. If the method ended is replaced with an
instance of sequence e1, a match of e1 must start one clock tick after inst. Notice that method ended only
tests for the end point of e1, and has no bearing on the starting point of e1. ended can be used on sequences
that have formal arguments. For example with the declarations 

sequence e2(a,b,c);
@(posedge sysclk) $rose(a) ##1 b ##1 c;

endsequence 
sequence rule2;

@(posedge sysclk) reset ##1 inst ##1 e2(ready,proc1,proc2).ended 
##1 branch_back; 

endsequence 

rule2 is equivalent to rule2a below: 

sequence e2_instantiated;
e2(ready,proc1,proc2);

endsequence 
sequence rule2a;

@(posedge sysclk) reset ##1 inst ##1 e2_instantiated.ended ##1 branch_back;
endsequence 

There are additional restrictions on passing local variables into an instance of a sequence to which ended is
applied. See Section 17.8. 

17.8 Manipulating data in a sequence 

The use of a static SystemVerilog variable implies that only one copy exists. If data values need to be checked
in pipelined designs, then for each quantum of data entering the pipeline, a separate variable can be used to
store the predicted output of the pipeline for later comparison when the result actually exits the pipe. This stor-
age can be built by using an array of variables arranged in a shift register to mimic the data propagating
through the pipeline. However, in more complex situations where the latency of the pipe is variable and out of
order, this construction could become very complex and error prone. Therefore, variables are needed that are
local to and are used within a particular transaction check that can span an arbitrary interval of time and can
overlap with other transaction checks. Such a variable must thus be dynamically created when needed within
an instance of a sequence and removed when the end of the sequence is reached.

The dynamic creation of a variable and its assignment is achieved by using the local variable declaration in a
sequence or property declaration and making an assignment in the sequence.

Syntax 17-12—variable assignment syntax (excerpt from Annex A)

sequence_expr ::= 
... 

| ( expression_or_dist {, sequence_match_item } ) [ boolean_abbrev ] 
| ( sequence_expr {, sequence_match_item} ) [ sequence_abbrev ] 

... 

// from Annex A.2.10
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The type of variable is explicitly specified. The variable can be assigned at the end point of any syntactic sub-
sequence by placing the subsequence, comma separated from the sampling assignment, in parentheses. For
example, if in 

a ##1 b[->1] ##1 c[*2]

it is desired to assign x = e at the match of b[->1], the sequence can be rewritten as

a ##1 (b[->1], x = e) ##1 c[*2]

The local variable can be reassigned later in the sequence, as in 

a ##1 (b[->1], x = e) ##1 (c[*2], x = x + 1)

For every attempt, a new copy of the variable is created for the sequence. The variable value can be tested like
any other SystemVerilog variable.

Hierarchical references to a local variable are not allowed.

As an example of local variable usage, assume a pipeline that has a fixed latency of 5 clock cycles. The data
enters the pipe on pipe_in when valid_in is true, and the value computed by the pipeline appears 5 clock
cycles later on the signal pipe_out1. The data as transformed by the pipe is predicted by a function that incre-
ments the data. The following property verifies this behavior:

property e;
int x;
(valid_in,(x = pipe_in)) |-> ##5 (pipe_out1 == (x+1));

endproperty 

Property e is evaluated as :

1) When valid_in is true, x is assigned the value of pipe_in. If five cycles later, pipe_out1 is equal to
x+1, then property e is true. Otherwise, property e is false. 

2) When is valid_in false, property e evaluates to true.

Variables can be used in sequences or properties.

sequence data_check;
int x;
a ##1 !a, x = data_in ##1 !b[*0:$] ##1 b && (data_out == x);

endsequence 
property data_check_p

int x;
a ##1 !a, x = data_in |=> !b[*0:$] ##1 b && (data_out == x);

endproperty 

Local variables can be written on repeated sequences and accomplish accumulation of values. 

sequence rep_v;
int x;
‘true,x = 0 ##0
(!a [* 0:$] ##1 a, x = x+data)[*4] ##1 b ##1 c && (data_out == x);

endsequence 

The local variables declared in one sequence are not visible in the sequence where it gets instantiated. An
example below illustrates an illegal access to local variable v1 of sequence sub_seq1 in sequence seq1. 

sequence sub_seq1;
int v1;
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a ##1 !a, v1 = data_in ##1 !b[*0:$] ##1 b && (data_out == v1);
endsequence 
sequence seq1;

c ##1 sub_seq1 ##1 (do1 == v1); // error since v1 is not visible
endsequence 

To access a local variable of a subsequence, a local variable must be declared and passed to the instantiated
subsequence through an argument. An example below illustrates this usage. 

sequence sub_seq2(lv);
a ##1 !a, lv = data_in ##1 !b[*0:$] ##1 b && (data_out == lv);

endsequence 
sequence seq2;

int v1;
c ##1 sub_seq2(v1) ##1 (do1 == v1); // v1 is now bound to lv

endsequence 

Local variables can be passed into an instance of a named sequence to which ended is applied and accessed in
a similar manner. For example

sequence seq2a; 
int v1; c ##1 sub_seq2(v1).ended ##1 (do1 == v1); // v1 is now bound to lv

endsequence 

There are additional restrictions when passing local variables into an instance of a named sequence to which
ended is applied: 

1) Local variables can be passed in only as entire actual arguments, not as proper subexpressions of actual
arguments.

2) In the declaration of the named sequence, the formal argument to which the local variable is bound must
not be referenced before it is assigned.

The second restriction is met by sub_seq2 because the assignment lv = data_in occurs before the reference
to lv in data_out == lv.

If a local variable is assigned before being passed into an instance of a named sequence to which ended is
applied, then the restrictions prevent this assigned value from being visible within the named sequence. The
restrictions are important because the use of ended means that there is no guaranteed relationship between the
point in time at which the local variable is assigned outside the named sequence and the beginning of the
match of the instance.

A local variable that is passed in as actual argument to an instance of a named sequence to which ended is
applied will flow out of the application of ended to that instance provided both of the following conditions are
met:

1) The local variable flows out of the end of the named sequence instance, as defined by the local variable
flow rules for sequences. (See below and Annex H.)

2) The application of ended to this instance is a maximal boolean expression. In other words, the application
of ended cannot have negation or any other expression operator applied to it.

Both conditions are satisfied by sub_seq2 and seq2a. Thus, in seq2a the value in v1 in the comparison do1
== v1 is the value assigned to lv in sub_seq2 by the assignment lv = data_in. However, in 

sequence seq2b; 
   int v1; c ##1 !sub_seq2(v1).ended ##1 (do1 == v1); // v1 unassigned 
endsequence 

the second condition is violated because of the negation applied to sub_seq2(v1).ended. Therefore, v1
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does not flow out of the application of ended to this instance, and so the reference to v1 in do1 == v1 is to an
unassigned variable.

In a single cycle, there can be multiple matches of a sequence instance to which ended is applied, and these
matches can have different valuations of the local variables. The multiple matches are treated semantically the
same way as matching both disjuncts of an or (see below). In other words, the thread evaluating the instance to
which ended is applied will fork to account for such distinct local variable valuations.

Note that when a local variable is a formal argument of a sequence declaration, it is illegal to declare the vari-
able, as shown below. 

sequence sub_seq3(lv);
int lv; // illegal since lv is a formal argument
a ##1 !a, lv = data_in ##1 !b[*0:$] ##1 b && (data_out == lv);

endsequence 

There are special considerations when using local variables in sequences involving the branching operators or,
and, and intersect. The evaluation of a composite sequence constructed from one of these operators can be
thought of as forking two threads to evaluate the operand sequences in parallel. A local variable may have been
assigned a value before the start of the evaluation of the composite sequence. Such a local variable is said to
flow in to each of the operand sequences. The local variable may be assigned or reassigned in one or both of
the operand sequences. In general, there is no guarantee that evaluation of the two threads results in consistent
values for the local variable, or even that there is a consistent view of whether the local variable has been
assigned a value. Therefore, the values assigned to the local variable before and during the evaluation of the
composite sequence are not always allowed to be visible after the evaluation of the composite sequence.

In some cases, inconsistency in the view of the local variable’s value does not matter, while in others it does.
Precise conditions are given in Annex H to define static (i.e., compile-time computable) conditions under
which a sufficiently consistent view of the local variable’s value after the evaluation of the composite sequence
is guaranteed. If these conditions are satisfied, then the local variable is said to flow out of the composite
sequence. An intuitive description of the conditions for local variable flow follows.

1) Variables assigned on parallel threads cannot be accessed in sibling threads. For example:

sequence s4;
 int x;
 (a ##1 b, (x = data) ##1 c) or (d ##1 (e==x)); // illegal

endsequence 

2) In the case of or, a local variable flows out of the composite sequence if and only if it flows out of each of
the operand sequences. If the local variable is not assigned before the start of the composite sequence and
it is assigned in only one of the operand sequences, then it does not flow out of the composite sequence. 

