Threadmill: A Post-Silicon Exerciser
for Multi-Threaded Processors

Allon Adir, Maxim Golubev, Shimon Landa, Amir Nahir,
Gil Shurek, Vitali Sokhin, Avi Ziv
IBM Research - Haifa, Israel
{adir, maximg, shimonl, nahir, shurek, vitali, aziv}@il.ibom.com

ABSTRACT

Post-silicon validation poses unique challenges that bring-up
tools must face, such as the lack of observability into the de-
sign, the typical instability of silicon bring-up platforms and
the absence of supporting software (like an OS or debug-
gers). These challenges and the need to reach an optimal
utilization of the expensive but very fast silicon platforms
lead to unique design considerations - like the need to keep
the tool simple and to perform most of its operation on plat-
form without interaction with the environment.

In this paper we describe a variety of novel techniques
optimized for the unique characteristics of the silicon plat-
form. These techniques are implemented in Threadmill —
a bare-metal exerciser targeting multi-threaded processors.
Threadmill was used in the verification of the POWERT
processor with encouraging results.

Categories and Subject Descriptors
B.6.3 [Logic Design|: Design Aids— Verification

General Terms

Verification

Keywords

Post-Silicon Validation, Functional Verification, Stimuli Gen-
eration, Multi-Threading

1. INTRODUCTION

The Holy Grail of a single tape-out product seems to be
drifting away for today’s state-of-the-art processor and mul-
tiprocessor hardware systems. The functional verification of
these systems involves hundreds of person years and requires
the compute power of thousands of workstations [16]. Yet,
the intricacy of modern microarchitectures and the complex-
ity of the system topology makes it virtually impossible to
eliminate all functional bugs in the design before tape-out.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC'11, June 5-10, 2011, San Diego, California, USA

Copyright © 2011 ACM 978-1-4503-0636-2/11/06...$10.00

860

Statistics show that close to 50% of chips require additional
unplanned tape-outs because of functional bugs [1]. Given
this and facing condensing schedules, it is not unusual for
project schedules to specify several planned tape-outs at in-
termediate stages of the project before the final release of
the system. As a result, an implementation of the system
on silicon running at real-time speed is available to serve the
development stage known as post-silicon validation. Tradi-
tionally, this stage is used to provide a stamp of approval
for the design, aiming to expose any remaining electrical de-
sign flaws, catch the few functional bugs that escape into
silicon, validate the system’s performance, enable closure of
firmware and system-software, and help characterize produc-
tion issues. These days however, intermediate silicon proto-
types need to play a more significant role in design lifecycle,
and also serve as the next-level vehicles for functional veri-
fication of the system.

Post-silicon is getting a lot of attention in the hardware
verification community in recent years [12, 13], but this at-
tention is focused on the on-line checking and debugging ca-
pabilities of the silicon platforms (e.g., [2, 8, 11, 17, 9]). Very
little has been published on post—silicon validation method-
ologies (e.g., [14, 3]) and other aspects of post-silicon vali-
dation, such as stimuli generation [3] and coverage [4].

Post-silicon validation is carried out by highly experi-
enced teams of designers and domain experts, deploying a
wide range of testing methods: from starter sets of simple
tests, through massively pre-generated buckets of tests [14],
specialized test-applications, exercisers [15], and layers of
the system’s software stack (i.e., OS, applications).

Post-silicon validation uses a variety of platforms, ranging
from the first manufactured wafers to a series of experimen-
tally constructed configurations of the system. These plat-
forms are characterized by high manufacturing costs and
relatively low availability. Also, when compared to simu-
lation platforms, they offer real-time execution speed, but
low dynamic observability into the system’s state. A related
limitation is the high overhead for loading and offloading
memory and state information, in particular for a bare-metal
system, where no OS services are available. Finally, some
post-silicon platforms (e.g., on wafer) provide very limited
memory space for programs and data.

The characteristics of the post-silicon platforms create
challenges and impose tradeoffs that shape the way these
platforms are used for functional verification. While post-
silicon platforms offer a huge number of execution cycles,
their low availability and high cost calls for high utilization
in terms of maximizing the time spent in executing test-

46.4

cases and minimizing overhead. The overhead associated
with loading a test image onto the platform may become
a bottleneck, in particular for bare-metal platforms. Pack-
aging a large number of pre-generated tests together would
reduce the number of required loads and thus mitigate the
overhead. However, this method requires sophisticated in-
frastructure to enable efficient synchronization and commu-
nication between a large test generation farm and the tested
system. Alternatively, tests could be generated on the tested
system by a post-silicon ezerciser [15], thus eliminate en-
tirely the need to be loaded on the platform. An exerciser
is an application that once loaded to the system, continu-
ously generates test-cases, executes them, and checks their
results. The on-platform test-generation process can signif-
icantly reduce the number of cycles left for the execution
of test-cases, thus threatening to eliminate the advantage
of the silicon prototype as a verification platform. Conse-
quently, an on-platform test generation engine must be fast
and light, and therefore simple, compared to technologies
used for pre-silicon verification.