3) Each thread for an operand of an or that matches its operand sequence continues as a separate thread,
carrying with it its own latest assignments to the local variables that flow out of the composite sequence.
These threads do not have to have consistent valuations for the local variables. For example:

sequence s5;
int x,y;
((a ##1 b, x = data, y = data1 ##1 c) 

or (d ##1 ‘true, x = data ##0 (e==x))) ##1 (y==data2);
// illegal since y is not in the intersection

endsequence 
sequence s6;

int x,y;
((a ##1 b, x = data, y = data1 ##1 c) 

or (d ##1 ‘true, x = data ##0 (e==x))) ##1 (x==data2);
// legal since x is in the intersection

endsequence 
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4) In the case of and and intersect, a local variable that flows out of at least one operand shall flow out of
the composite sequence unless it is blocked. A local variable is blocked from flowing out of the composite
sequence if either: 

a) The local variable is assigned in and flows out of each operand of the composite sequence. Or,

b) The local variable is blocked from flowing out of at least one of the operand sequences.

The value of a local variable that flows out of the composite sequence is the latest assigned value. The
threads for the two operands are merged into one at completion of evaluation of the composite sequence. 

sequence s7;
int x,y;
((a ##1 b, x = data, y = data1 ##1 c) 

and (d ##1 ‘true, x = data ##0 (e==x))) ##1 (x==data2);
// illegal since x is common to both threads

endsequence 
sequence s8;

int x,y;
(a ##1 b, x = data, y = data1 ##1 c) 

and (d ##1 ‘true, x = data ##0 (e==x))) ##1 (y==data2);
// legal since y is in the difference

endsequence 

17.9 Calling subroutines on match of a sequence 

Tasks, task methods, void functions, void function methods, and system tasks can be called at the end of suc-
cessful match of a sequence.  The subroutine calls, like local variable assignments, appear in the comma-sepa-
rated list that follows the sequence.  The subroutine calls are said to be attached to the sequence.  The sequence
and the list that follows are enclosed in parentheses. 

 

Syntax 17-13—subroutine call in sequence syntax (excerpt from Annex A)

For example, 

sequence s1;
logic v, w;
(a, v = e) ##1 
(b[->1], w = f, $display("b after a with v = %h, w = %h\n", v, w)); 

endsequence 

defines a sequence s1 that matches at the first occurrence of b strictly after an occurrence of a. At the match,
the system task $display is executed to write a message that announces the match and shows the values
assigned to the local variables v and w.

All subroutine calls attached to a sequence are executed at every successful match of the sequence. For each

sequence_expr ::= 
... 

| ( expression_or_dist {, sequence_match_item } ) [ boolean_abbrev ] 
| ( sequence_expr {, sequence_match_item} ) [ sequence_abbrev ] 

... 
sequence_match_item ::= 

operator_assignment 
| inc_or_dec_expression 
| subroutine_call 

// from Annex A.2.10
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successful match, the attached calls are executed in the order they appear in the list. The subroutines are sched-
uled in the Reactive region, like an action block.

Each argument of a subroutine call attached to a sequence must either be passed by value as an input or be
passed by reference (either ref or const ref; see Section 10.4.2). Actual argument expressions that are
passed by value use sampled values of the underlying variables and are consistent with the variable values
used to evaluate the sequence match.

Local variables can be passed into subroutine calls attached to a sequence. Any local variable that flows out of
the sequence or that is assigned in the list following the sequence, but before the subroutine call, can be used in
an actual argument expression for the call. If a local variable appears in an actual argument expression, then
that argument must be passed by value.

17.10 System functions

Assertions are commonly used to evaluate certain specific characteristics of a design implementation, such as
whether a particular signal is “one-hot”. The following system functions are included to facilitate such com-
mon assertion functionality:

— $onehot (<expression>) returns true if only one bit of the expression is high.

— $onehot0(<expression>) returns true if at most one bit of the expression is high.

— $isunknown (<expression>) returns true if any bit of the expression is X or Z. This is equivalent to
^<expression> === ’bx.

All of the above system functions have a return type of bit. A return value of 1’b1 indicates true, and a return
value of 1’b0 indicates false. 

Another useful function provided for the boolean expression is $countones, to count the number of 1s in a bit
vector expression.

$countones ( expression) 

An X and Z value of a bit is not counted towards the number of ones.

17.11 Declaring properties 

A property defines a behavior of the design. A property can be used for verification as an assumption, a
checker, or a coverage specification. In order to use the behavior for verification, an assert, assume or
cover statement must be used. A property declaration by itself does not produce any result. 

A property can be declared in

— a module 

— an interface a program 

— a clocking block 

— a package 

— a compilation-unit scope

To declare a property, the property construct is used as shown below:
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Syntax 17-14—property construct syntax (excerpt from Annex A)

A property is declared with optional formal arguments, as in a sequence declaration. When a property is
instantiated, actual arguments can be passed to the property. The property gets expanded with the actual argu-
ments by replacing the formal arguments with the actual arguments. Semantic checks are performed to ensure
that the expanded property with the actual arguments is legal. 

The result of property evaluation is either true or false. There are seven kinds of property: sequence, negation,
disjunction, conjunction, if...else, implication, and instantiation. 

1) A property that is a sequence evaluates to true if and only if there is a non-empty match of the sequence. A
sequence that admits an empty match is not allowed as a property. Since there is a match if and only if
there is a first match, evaluation of such a property is the same as implicitly transforming its
sequence_expr to first_match(sequence_expr). As soon as a match of sequence_expr is determined,
the evaluation of the property is considered to be true, and no other matches are required for that
evaluation attempt.

2) A property is a negation if it has the form 

not property_expr 

For each evaluation attempt of the property, there is an evaluation attempt of property_expr. The keyword
not states that the evaluation of the property returns the opposite of the evaluation of the underlying
property_expr. Thus, if property_expr evaluates to true, then not property_expr evaluates to false, and if
property_expr evaluates to false, then not property_expr evaluates to true.

concurrent_assertion_item_declaration ::= 
property_declaration 
... 

property_declaration ::= 
property property_identifier [ ( [ list_of_formals ] ) ] ; 

{ assertion_variable_declaration } 
property_spec ; 

endproperty [ : property_identifier ] 
list_of_formals ::= formal_list_item { , formal_list_item } 
property_spec ::= 

[clocking_event ] [ disable iff ( expression_or_dist ) ] property_expr 
property_expr ::= 

sequence_expr 
| ( property_expr ) 
| not property_expr 
| property_expr or property_expr 
| property_expr and property_expr 
| sequence_expr |-> property_expr 
| sequence_expr |=> property_expr 
| if ( expression_or_dist ) property_expr [ else property_expr ] 
| property_instance 
| clocking_event property_expr 

assertion_variable_declaration ::= 
data_type list_of_variable_identifiers ; 

property_instance::= 
ps_property_identifier [ ( [ actual_arg_list ] ) ] 

// from Annex A.2.10
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3) A property is a disjunction if it has the form 

property_expr1 or property_expr2

The property evaluates to true if and only if at least one of property_expr1 and property_expr2 evaluates
to true.

4) A property is a conjunction if it has the form 

property_expr1 and property_expr2

The property evaluates to true if and only if both property_expr1 and property_expr2 evaluate to true.

5) A property is an if...else if it has either the form

if (expression_or_dist) property_expr1 

or the form

if (expression_or_dist) property_expr1 else property_expr2 

A property of the first form evaluates to true if and only if either expression_or_dist evaluates to false or
property_expr1 evaluates to true. A property of the second form evaluates to true if and only if either
expression_or_dist evaluates to true and property_expr1 evaluates to true or expression_or_dist evaluates
to false and property_expr2 evaluates to true.

6) A property is an implication if it has either the form

sequence_expr |-> property_expr

or the form

sequence_expr |=> property_expr

The meaning of implications is discussed in 17.11.1.

7) An instance of a named property can be used as a property_expr or property_spec. In general, the instance
is legal provided the body property_spec of the named property can be substituted in place of the instance,
with actual arguments substituted for formal arguments, and result in a legal property_expr or
property_spec, ignoring local variable declarations. Thus, for example, if an instance of a named property
is used as a property_expr operand for any property-building operator, then the named property must not
have a disable iff clause. Similarly, clock events in a named property must conform to the rules of
multiple clock support when the property is instantiated in a property_expr or property_spec that also
involves other clock events.

The following table lists the property operators from highest to lowest precedence and shows the associativity
of the non-unary operators.

Table 17-2: Property operator precedence and associativity

SystemVerilog property operators Associativity 

not ---- 

and left 

or left 

if...else right 

|-> |=> right 
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A disable iff clause can be attached to a property_expr to yield a property_spec 

disable iff (expression_or_dist) property_expr 

The expression of the disable iff is called the reset expression. The disable iff clause allows asynchro-
nous resets to be specified. For an evaluation of the property_spec, there is an evaluation of the underlying
property_expr. If prior to the completion of that evaluation the reset expression becomes true, then the overall
evaluation of the property_spec is true. Otherwise, the evaluation of the property_spec is the same as that of
the property_expr. The reset expression is tested independently for different evaluation attempts of the
property_spec. Nesting of disable iff clauses, explicitly or through property instantiations, is not allowed.

17.11.1 Implication 

The implication construct specifies that the checking of a property is performed conditionally on the match of
a sequential antecedent. 