The requirement for simplicity goes beyond the utiliza-
tion issue. The low observability makes hardware failures
extremely hard to debug and therefore simple software must
be used to ease the effort. In addition, we’d like to deploy
the tool in the very early stages of the post-silicon valida-
tion effort when the OS cannot yet be run on the system and
“complex” operations such as reading files from an I/O de-
vice are not supported. The limited observability, the need
to maximize utilization, and the simplicity requirement sug-
gest that on-platform, simple checking methods would be
preferred. Reference models that are commonly used in pre-
silicon verification are less appealing here: off-platform us-
age would require off-loading test execution results, while
on-line usage would introduce complexity and significantly
reduce the platform’s utilization.

In [3] we presented a unified methodology for pre- and
post-silicon verification and described Threadmill, an ex-
erciser designed to support the post-silicon aspects of this
methodology. Threadmill is a bare-metal exerciser, with a
simple and fast pseudo random generation engine. Thread-
mill is directable, that is it enables fine user direction and
control over the generated tests. It supports various check-
ing methods, and provides mechanisms to assist in analysis
of failures.

The description of Threadmill in [3] focuses on its architec-
ture, and the methodology it supports, as well as some of the
design decisions made to support the unified methodology.
We now describe in detail some of techniques and mecha-
nisms used to overcome the technical challenges induced by
the platform and by Threadmill’s design decisions.

Threadmill’s design point induces several challenges. For
efficiency and simplicity reasons, Threadmill avoids using
techniques that are widely deployed by pre-silicon tools and
are considered essential to enable fine user direction. It does
not use constraint satisfaction techniques and is not sup-
ported by a reference model, neither to assist in test gen-
eration nor to support on-platform checking. The task of
planning (or even predicting) the program’s control flow be-
comes a challenge when a reference model is not available to
support the generation process. For instance, we use a dual
pass technique to generate a branch instruction. The gen-
erator plans the intended target address of the branch but
the construction of the instruction itself is finalized during a

861

preliminary test execution step, when the exact state of the
required resources can be determined.

Some generation processes are too complex to run on the
tested platform. One example is the generation of data for
floating-point operands. Here, large buckets of operand-sets
are generated off-platform, based on user directions, and are
embedded in the exerciser’s image. These sets of operands
are later used by Threadmill while generating on-platform.

Threadmill is a distributed application, generating and
checking distributively on each processor and thread. This
scheme makes it simpler to achieve scalability on massively
parallel systems, but makes the orchestration of correlated
inter-thread, inter-processor, and system scenarios far more
challenging. Implementing the generator engine as a dis-
tributed application means that multi-threaded interacting
test-cases need to be created in a distributed way. Planning
for interaction require synchronization or coordinated deci-
sions between the generator’s threads. An efficient way to
achieve coordination over generation decisions, which should
be random in nature, is to use a shared seed for the dis-
tributed pseudo-random decision procedures. Yet, certain
user directions require that strong synchronization points,
such as barriers and critical sections, are inserted to lock
step the distributed generation processes. However, such
procedures significantly reduce the efficiency of the scheme,
and therefore user directions are analyzed to plan and min-
imize the use of generation-time synchronization points.

Threadmill uses multi-pass consistency checking [15], i.e.,
each test-case is executed multiple times ('passes’) and the
end-of-test values of some system resources (e.g., memory,
registers) are compared for consistency. This method proved
to cope well with the majority of bugs that escape into sili-
con. To support it, the generator must guarantee that gen-
erated scenarios lead to predictable results, at least for the
checked resources. The effectiveness of this method greatly
depends on existing and injected variability between passes
(e.g., in thread scheduling or in operation modes of the sys-
tem). Consistency checking is one way to cope with the chal-
lenge of checking in the absence of a reference model. The
method is also readily amenable to Threadmill’s distributed
test-cycle control scheme. In addition to consistency check-
ing, Threadmill supports user specified self-checking proce-
dures. These are typically designed to verify predictable
aspects of an abstract scenario outlined by the user.

We demonstrate the effectiveness of two of Threadmill’s
generation techniques (using off platform floating-point data
generation and muti-threaded memory collision generation)
through experiments.

The rest of the paper is organized as follows: Section 2
gives an overview of Threadmill. Sections 3, 4, and 5 de-
scribe how Threadmill overcomes specific challenges related
to test generation on a post-silicon platform. Sections 6 and
7 describe Threadmill’s checking and debugging techniques.
Finally, we give our conclusions in Section 8.

2. THREADMILL OVERVIEW

Threadmill is a bare-metal, user-directable exerciser, with
a simple and fast pseudo-random generation engine. The
high-level tool architecture of Threadmill is depicted in Fig-
ure 1. Threadmill was developed to support a unified pre-
and post-silicon verification methodology [3]. Its goal is to
support a verification process guided by a verification plan
by enabling the validation engineers to guide the exerciser

46.4

Exerciser Image

Test Template

Topology

Architectural

1 Model
= (o) | {Gonrion]
System Topology /
& Configuration I i
\
\

Exec"utio n

OS services

Architectural Model
Testing Knowledge

Figure 1: Threadmill architecture

through test-templates.

Threadmill was designed to address the unique character-
istics of the post-silicon platform. To minimize interactions
with the environment we chose to develop Threadmill as
an on-platform exerciser. Thus once Threadmill is loaded
on silicon it will generate, execute, and check tests “indefi-
nitely”. As described above, the lack of debugging capabili-
ties coupled with the typical instability of the bring-up plat-
form induces the requirement for a simple design. Therefore,
Threadmill does not use sophisticated generation techniques
like CSP [7], and does not rely on a reference model.

Threadmill was developed to be simple enough to also
operate on hardware-acceleration platforms. Accelerators
are hardware platforms dedicated to fast RTL simulation.
The unique characteristics of the acceleration platform, as
well as its implication on the verification methodology, are
described in [3, 4] and are beyond the scope of this paper.

The main input to Threadmill is a test-template that spec-
ifies the desired scenarios from a verification plan. The test-
template language of Threadmill is very similar to the lan-
guage of Genesys-Pro [6], IBM’s primary test-generator for
pre-silicon simulation-based core verification. To adhere to
the requirements for simplicity and generation speed, several
constructs that require long generation time, such as events,
are not included in Threadmill’s language. The language en-
ables verification engineers to write the test-templates as an
activity separated from the generator’s development activ-
ity. The language consists of four types of statements: basic
instruction statements, sequencing-control statements, stan-
dard programming constructs, and constraint statements.
Users combine these statements to compose complex test-
templates that capture the essence of the targeted scenarios,
leaving out unnecessary details. This allows them to direct
the generator to a specific area. Other inputs to Thread-
mill are the architectural model, testing knowledge, and the
system topology.

The Threadmill execution process starts with a builder ap-
plication that runs off-line to create an executable ezxerciser
tmage. The role of the builder is to convert the data incorpo-
rated in the test-template and the architectural model into
data structures; these structures are then embedded into the
exerciser image. This scheme eliminates the need to access
files or databases while the exerciser is running.

The exerciser image is composed of three major compo-
nents: a thin OS-like layer of basic services required for
Threadmill’s bare-metal execution; a representation of the
test-template, architectural model and system configuration

862

description as simple data structures; and fixed (test-template
independent) code that is responsible for the exercising. The
image created by the builder is then loaded onto the sili-
con/accelerator platform where the exerciser indefinitely re-
peats the process of 1) generating a random test-case based
on the test-template, the configuration and the architectural
model, 2) executing it, and 3) checking its results.

We designed Threadmill with the intention of focusing
on the validation of multi-threaded designs (as implied by
its name). It does this by generating multi-threaded test-
cases. Since Threadmill runs on-platform, this implies that
Threadmill itself is a distributed, multi-threaded, tool. More-
over, to maximize platform utilization and increase Thread-
mill’s scalability, we implemented Threadmill’s test gener-
ation component as a concurrent program, that is, every
thread generates its own part of the test-case.

3. STATIC BRANCH GENERATION

We designed Threadmill’s test generation component to
be simple and fast. Therefore, we opted for a static test
generator, i.e., one that does not make use of a reference
model. Test generators that use a reference model (such
as Genesys-Pro [6]) can leverage it to provide information
about the expected state of the processor before and after
the generation of each instruction. This information can
be used to create more interesting events. For example, the
generator can decide to select two registers that are expected
to hold large numbers in order to trigger an overflow event
when generating a multiply instruction. The problem then
is how to generate valid and interesting test-cases without
the ability to track the processor’s state. A partial replace-
ment to the reference model could be to explicitly reload
resources, such as registers, with desired values right before
their use within the test-case. However, this solution might
interfere with the generation of the requested scenarios. For
data-oriented events, such as divide-by-zero, a simple yet
effective solution is to reserve registers to hold interesting
values. Of course, the generator has to ensure that the re-
served registers are not modified during the test-case.

Threadmill generates instructions in the order in which
they will be executed. Therefore, it needs to know the out-
come of a conditional branch to know at which address to
generate the next instruction. This is hard to do without a
reference model because it is impossible to evaluate the con-
dition without knowing the expected values of the resources
involved in the condition. One way to overcome this issue
is to create the known machine state by inserting a well-
known instruction sequence into the test so the outcome of
the conditional branch is known at generation time. But
this approach misses many dependency scenarios between
the condition register setting and the branch.