Syntax 17-15—implication syntax (excerpt from Annex A)

This clause is used to precondition monitoring of a property expression and is allowed at the property level.
The result of the implication is either true or false. The left-hand side operand sequence_expr is called the
antecedent, while the right-hand side operand property_expr is called the consequent.

The following points should be noted for |-> implication:

— From a given start point, the antecedent sequence_expr can have zero, one, or more than one successful
match. 

— If there is no match of the antecedent sequence_expr from a given start point, then evaluation of the impli-
cation from that start point succeeds vacuously and returns true.

— For each successful match of antecedent sequence_expr, the consequent property_expr is separately evalu-
ated. The end point of the match of the antecedent sequence_expr is the start point of the evaluation of the
consequent property_expr. 

— From a given start point, evaluation of the implication succeeds and returns true if and only if for every
match of the antecedent sequence_expr beginning at the start point, the evaluation of the consequent
property_expr beginning at the endpoint of the match succeeds and returns true.

Two forms of implication are provided: overlapped using operator |->, and non-overlapped using operator
|=>. For overlapped implication, if there is a match for the antecedent sequence_expr, then the end point of the
match is the start point of the evaluation of the consequent property_expr. For non-overlapped implication, the
start point of the evaluation of the consequent property_expr is the clock tick after the end point of the match.
Therefore: 

sequence_expr |=> property_expr 

is equivalent to:

sequence_expr ##1 ‘true |-> property_expr 

The use of implication when multi-clock sequences and properties are involved is explained in Section 17.12.

The following example illustrates a bus operation for data transfer from a master to a target device. When the

property_expr ::= 
... 
| sequence_expr |-> property_expr 
| sequence_expr |=> property_expr 

// from Annex A.2.10
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bus enters a data transfer phase, multiple data phases can occur to transfer a block of data. During the data
transfer phase, a data phase completes on any rising clock edge on which irdy is asserted and either trdy or
stop is asserted. Note that an asserted signal here implies a value of low. The end of a data phase can be
expressed as:

property data_end;
@(posedge mclk) 
data_phase |-> ((irdy==0) && ($fell(trdy) || $fell(stop))) ;

endproperty 

Each time a data phase is true, a match for data_phase is recognized. The attempt at clock tick 6 is illustrated
in Figure 17-13. The values shown for the signals are the sampled values with respect to the clock. At clock
tick 6, data_end is true because stop gets asserted while irdy is asserted.

Figure 17-13 — Conditional sequence matching

In another example, data_end_exp is used to ensure that frame is de-asserted (value high) within 2 clock
ticks after data_end_exp occurs. Further, it is also required that irdy is de-asserted (value high) one clock
tick after frame is de-asserted.

A property written to express this condition is shown below.

‘define data_end_exp (data_phase && ((irdy==0)&&($fell(trdy)||$fell(stop)))) 
property data_end_rule1;

@(posedge mclk) 
‘data_end_exp |-> ##[1:2] $rose(frame) ##1 $rose(irdy);

endproperty 

property data_end_rule1 first evaluates data_end_exp at every clock tick to test if its value is true. If the
value is false, then that particular attempt to evaluate data_end_rule1 is considered true. Otherwise, the fol-
lowing sequence is evaluated. The sequence:

##[1:2] $rose(frame) ##1 $rose(irdy)

specifies looking for the rising edge of frame within two clock ticks in the future. After frame toggles high,
irdy must also toggle high after one clock tick. This is illustrated in Figure 17-14 for the evaluation attempt at
clock tick 6. ‘data_end_exp is acknowledged at clock tick 6. Next, frame toggles high at clock tick 7. Since
this falls within the timing constraint imposed by [1:2], it satisfies the sequence and continues to evaluate
further. At clock tick 8, irdy is evaluated. Signal irdy transitions to high at clock tick 8, matching the
sequence specification completely for the attempt that began at clock tick 6.

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

data_phase

data_end

irdy

trdy (high)

stop
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Figure 17-14 — Conditional sequences

Generally, assertions are associated with preconditions so that the checking is performed only under certain
specified conditions. As seen from the previous example, the |-> operator provides this capability to specify
preconditions with sequences that must be satisfied before evaluating their consequent properties. The next
example modifies the preceding example to see the effect on the results of the assertion by removing the pre-
condition for the consequent. This is shown below, and illustrated in Figure 17-15.

property data_end_rule2;
@(posedge mclk) ##[1:2] $rose(frame) ##1 $rose(irdy);

endproperty 

Figure 17-15 — Results without the condition

The property is evaluated at every clock tick. For the evaluation at clock tick 1, the rising edge of signal frame

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

data_phase

‘data_end_exp

irdy

trdy (high)

stop

frame

data_end_rule1

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

data_phase

data_end

irdy

trdy (high)

stop

frame

data_end_rule2
;[1:2]
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does not occur at clock tick 1 or 2, so the property fails at clock tick 1. Similarly, there is a failure at clock ticks
2, 3, and 4. For attempts starting at clock ticks 5 and 6, the rising edge of signal frame at clock tick 7 allows
checking further. At clock tick 8, the sequences complete according to the specification, resulting in a match
for attempts starting at 5 and 6. All later attempts to match the sequence fail because $rose(frame) does
not occur again. 

Figure 17-15 shows that removing the precondition of checking ‘data_end_exp from the assertion causes
failures that are not relevant to the verification objective. It is important from the validation standpoint to
determine these preconditions and use them to filter out inappropriate or extraneous situations.

An example of implication where the antecedent is a sequence follows:
 
(a ##1 b ##1 c) |-> (d ##1 e)

If the sequence (a ##1 b ##1 c) matches, then the sequence (d ##1 e) must also match. On the other
hand, if the sequence (a ##1 b ##1 c) does not match, then the result is true.

Another example of implication is:

property p16;
(write_en & data_valid) ##0 
(write_en && (retire_address[0:4]==addr)) [*2] |-> 
##[3:8] write_en && !data_valid &&(write_address[0:4]==addr);

endproperty 

This property can be coded alternatively as a nested implication: 

property p16_nested;
(write_en & data_valid) |->

(write_en && (retire_address[0:4]==addr)) [*2] |-> 
##[3:8] write_en && !data_valid && (write_address[0:4]==addr);

endproperty 

Multi-clock sequence implication is explained in Section 17.12.

17.11.2 Property examples 

The following examples illustrate the property forms. 

property rule1;
@(posedge clk) a |-> b ##1 c ##1 d;

endproperty 
property rule2;

@(clkev) disable iff (foo) a |-> not(b ##1 c ##1 d);
endproperty 

Property rule2 negates the sequence (b ##1 c ##1 d) in the consequent of the implication.
clkev specifies the clock for the property.

property rule3;
@(posedge clk) a[*2] |-> ((##[1:3] c) or (d |=> e));

endproperty 

Property rule3 says that if a holds and a also held last cycle, then either c must hold at some point 1 to three
cycles after the current cycle, or, if d holds in the current cycle, then e must hold one cycle later.

property rule4;
@(posedge clk) a[*2] |-> ((##[1:3] c) and (d |=> e));

endproperty 
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Property rule4 says that if a holds and a also held last cycle, then c must hold at some point 1 to three cycles
after the current cycle, and if d holds in the current cycle, then e must hold one cycle later.

property rule5;
@(posedge clk) 
a ##1 (b || c)[->1] |-> 

if (b) 
(##1 d |-> e)

else // c
f ;

endproperty 

Property rule5 has a followed by the first match of either b or c as its antecedent. The consequent uses
if...else to split cases on which of b or c is matched first. 

property rule6(x,y);
##1 x |-> y;

endproperty 
property rule5a;

@(posedge clk) 
a ##1 (b || c)[->1] |-> 

if (b) 
rule6(d,e)

else // c
f ;

endproperty 

Property rule5a is equivalent to rule5, but it uses an instance of rule6 as a property expression.

A property can optionally specify an event control for the clock. The clock derivation and resolution rules are
described in Section 17.14.

A named property can be instantiated by referencing its name. A hierarchical name can be used, consistent
with the SystemVerilog naming conventions. Like sequence declarations, variables used within a property that
are not formal arguments to the property are resolved hierarchically from the scope in which the property is
declared.

Properties that use more than one clock are described in Section 17.12

17.11.3 Recursive properties 

SystemVerilog allows recursive properties. A named property is recursive if its declaration involves an instan-
tiation of itself. Recursion provides a flexible framework for coding properties to serve as ongoing assump-
tions, checkers, or coverage monitors.

For example, 

property prop_always(p);
p and (1’b1 |=> prop_always(p));

endproperty 

is a recursive property that says that the formal argument property p must hold at every cycle. This example is
useful if the ongoing requirement that property p hold applies after a complicated triggering condition encoded
in sequence s:

property p1(s,p);
s |=> prop_always(p);

endproperty 



Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Copyright 2004 Accellera. All rights reserved. 237

As another example, the recursive property

property prop_weak_until(p,q);
q or (p and (1’b1 |=> prop_weak_until(p,q)));

endproperty 

says that formal argument property p must hold at every cycle up to but not including the first cycle at which
formal argument property q holds. Formal argument property q is not required ever to hold, though. This
example is useful if p must hold at every cycle after a complicated triggering condition encoded in sequence s,
but the requirement on p is lifted by q:

property p2(s,p,q);
s |=> prop_weak_until(p,q);

endproperty 

More generally, several properties can be mutually recursive. For example

property check_phase1;
s1 |-> (phase1_prop and (1’b1 |=> check_phase2));

endproperty 
property check_phase2;

s2 |-> (phase2_prop and (1’b1 |=> check_phase1));
endproperty 

There are three restrictions on recursive property declarations.

RESTRICTION 1: The negation operator not cannot be applied to any property expression that instantiates a
recursive property. In particular, the negation of a recursive property cannot be asserted or used in defining
another property.

Here are examples of illegal property declarations that violate Restriction 1:

property illegal_recursion_1(p);
not prop_always(not p);

endproperty 

property illegal_recursion_2(p);
p and (1’b1 |=> not illegal_recursion_2(p));

endproperty 

RESTRICTION 2: The operator disable iff cannot be used in the declaration of a recursive property. This
restriction is consistent with the restriction that disable iff cannot be nested.

Here is an example of an illegal property declaration that violates Restriction 2:

property illegal_recursion_3(p);
disable iff (b)
p and (1’b1 |=> illegal_recursion_3(p));

endproperty 

The intent of illegal_recursion_3 can be written legally as

property legal_3(p);
disable iff (b) prop_always(p);

endproperty 

since legal_3 is not a recursive property.

RESTRICTION 3: If p is a recursive property, then, in the declaration of p, every instance of p must occur
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after a positive advance in time. In the case of mutually recursive properties, all recursive instances must occur
after positive advances in time.

Here is an example of an illegal property declaration that violates Restriction 3:

property illegal_recursion_4(p);
p and (1’b1 |-> illegal_recursion_4(p));

endproperty 

If this form were legal, the recursion would be stuck in time, checking p over and over again at the same cycle.

Recursive properties can represent complicated requirements, such as those associated with varying numbers
of data beats, out-of-order completions, retries, etc. Here is an example of using a recursive property to check
complicated conditions of this kind.

EXAMPLE: Suppose that write data must be checked according to the following conditions:

— Acknowledgment of a write request is indicated by the signal write_request together with
write_request_ack. When a write request is acknowledged, it gets a 4-bit tag, indicated by signal
write_reqest_ack_tag. The tag is used to distinguish data beats for multiple write transactions in
flight at the same time. 

— It is understood that distinct write transactions in flight at the same time must be given distinct tags. For
simplicity, this condition is not a part of what is checked in this example.

— Each write transaction can have between 1 and 16 data beats, and each data beat is 8 bits. There is a model
of the expected write data that is available at acknowledgment of a write request. The model is a 128-bit
vector. The most significant group of 8 bits represents the expected data for the first beat, the next group of
8 bits represents the expected data for the second beat (if there is a second beat), and so forth.

— Data transfer for a write transaction occurs after acknowledgment of the write request and, barring retry,
ends with the last data beat. The data beats for a single write transaction occur in order.

— A data beat is indicated by the data_valid signal together with the signal data_valid_tag to deter-
mine the relevant write transaction. The signal data is valid with data_valid and carries the data for that
beat. The data for each beat must be correct according to the model of the expected write data. 

— The last data beat is indicated by signal last_data_valid together with data_valid and
data_valid_tag. For simplicity, this example does not represent the number of data beats and does not
check that last_data_valid is signaled at the correct beat.

— At any time after acknowledgement of the write request, but not later than the cycle after the last data beat,
a write transaction can be forced to retry. Retry is indicated by the signal retry together with signal
retry_tag to identify the relevant write transaction. If a write transaction is forced to retry, then its cur-
rent data transfer is aborted and the entire data transfer must be repeated. The transaction does not re-
request and its tag does not change.

— There is no limit on the number of times a write transaction can be forced to retry.

— A write transaction completes the cycle after the last data beat provided it is not forced to retry in that
cycle.

Here is code to check these conditions:

property check_write;

logic [0:127] expected_data; // local variable to sample model data
logic [3:0] tag; // local variable to sample tag

disable iff (reset)
(
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write_request && write_request_ack, 
expected_data = model_data,
tag = write_request_ack_tag

)
|=> 
check_write_data_beat(expected_data, tag, 4’h0);

endproperty 
   
property check_write_data_beat
(

expected_data, // [0:127] 
tag, // [3:0] 
i // [3:0] 

);

first_match 
(

##[0:$]
(

(data_valid && (data_valid_tag == tag))
||
(retry && (retry_tag == tag))

)
)
|->
(

(
(data_valid && (data_valid_tag == tag)) 
|-> 
(data == expected_data[i*8+:8])

)
and 
(

if (retry && (retry_tag == tag))
(

1’b1 |=> check_write_data_beat(tag, expected_data, 4’h0)
)
else if (!last_data_valid)
(

1’b1 |=> check_write_data_beat(tag, expected_data, i+4’h1)
)
else 
( 

##1 (retry && (retry_tag == tag))
|=>
check_write_data_beat(tag, expected_data, 4’h0)

)
)

);

endproperty 

17.11.4 Finite-length versus infinite-length behavior 

The formal semantics in Annex H defines whether a given property holds on a given behavior.  How the out-
come of this evaluation relates to the design depends on the behavior that was analyzed. In dynamic verifica-
tion, only behaviors that are finite in length are considered.  In such a case, SystemVerilog defines four levels
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of satisfaction of a property:

Holds strongly:

— no bad states have been seen

— all future obligations have been met

— the property will hold on any extension of the path

Holds (but does not hold strongly):

— no bad states have been seen

— all future obligations have been met

— the property may or may not hold on a given extension of the path

Pending:

— no bad states have been seen

— future obligations have not been met

— the property may or may not hold on a given extension of the path

Fails:

— a bad state has been seen

— future obligations may or may not have been met

— the property will not hold on any extension of the path

17.11.5 Non-degeneracy 

It is possible to define sequences that can never be matched. For example:

(1’b1) intersect(1’b1 ##1 1’b1)

It is also possible to define sequences that admit only empty matches. For example:

1’b1[*0]

A sequence that admits no match or that admits only empty matches is called degenerate.  A sequence that
admits at least one non-empty match is called non-degenerate.  A more precise definition of non-degeneracy is
given in Annex H.

The following restrictions apply:

1) Any sequence that is used as a property must be non-degenerate and must not admit any empty match.

2) Any sequence that is used as the antecedent of an overlapping implication (|->) must be non-degenerate.

3) Any sequence that is used as the antecedent of a non-overlapping implication (|=>) must admit at least one
match. Such a sequence can admit only empty matches.

The reason for these restrictions is that the use of degenerate sequences the forbidden ways results in counter-
intuitive property semantics, especially when the property is combined with a  disable iff clause.

17.12 Multiple clock support

Multiple clock sequences and properties can be specified using the following syntax.
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17.12.1 Multiply-clocked sequences

Multiply-clocked sequences are built by concatenating singly-clocked subsequences using the single-delay
concatenation operator ##1. This operator is non-overlapping and synchronizes between the clocks of the two
sequences. The single delay indicated by ##1 is understood to be from the endpoint of the first sequence,
which occurs at a tick of the first clock, to the nearest strictly subsequent tick of the second clock, where the
second sequence begins. 

For example, consider

@(posedge clk0) sig0 ##1 @(posedge clk1) sig1

A match of this sequence starts with a match of sig0 at posedge clk0. Then ##1 moves the time to the near-
est strictly subsequent posedge clk1, and the match of the sequence ends at that point with a match of sig1. If
clk0 and clk1 are not identical, then the clocking event for the sequence changes after ##1. If clk0 and
clk1 are identical, then the clocking event does not change after ##1 and the above sequence is equivalent to
the singly-clocked sequence 

@(posedge clk0) sig0 ##1 sig1

When concatenating differently-clocked sequences, the maximal singly-clocked subsequences are required to
admit only non-empty matches. Thus, if s1, s2 are sequence expressions with no clocking events, then the
multiply-clocked sequence

@(posedge clk1) s1 ##1 @(posedge clk2) s2

is legal only if neither s1 nor s2 can match the empty word. The clocking event posedge clk1 applies
throughout the match of s1, while the clocking event posedge clk2 applies throughout the match of s2. Since
the match of s1 is non-empty, there is an end point of this match at posedge clk1. The ##1 synchronizes
between this end point and the first occurrence of posedge clk2 strictly after it. That occurrence of posedge
clk2 is the start point of the match of s2.

The restriction that maximal singly-clocked subsequences not match the empty word ensures that any multi-
ply-clocked sequence has well-defined starting and ending clocking events and well-defined clock changes. If
clk1 and clk2 are not identical, then the following sequence 

@(posedge clk0) sig0 ##1 @(posedge clk1) sig1[*0:1] 

is illegal because of the possibility of an empty match of sig1[*0:1], which would make ambiguous whether
the ending clocking event is posedge clk0 or posedge clk1.

Differently-clocked or multiply-clocked sequence operands cannot be combined with any sequence operators
other than ##1. For example, if clk1 and clk2 are not identical, then the following are illegal:

@(posedge clk1) s1 ##0 @(posedge clk2) s2 

@(posedge clk1) s1 ##2 @(posedge clk2) s2 

@(posedge clk1) s1 intersect @(posedge clk2) s2 

17.12.2 Multiply-clocked properties

As in the case of singly-clocked properties, the result of evaluating a multiply-clocked property is either true or
false. Multiply-clocked properties can be formed in a number of ways.

Multiply-clocked sequences are themselves multiply-clocked properties. For example, 

@(posedge clk0) sig0 ##1 @(posedge clk1) sig1 
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is a multiply-clocked property. If a multiply-clocked sequence is evaluated as a property starting at some point,
the evaluation returns true if and only if there is a match of the multiply-clocked sequence beginning at that
point.

The boolean property operators (not, and, or) can be used freely to combine singly- and multiply-clocked
properties. The meanings of the boolean property operators are the usual ones, just as in the case of singly-
clocked properties. For example,

(@(posedge clk0) sig0) and (@(posedge clk1) sig1)

is a multiply-clocked property, but it is not a multiply-clocked sequence. This property evaluates to true at a
point if and only if the two sequences 

@(posedge clk0) sig0 

and

@(posedge clk1) sig1

both have matches beginning at the point.

The non-overlapping implication operator |=> can be used freely to create a multiply-clocked property from an
antecedent sequence and a consequent property that are differently- or multiply-clocked. The meaning of mul-
tiply-clocked non-overlapping implication is similar to that of singly-clocked non-overlapping implication.
For example, if s0, s1 are sequences with no clocking event, then in

@(posedge clk0) s0 |=> @(posedge clk1) s1

|=> synchronizes between posedge clk0 and posedge clk1. Starting at the point at which the implication is
being evaluated, for each match of s0 clocked by clk0, time is advanced from the end point of the match to
the nearest strictly future occurrence of posedge clk1, and from that point there must exist a match of s1
clocked by clk1.

The non-overlapping implication operator |=> can synchronize between the ending clock event of its anteced-
ent and several leading clock events for subproperties of its consequent. For example, in 

@(posedge clk0) s0 |=> (@(posedge clk1) s1) and (@(posedge clk2) s2)

|=> synchronizes between posedge clk0 and both posedge clk1 and posedge clk2.

Since synchronization between distinct clocks always requires strict advance of time, the two property build-
ing operators that require special care with multiple clocks are the overlapping implication |-> and if/
if...else.

Since |-> overlaps the end of its antecedent with the beginning of its consequent, the clock for the end of the
antecedent must be the same as the clock for the beginning of the consequent. For example, if clk0 and clk1
are not identical and s0, s1, s2 are sequences with no clocking events, then 

@(posedge clk0) s0 |-> @(posedge clk1) s1 ##1 @(posedge clk2) s2

is illegal, but

@(posedge clk0) s0 |-> @(posedge clk0) s1 ##1 @(posedge clk2) s2

is legal.

The if/if...else operators overlap the test of the boolean condition with the beginning of the if clause prop-
erty and, if present, the else clause property. Therefore, whenever using if or if...else, the if and else
clause properties must begin on the same clock as the test of the boolean condition. For example, if clk0 and
clk1 are not identical and s0, s1, s2 are sequences with no clocking events, then
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@(posedge clk0) if (b) @(posedge clk0) s1

is legal, but 

@(posedge clk0) if (b) @(posedge clk0) s1 else @(posedge clk1) s2

is illegal because the else clause property begins on a different clock than the if condition.

17.12.3 Clock flow

Throughout this subsection, c, d denote clocking event expressions and v, w, x, y, z denote sequences with no
clocking events.

Clock flow allows the scope of a clocking event to extend in a natural way through various parts of multiply-
clocked sequences and properties and reduces the number of places at which the same clocking event must be
specified.

Intuitively, clock flow provides that in a multiply-clocked sequence or property the scope of a clocking event
flows left-to-right across linear operators (e.g., repetition, concatenation, negation, implication) and distributes
to the operands of branching operators (e.g., conjunction, disjunction, intersection, if...else) until it is
replaced by a new clocking event.    

For example,

@(c) x |=> @(c) y ##1 @(d) z 

can be written more simply as

@(c) x |=> y ##1 @(d) z 

because clock c is understood to flow across |=>. 

Clock flow eliminates the need to write clocking events in positions where the clock is not allowed to change.
For example,

@(c) x |-> @(c) y ##1 @(d) z 

can be written as

@(c) x |-> y ##1 @(d) z 

to reinforce the restriction that the clock not change across |->. Similarly, 

@(c) if (b) @(c) w ##1 @(d) x else @(c) y ##1 @(d) z 

can be written as 

@(c) if (b) w ##1 @(d) x else y ##1 @(d) z 

to reinforce the restriction that the clock not change from the boolean condition b to the beginnings of the if
and else clause properties.

Clock flow also makes the adjointness relationships between concatenation and implication clean for multiply-
clocked properties:

@(c) x ##1 y |=> @(d) z 

is equivalent to 
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@(c) x |=> y |=> @(d) z 

and

@(c) x ##0 y |=> @(d) z 

is equivalent to

@(c) x |-> y |=> @(d) z 

The scope of a clocking event flows into parenthesized subexpressions and, if the subexpression is a sequence,
also flows left-to-right across the parenthesized subexpression. However, the scope of a clocking event does
not flow out of enclosing parentheses.

For example, in 

@(c) w ##1 (x ##1 @(d) y) |=> z 

w, x, z are clocked at c and y is clocked at d. Clock c flows across ##1, across the parenthesized subsequence (x
##1 @(d) y), and across |=>. Clock c also flows into the parenthesized subsequence, but it does not flow
through @(d). Clock d does not flow out of its enclosing parentheses.

As another example, in 

@(c) v |=> (w ##1 @(d) x) and (y ##1 z)

v, w, y, z are clocked at c and x is clocked at d. Clock c flows across |=>, distributes to both operands of the and
(which is a property conjunction due to the multiple clocking), and flows into each of the parenthesized subex-
pressions. Within (w ##1 @(d) x), c flows across ##1 but does not flow through @(d). Clock d does not flow
out of its enclosing parentheses. Within (y ##1 z), c flows across ##1.

Similarly, the scope of a clocking event flows into an instance of a named sequence or property, and, if the
instance is a sequence, also flows left-to-right across the instance. However, a clocking event in the declaration
of a sequence or property does not flow out of an instance of that sequence or property.

Note that juxtaposing two clocking events nullifies the first of them:

@(d) @(c) x 

is equivalent to 
 
@(c) x 

because the flow of clock d is immediately overridden by clock c.

17.12.4 Examples

The following are examples of multiple-clock specifications:

sequence s1;
@(posedge clk1) a ##1 b; // single clock sequence

endsequence 
sequence s2;

@(posedge clk2) c ##1 d; // single clock sequence
endsequence 

1) multiple-clock sequence

sequence mult_s;
@(posedge clk) a ##1 @(posedge clk1) s1 ##1 @(posedge clk2) s2; 
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endsequence 

2) property with a multiple-clock sequence

property mult_p1;
@(posedge clk) a ##1 @(posedge clk1) s1 ##1 @(posedge clk2) s2;

endproperty 

3) property with a named multiple-clock sequence

property mult_p2;
mult_s;

endproperty 

4) property with multiple-clock implication

property mult_p3;
@(posedge clk) a ##1 @(posedge clk1) s1 |=> @(posedge clk2) s2;

endproperty 

5) property with named sequences at different clocks. In this case, if s1 contains a clock, then it must be
identical to (posedge clk1). Similarly, if s2 contains a clock, it must be identical to (posedge clk2).

property mult_p5
@(posedge clk1) s1 |=> @(posedge clk2) s2;

endproperty 

6) property with implication, where antecedent and consequent are named multi-clocked sequences

property mult_p6;
mult_s |=> mult_s;

endproperty 

7) property using clock flow and overlapped implication:

property mult_p7;
@(posedge clk) a ##1 b |-> c ##1 @(posedge clk1) d; 

endproperty 

Here, a, b, and c are clocked at posedge clk.

8) property using clock flow and if...else:

property mult_p8;
@(posedge clk) a ##1 b |-> 
if (c) 

(1 |=> @(posedge clk1) d)
else 

e ##1 @(posedge clk2) f ;
endproperty 

Here, a, b, c, and e are clocked at posedge clk.

17.12.5 Detecting and using endpoint of a sequence in multi-clock context

To detect the end point of a sequence when the clock of the source sequence is different than the destination
sequence, method matched on the source sequence is used. The end point of a sequence is reached whenever
there is a match on its expression. The occurrence of the end point can be tested in any sequence expression by
using the method ended when the clocks of the source and destination sequences are the same, while method
matched is used when the clocks are different.

The syntax of the matched method is:
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sequence_instance.matched 

matched is a method on a sequence which return true or false. Unlike ended, matched uses synchronization
between the two clocks, by storing the result of the source sequence match until the arrival of the first destina-
tion clock tick after the match. When method matched is applied, it tests whether the source sequence has
reached the end point at that particular point in time. The result of matched does not depend upon the starting
point of the source sequence. 

Like ended, matched can be used on sequences that have formal arguments.

An example is shown below:

sequence e1(a,b,c); 
@(posedge clk) $rose(a) ##1 b ##1 c ;

endsequence 
sequence e2;

@(posedge sysclk) reset ##1 inst ##1 e1(ready,proc1,proc2).matched [->1] 
##1 branch_back;

endsequence 

In this example, source sequence e1 is evaluated at clock clk, while the destination sequence e2 is evaluated
at clock sysclk. In e2, the end point of the instance e1(ready,proc1,proc2) is tested to occur sometime
after the occurrence of inst. Notice that method matched only tests for the end point of
e1(ready,proc1,proc2) and has no bearing on the starting point of e1(ready,proc1,proc2).

Local variables can be passed into an instance of a named sequence to which matched is applied. The same
restrictions apply as in the case of ended. Values of local variables sampled in an instance of a named
sequence to which matched is applied will flow out under the same conditions as for ended. See
Section 17.8.

As with ended, a sequence instance to which matched is applied can have multiple matches in a single cycle
of the destination sequence clock. The multiple matches are treated semantically the same way as matching
both disjuncts of an or. In other words, the thread evaluating the destination sequence will fork to account for
such distinct local variable valuations.

17.13 Concurrent assertions

A property on its own is never evaluated for checking an expression. It must be used within a verification
statement for this to occur. A verification statement states the verification function to be performed on the
property. The statement can be one of the following:

— assert to specify the property as a checker to ensure that the property holds for the design

— assume to specify the property as an assumption for the environment 

— cover to monitor the property evaluation for coverage

A concurrent assertion statement can be specified in:

— an always block or initial block as a statement, wherever these blocks can appear

— a module 

— an interface 

— a program 
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Syntax 17-16—Concurrent assert construct syntax (excerpt from Annex A)

The assert, assume or cover statements can be referenced by their optional name. A hierarchical name can
be used consistent with the SystemVerilog naming conventions. When a name is not provided, a tool shall
assign a name to the statement for the purpose of reporting. Assertion control system tasks are described in
Section 23.9. 

17.13.1 assert statement

The assert statement is used to enforce a property as a checker. When the property for the assert state-
ment is evaluated to be true, the pass statements of the action block are executed. Otherwise, the fail state-
ments of the action_block are executed. For example,

property abc(a,b,c);
disable iff (a==2) not @clk (b ##1 c);

endproperty 
env_prop: assert property (abc(rst,in1,in2)) pass_stat else fail_stat;

When no action is needed, a null statement (i.e.;) is specified. If no statement is specified for else, then
$error is used as the statement when the assertion fails. 

The action_block shall not include any concurrent assert, assume, or cover statement. The action_block,
however, can contain immediate assertion statements.

Note: The pass and fail statements are executed in the Reactive region. The regions of execution are explained
in the scheduling semantics section, Section 14. 

17.13.2 assume statement 

The purpose of the assume statement is to allow properties to be considered as assumptions for formal analy-
sis as well as for dynamic simulation tools. When a property is assumed, the tools constrain the environment so
that the property holds.

For formal analysis, there is no obligation to verify that the assumed properties hold. An assumed property can
be considered as a hypothesis to prove the asserted properties.

For simulation, the environment must be constrained such that the properties that are assumed shall hold. Like
an assert property, an assumed property must be checked and reported if it fails to hold. There is no require-

procedural_assertion_statement ::= 
concurrent_assertion_statement 

| immediate_assert_statement 
concurrent_assertion_item ::= 

[ block_identifier : ] concurrent_assertion_statement 
concurrent_assertion_statement ::= 

assert_property_statement 
| assume_property_statement 
| cover_property_statement 

assert_property_statement::= 
assert property ( property_spec ) action_block 

assume_property_statement::= 
assume property ( property_spec ) ; 

cover_property_statement::= 
cover property ( property_spec ) statement_or_null 

// from Annex A.6.10

// from Annex A.2.10
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ment on the tools to report successes of the assumed properties.

Additionally, for random simulation, biasing on the inputs provides a way to make random choices. An expres-
sion can be associated with biasing as shown below 

expression dist { dist_list } ; // from Annex A.1.9 

Distribution sets and the dist operator are explained in Section 12.4.4. 

The biasing feature is only useful when properties are considered as assumptions to drive random simulation.
When a property with biasing is used in an assertion or coverage, the dist operator is equivalent to inside oper-
ator, and the weight specification is ignored. For example,

a1:assume property @(posedge clk) req dist {0:=40, 1:=60} ;
property proto

@(posedge clk) req |-> req[*1:$] ##0 ack;
endproperty 

This is equivalent to:

a1_assertion:assert property req inside {0, 1} ;
property proto_assertion

@(posedge clk) req |-> req[*1:$] ##0 ack;
endproperty 

In the above example, signal req is specified with distribution in assumption a1, and is converted to an equiv-
alent assertion a1_assertion.

It should be noted that the properties that are assumed must hold in the same way with or without biasing.
When using an assume statement for random simulation, the biasing simply provides a means to select values
of free variables, according to the specified weights, when there is a choice of selection at a particular time.

Consider an example specifying a simple synchronous request - acknowledge protocol, where variable req
can be raised at any time and must stay asserted until ack is asserted. In the next clock cycle both req and ack
must be de-asserted.

Properties governing req are:

property pr1;
@(posedge clk) !reset_n |-> !req; //when reset_n is asserted (0),keep req 0

endproperty 
property pr2;

@(posedge clk) ack |=> !req; // one cycle after ack, req must be de-asserted
endproperty 
property pr3;

@(posedge clk) req |-> req[*1:$] ##0 ack; // hold req asserted until
// and including ack asserted

endproperty 

Properties governing ack are:

property pa1;
@(posedge clk) !reset_n || !req |-> !ack;

endproperty 
property pa2;

@(posedge clk) ack |=> !ack;
endproperty 

When verifying the behavior of a protocol controller which has to respond to requests on req, assertions



Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a

Copyright 2004 Accellera. All rights reserved. 249

assert_req1 and assert_req2 should be proven while assuming that statements a1, assume_ack1,
assume_ack2 and assume_ack3 hold at all times.

a1:assume property @(posedge clk) req dist {0:=40, 1:=60} ; 
assume_ack1:assume property (pr1);
assume_ack2:assume property (pr2);
assume_ack3:assume property (pr3);

assert_req1:assert property (pa1)
else $display("\n ack asserted while req is still de-asserted");

assert_req2:assert property (pa2)
else $display("\n ack is extended over more than one cycle");

Note that assume does not provide an action block, as the actions for an assumption serve no purpose.

17.13.3 cover statement 

To monitor sequences and other behavioral aspects of the design for coverage, the same syntax is used with the
cover statement. The tools can gather information about the evaluation and report the results at the end of
simulation. When the property for the cover statement is successful, the pass statements can specify a cover-
age function, such as monitoring all paths for a sequence. The pass statement shall not include any concurrent
assert, assume or cover statement. 

Coverage results are divided into two: coverage for properties, coverage for sequences.

For sequence coverage, the statement appears as:

cover property ( sequence_expr ) statement_or_null 

The results of coverage statement for a property shall contain:

— Number of times attempted 

— Number of times succeeded 

— Number of times failed 

— Number of times succeeded because of vacuity 

In addition, statement_or_null is executed every time a property succeeds.

Vacuity rules are applied only when implication operator is used. A property succeeds non-vacuously only if
the consequent of the implication contributes to the success. 

Results of coverage for a sequence shall include:

— Number of times attempted 

— Number of times matched (each attempt can generate multiple matches) 

In addition, statement_or_null gets executed for every match. If there are multiple matches at the same time,
the statement gets executed multiple times, one for each match.

17.13.4 Using concurrent assertion statements outside of procedural code

A concurrent assertion statement can be used outside of a procedural context. It can be used within a module,
an interface, or a program. A concurrent assertion statement is an assert, an assume, or a cover statement.
Such a concurrent assertion statement uses the always semantics.

The following two forms are equivalent:
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assert property ( property_spec ) action_block 

always assert property ( property_spec ) action_block ;

Similarly, the following two forms are equivalent:

cover property ( property_spec ) statement_or_null 

always cover property ( property_spec ) statement_or_null 

For example:

module top(input bit clk);
logic a,b,c;
property rule3;

@(posedge clk) a |-> b ##1 c;
endproperty 
a1: assert property (rule3);
...

endmodule 

rule3 is a property declared in module top. The assert statement a1 starts checking the property from the
beginning to the end of simulation. The property is always checked. Similarly,

module top(input bit clk);
logic a,b,c;
sequence seq3;

@(posedge clk) b ##1 c;
endsequence 
c1: cover property (seq3); 
...

endmodule 

The cover statement c1 starts coverage of the sequence seq3 from beginning to the end of simulation. The
sequence is always monitored for coverage.

17.13.5 Embedding concurrent assertions in procedural code

A concurrent assertion statement can also be embedded in a procedural block. For example:

property rule;
a ##1 b ##1 c;

endproperty 

always @(posedge clk) begin 
<statements> 
assert property (rule); 

end 

If the statement appears in an always block, the property is always monitored. If the statement appears in an
initial block, then the monitoring is performed only on the first clock tick.

Two inferences are made from the procedural context: clock from the event control of an always block, and
the enabling conditions.

A clock is inferred if the statement is placed in an always or initial block with an event control abiding by
the following rules:
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— The clock to be inferred must be placed as the first term of the event control as an edge specifier (posedge
expression or negedge expression).

— The variables in expression must not be used anywhere in the always or initial block.

For example:

property r1;
q != d;

endproperty 
always @(posedge mclk) begin 

q <= d1;
r1_p: assert property (r1);

end 

The above property can be checked by writing statement r1_p outside the always block, and declaring the
property with the clock as:

property r1;
@(posedge mclk)q != d;

endproperty 
always @(posedge mclk) begin 

q <= d1;
end 
r1p: assert property (r1);

If the clock is explicitly specified with a property, then it must be identical to the inferred clock, as shown
below:

property r2;
@(posedge mclk)(q != d);

endproperty 
always @(posedge mclk) begin 

q <= d1;
r2_p: assert property (r2);

end 

In the above example, (posedge mclk) is the clock for property r2.

Another inference made from the context is the enabling condition for a property. Such derivation takes place
when a property is placed in an if...else block or a case block. The enabling condition assumed from the
context is used as the antecedent of the property. 

property r3;
@(posedge mclk)(q != d);

endproperty 
always @(posedge mclk) begin 

if (a) begin 
q <= d1;
r3_p: assert property (r3);

end 
end 

The above example is equivalent to:

property r3;
@(posedge mclk)a |-> (q != d);

endproperty 
r3_p: assert property (r3);
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always @(posedge mclk) begin 
if (a) begin 

q <= d1;
 end 
end 

Similarly, the enabling condition is also inferred from case statements. 

property r4;
@(posedge mclk)(q != d);

endproperty 
always @(posedge mclk) begin 

case (a) 
1: begin q <= d1;

r4p: assert property (r4);
end 

default: q1 <= d1;
endcase 

end 

The above example is equivalent to:

property r4;
@(posedge mclk)(a==1) |-> (q != d);

endproperty 
r4_p: assert property (r4);
always @(posedge mclk) begin 

case (a) 
1: begin q <= d1;

end 
default: q1 <= d1;

endcase 
end 

The enabling condition is inferred from procedural code inside an always or initial block, with the follow-
ing restrictions:

1) There must not be a preceding statement with a timing control.

2) A preceding statement shall not invoke a task call which contains a timing control on any statement.

3) The concurrent assertion statement shall not be placed in a looping statement, immediately, or in any
nested scope of the looping statement.

17.14 Clock resolution

There are a number of ways to specify a clock for a property:

— sequence instance with a clock, for example

sequence s2; @(posedge clk) a ##2 b; endsequence 
property p2; not s2; endproperty
assert property (p2);

— property, for example:

property p3; @(posedge clk) not (a ##2 b); endproperty 
assert property (p3);
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— contextually inferred clock from a procedural block, for example:

always @(posedge clk) assert property (not (a ##2 b)); 

— clocking block, for example:

clocking master_clk @(posedge clk); 
property p3; not (a ##2 b); endproperty 

endclocking 
assert property (master_clk.p3);

— default clock, for example:

default clocking master_clk ; // master clock as defined above 
property p4; (a ##2 b); endproperty 
assert property (p4); 

For a multi-clocked assertion, the clocks are explicitly specified. No default clock or inferred clock is used. In
addition, multi-clocked properties are not allowed to be defined within a clocking block.

A multi-clocked property assert statement must not be embedded in procedural code where a clock is inferred.
For example, following forms are not allowed.

always @(clk) assert property (mult_clock_prop);// illegal 
initial @(clk) assert property (mult_clock_prop);// illegal 

The rules for an assertion with one clock are discussed in the following paragraphs.

The clock for an assertion statement is determined in the decreasing order of priority:

1) Explicitly specified clock for the assertion.

2) Inferred clock from the context of the code when embedded.

3) Default clock, if specified.

A concurrent assertion statement must resolve to a clock. Otherwise, the statement is considered illegal.

Sequences and properties specified in clocking blocks resolve the clock by the following rules:

1) Event control of the clocking block specifies the clock. 

2) No explicit event control is allowed in any property or sequence declaration.

3) If a named sequence that is defined outside the clocking block is used , its clock, if specified, must be
identical to the clocking block’s clock.

4) Multi-clock properties are not allowed.

Resolution of clock for a sequence declaration assumes that only one explicit event control can be specified.
Also, the named sequences used in the sequence declaration can, but do not need to, contain event control in
their definitions.

sequence s;
//sequence composed of two named subsequences 
@(posedge s_clk) e ##1 s1 ##1 s2 ##1 f; 

endsequence 
sequence s1;

@(posedge clk1) a ##1 b; // single clock sequence
endsequence 
sequence s2;
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@(posedge clk2) c ##1 d; // single clock sequence
endsequence 

These example sequences are used in Table 17-3 to explain the clock resolution rules for a sequence declara-
tion. The clock of any sequence when explicitly specified is indicated by X. Otherwise, it is indicated by a
dash.

Once the clock for a sequence declaration is determined, the clock of a property declaration is resolved similar
to the resolution for a sequence declaration. A single clocked property assumes that only one explicit event
control can be specified. Also, the named sequences used in the property declaration can contain event control
in their declarations. Table 17-4 specifies the rules for property declaration clock resolution. The property has
the form:

property p;
@(posedge p_clk) not s1 |=> s2;

endproperty 

p_clk is the property for the clock, clk1 is the clock for sequence s1 and clk2 is the clock for sequence s2.
The same rules apply for operator |->.
 

Table 17-3:  Resolution of clock for a sequence declaration 

s_clk clk1 clk2 Resolved clock Semantic restriction

- - - unclocked -

X - - s_clk -

X X - s_clk s_clk and clk1 must be identical

X X X s_clk s_clk, clk1 and clk2 must be identical

X - X s_clk s_clk and clk2 must be identical

- X - unclocked -

- X X unclocked clk1 and clk2 must be identical

- - X unclocked -

Table 17-4: Resolution of clock for a declaration 

p_clk clk1 clk2 Resolved clock Semantic restriction

- - - unclocked -

X - - p_clk -

X X - p_clk p_clk and clk1 must be identical

X X X p_clk p_clk, clk1 and clk2 must be identical

X - X p_clk p_clk and clk2 must be identical

- X - unclocked -

- X X unclocked or 
multi-clock

clk1 and clk2 must be identical. If 
clk1 and clk2 are different for the case 
of operator |=>, then it is considered a 
multi-clock implication
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Resolution of clock for an assert statement is based on the following assumptions:

— assert can appear in an always block, initial block or outside procedural context

— clock is inferred from an always or initial block

— default clock can be specified using default clocking block 

Table 17-5 specifies the rules for clock resolution when assert appears in an always or initial block, where
i_clk is the inferred clock from an always or initial block, d_clk is the default clock, and p_clk is the
property clock.

When the assert statement is outside any procedural block, there is no inferred clock. The rules for clock res-
olution are specified in Table 17-6.

17.14.1 Clock resolution in multiply-clocked properties 

Throughout this subsection, s, s1, s2 denote sequences without clocking events; p, p1, p2 denote properties
without clocking events; m, m1, m2 denote multiply-clocked sequences, q, q1, q2 denote multiply-clocked

- - X unclocked -

Table 17-5: Resolution of clock in an always or initial block 

i_clk d_clk p_clk Resolved clock Semantic restriction

- - - unclocked Error. An assertion must have a clock

X - - i_clk -

- X - d_clk

- - X p_clk

X - X i_clk i_clk and p_clk must be identical

X X - i_clk -

- X X p_clk

- - X p_clk -

Table 17-6: Resolution of clock outside a procedural block 

d_clk p_clk Resolved clock Semantic restriction

– – unclocked Error. An assertion must have a clock

X - d_clk

– X p_clk

X X p_clk

Table 17-4: Resolution of clock for a declaration 

p_clk clk1 clk2 Resolved clock Semantic restriction
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properties; and c, c1, c2 denote non-identical clocking event expressions.

Due to clock flow, juxtaposition of two clocks nullifies the first. This and the nesting of clocking events within
other property building operators mean that there are subtleties in the general interpretation of the restrictions
about where the clock can change in multiply-clocked properties. For example,

@(c) s |-> @(c) (p and @(c1) p1)

appears legal because the antecedent is clocked by c and the consequent begins syntactically with the clocking
event @(c). However, the consequent sequence is equivalent to

(@(c) p) and (@(c1) p1)

and |-> cannot synchronize between clock c from the antecedent and clock c1 from the second conjunct of the
consequent. Similarly, 

@(c) s |-> @(c1) (@(c) p)

appears illegal due to the apparent clock change from c to c1 across |->. However, it is legal, although arguably
misleading in style, because the consequent property is equivalent to @(c) p.

This subsection gives a more precise treatment of the restrictions on multiply-clocked use of |-> and if/
if...else than the intuitive discussion in Section 17.12. The present treatment depends on the notion of the set
of semantic leading clocks for a multiply-clocked sequence or property. 

Some sequences and properties have no explicit leading clock event. Their initial clocking event is inherited
from an outer clocking event according to the flow of clocking event scope.   In this case, the semantic leading
clock is said to be inherited. For example, in the property

@(c) s |=> p and @(c1) p1 

the semantic leading clock of the subproperty p is inherited since the initial clock of p is the clock that flows
across |=>.

A multiply-clocked sequence has a unique semantic leading clock, defined inductively as follows.

— The semantic leading clock of s is inherited. 

— The semantic leading clock of @(c) s is c.

— If inherited is the semantic leading clock of m, then the semantic leading clock of @(c) m is c. Otherwise,
the semantic leading clock of @(c) m is equal to the semantic leading clock of m.

— The semantic leading clock of (m) is equal to the semantic leading clock of m.

— The semantic leading clock of m1 ## m2 is equal to the semantic leading clock of m1.

The set of semantic leading clocks of a multiply-clocked property is defined inductively as follows.

— The set of semantic leading clocks of m is {c}, where c is the unique semantic leading clock of m.

— The set of semantic leading clocks of p is {inherited}. 

— If inherited is an element of the set of semantic leading clocks of q, then the set of semantic leading clocks
of @(c) q is obtained from the set of semantic leading clocks of q by replacing inherited by c. Otherwise,
the set of semantic leading clocks of @(c) q is equal to the set of semantic leading clocks of q.

— The set of semantic leading clocks of (q) is equal to the set of semantic leading clocks of q.

— The set of semantic leading clocks of not q is equal to the set of semantic leading clocks of q.

— The set of semantic leading clocks of q1 and q2 is the union of the set of semantic leading clocks of q1 with
the set of semantic leading clocks of q2.
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— The set of semantic leading clocks of q1 or q2 is the union of the set of semantic leading clocks of q1 with
the set of semantic leading clocks of q2.

— The set of semantic leading clocks of m |-> p is equal to the set of semantic leading clocks of m.

— The set of semantic leading clocks of m |=> p is equal to the set of semantic leading clocks of m.

— The set of semantic leading clocks of if (b) q is {inherited}. 

— The set of semantic leading clocks of if (b) q1 else q2 is {inherited}.

— The set of semantic leading clocks of a property instance is equal to the set of semantic leading clocks of
the multiply-clocked property obtained from the body of its declaration by substituting in actual argu-
ments.

For example, the multiply-clocked sequence

@(c1) s1 ## @(c2) s2 

has c1 as its unique semantic leading clock, while the multiply-clocked property

not (p1 and (@(c2) p2)

has {inherited, c2} as its set of semantic leading clocks.

In the presence of an incoming outer clock, the inherited semantic leading clock is always understood to refer
to the incoming outer clock. On the other hand, if a property has only explicit semantic leading clocks, then the
incoming outer clock has no effect on the clocking of the property since the explicit clock events replace the
incoming outer clock. Therefore, the clocking of a property q in the presence of incoming outer clock c is
equivalent to the clocking of the property @(c) q.

The rules for using multiply-clocked overlapping implication and if/if...else in the presence of an incoming
outer clock can now be stated more precisely.

1) Multiply-clocked overlapping implication.

Let c be the incoming outer clock. Then the clocking of m |-> q is equivalent to the clocking of
@(c) m |-> q 

In the presence of the incoming outer clock, m has a well-defined ending clock, and there is a well-
defined clock that flows across |->. The multiply-clocked overlapped implication m |-> q is legal for
incoming clock c if and only if the following two conditions are met:

a) Every explicit semantic leading clock of q is identical to the ending clock of m.

b) If inherited is a semantic leading clock of q, then the ending clock of m is equal to the clock that flows
across |->.

For example

@(c) s |-> p1 or @(c2) p2 

is not legal because the ending clock of the antecedent is c, while the consequent has c2 as an explicit
semantic leading clock.

Also,

@(c) s ## (@(c1) s1) |-> p 

is not legal because the set of semantic leading clocks of p is {inherited}, the ending clock of the anteced-
ent is c1, and the clock that flows across |-> and is inherited by p is c.

On the other hand,
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@(c) s |-> p1 or @(c) p2 

and 

@(c) s ## @(c1) s1 |-> p1 or @(c1) p2 

are both legal.

2) Multiply-clocked if/if...else 

Let c be the incoming outer clock. Then the clocking of if (b) q1 [ else q2 ] is equivalent to the clocking
of

@(c) if (b) q1 [ else q2 ]

The boolean condition b is clocked by c, so the multiply-clocked if/if...else if (b) q1 [ else q2 ] is
legal for incoming clock c if and only if the following condition is met:

— Every explicit semantic leading clock of q1 [ or q2 ] is identical to c.

For example,

@(c) if (b) p1 else @(c) p2 

is legal, but 

@(c) if (b) @(c) (p1 and @(c2) p2) 

is not.

17.15 Binding properties to scopes or instances

To facilitate verification separate from the design, it is possible to specify properties and bind them to specific
modules or instances. The following are the goals of providing this feature:

— It allows verification engineers to verify with minimum changes to the design code/files.

— It allows a convenient mechanism to attach verification IP to a module or an instance.

— No semantic changes to the assertions are introduced due to this feature. It is equivalent to writing proper-
ties external to a module, using hierarchical path names.

With this feature, a user can bind a module, interface, or program instance to a module or a module instance.

The syntax of the bind construct is:
 

Syntax 17-17—bind construct syntax (excerpt from Annex A)

The bind directive can be specified in 

— a module 

— an interface 

— a compilation-unit scope 

bind_directive ::= bind hierarchical_identifier constant_select bind_instantiation ; 
bind_instantiation ::= 

program_instantiation 
| module_instantiation 
| interface_instantiation 

// from Annex A.1.5
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A program block contains non-design code (either testbench or properties) and executes in the Reactive region,
as explained in Section 16. 

Example of binding a program instance to a module:

bind cpu fpu_props fpu_rules_1(a,b,c);

Where:

— cpu is the name of module.

— fpu_props is the name of the program containing properties. 

— fpu_rules_1 is the program instance name. 

— Ports (a, b,c) get bound to signals (a,b,c) of module cpu.

— Every instance of cpu gets the properties.

Example of binding a program instance to a specific instance of a module:

bind cpu1 fpu_props fpu_rules_1(a,b,c);

By binding a program to a module or an instance, the program becomes part of the bound object. The names of
assertion-related declarations can be referenced using the SystemVerilog hierarchical naming conventions.

Binding of a module instance or an interface instance works the same way as described for programs above.

interface range (input clk,enable, input int minval,expr);
property crange_en;

@(posedge clk) enable |-> (minval <= expr); 
endproperty 

range_chk: assert property (crange_en);
endinteface 

bind cr_unit range r1(c_clk,c_en,v_low,(in1&&in2));

In this example, interface range is instantiated in the module cr_unit. Effectively, every instance of module
cr_unit shall contain the interface instance r1.

17.16 The expect statement

The expect statement is a procedural blocking statement that allows waiting on a property evaluation. The
syntax of the expect statement accepts a named property or a property declaration, and is given below.

 

Syntax 17-18—expect statement syntax (excerpt from Annex A)

The expect statement accepts the same syntax used to assert a property. An expect statement causes the exe-
cuting process to block until the given property succeeds or fails. The statement following the expect is
scheduled to execute after processing the Observe region in which the property completes its evaluation. When
the property succeeds or fails the process unblocks, and the property stops being evaluated (i.e., no property
evaluation is started until that expect statement is executed again). 

When executed, the expect statement starts a single thread of evaluation for the given property on the subse-
quent clocking event, that is, the first evaluation shall take place on the next clocking event. If the property
fails at its clocking event, the optional else clause of the action block is executed. If the property succeeds the

expect_property_statement ::= 
expect ( property_spec ) action_block 

// from Annex A.2.10
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optional pass statement of the action block is executed.

program tst;
initial begin 

# 200ms;
expect( @(posedge clk) a ##1 b ##1 c ) else $error( "expect failed" );
ABC: ...

end 
endprogram 

In the above example, the expect statement specifies a property that consists of the sequence a ##1 b ##1 c.
The expect statement (second statement in the initial block of program tst) blocks until the sequence a ##1
b ##1 c is matched, or is determined not to match. The property evaluation starts on the clocking event
(posedge clk) following the 200ms delay. If the sequence is matched, the process is unblocked and continues to
execute on the statement labeled ABC. If the sequence fails to match then the else clause is executed, which
in this case generates a run-time error. For the expect above to succeed, the sequence a ##1 b ##1 c must
match starting on the clocking event (posedge clk) immediately after time 200ms. The sequence will not match
if a, b, or c are evaluated to be false at the first, second or third clocking event respectively. 

The expect statement can be incorporated in any procedural code, including tasks or class methods. Because
it is a blocking statement, the property can refer to automatic variables as well as static variables. For example,
the task below waits between 1 and 10 clock ticks for the variable data to equal a particular value, which is
specified by the automatic argument value. The second argument, success, is used to return the result of the
expect statement: 1 for success and 0 for failure.

integer data;
...
task automatic wait_for( integer value, output bit success );
expect( @(posedge clk) ##[1:10] data == value ) success = 1; 

else success = 0;
endtask 

initial begin 
bit ok;
wait_for( 23, ok ); // wait for the value 23
...

end 