To allow generation of an arbitrary instruction stream
with conditional branches Threadmill completes the con-
struction of the branches in two stages. First, as part of
the general test generation flow, Threadmill decides on the
desired condition result and target address of the branch.
However, instead of placing the branch instruction into the
test stream, it writes an illegal instruction form. This way,
when the test-case is executed, the illegal instruction causes
an illegal instruction interrupt. The handler of this inter-
rupt calls a generation function dedicated to the completion
of the branch instruction generation. This function is in-
voked during the actual run of the test-case, and can there-

46.4

fore observe the current state of the machine. This observed
state is used to construct a condition expression that will
evaluate to the desired result (as determined in the first
stage). For example, suppose that at the first stage the
generator decides that branch A should be taken. At run
time, the illegal instruction interrupt is taken and the han-
dler observes that register R4 contains a positive value. The
handler now constructs a condition that would cause branch
A to be taken if R4 is positive. The handler then replaces
the illegal instruction with the generated branch and the ex-
ecution of the test-case resumes. As described in Section 6,
Threadmill executes each test-case multiple times for check-
ing purposes. In the first execution (which serves as a kind
of reference-model to the following executions) the branch
only runs after the illegal instruction interrupt and the han-
dler. In subsequent executions of the same test, the branch
instruction is not delayed and runs right after its preced-
ing instructions, without the handler. This approach, which
defers some of the generation to the test-case execution, is
very expensive performance-wise and is used sparingly, only
in the cases where a reference model is crucial. The approach
also requires execution of the same test-cases multiple times,
but this multi-pass execution is a worthy cost because of its
other benefits for checking purposes.

4. GENERATING FLOATING-POINT
INSTRUCTIONS

Verification of the floating point unit (FPU) hardware im-
plementation is known as an intricate problem. The numer-
ous corner cases of the vast test space, coupled with the com-
plexity of the implementation of floating point operations,
turn the FPU verification effort into a unique challenge in
the field of processor verification.

FPgen [5] is a test generation framework targeted toward
the verification of the floating-point (fp) datapath, through
the generation of data operands for fp instructions. The
generated data can be directed to trigger a large variety
of events related to the floating point computation, includ-
ing intermediate and final data characteristics. It does this
by leveraging various sophisticated stochastic and analyti-
cal techniques. Such techniques would be too complex for a
computation by our on-platform test generator exerciser.

A simple approach could be to generate random float-
ing point values for the instructions’ inputs. However this
technique has very limited coverage of the more intricate
events related to fp instructions. Our approach uses FP-
gen “off-line” (i.e., not during the on-platform generation)
to construct a large table of interesting data operands for
the various fp instructions. Since this data generation is
done off-line, we are less constrained by performance and
complexity considerations. As part of the image building
process, we select a random choice of data from the table
of fp operands. This is then used to create a smaller table,
which we incorporate into the exerciser image. The exerciser
can now randomly select data for the generated fp instruc-
tions to trigger the interesting events targeted by FPgen.

In order to demonstrate the effectiveness of this method,
we conducted the following experiment: we used Threadmill
to generate tests with 10 different types of fp instructions
(fadd, fsub, fmul, fdiv, fsqrt, in both single and double vari-
ations). We distinguished 22 types of fp number forms - 10
single forms and 12 double forms (such as normalized, denor-

863

malized, -infinity, etc.). We defined a coverage model that
includes the occurrence of all the legal number forms in the
input and outputs operands of the 10 fp instructions. This
model includes 280 different legal events. We ran Thread-
mill in three modes. In the first mode we used random
values for the inputs of the fp instructions; in the second
mode we used only data collected from tables constructed
with FPgen off-line as described above; in the third mode
we used pre-generated data in 70% of the cases, while in the
remainder random values are used. When only random in-
puts were used, 35.71% of legal events were covered. When
only pre-generated data was used, 92.86% of legal events
were covered. In the intermediate mode, where only 70% of
instructions used pre-generated data, 97.5% of legal events
were covered. While this may seem surprising, the reason
for this is that FPgen focuses on generating legal interesting
operand values, and therefore does not cover the illegal forms
well (specifically, out-of-range numbers for single precision
instructions). Therefore, combining pre-generated data with
pure random values gives the best coverage results.

S. CONCURRENT GENERATION OF
CONCURRENT TEST-CASES

The decision to make Threadmill’s generation component
a concurrent program (as described in Section 2) poses a
significant challenge: Threadmill’s generation component is
required to create multi-threaded test-cases in a distributed
way. Multi-threaded test-cases typically include some form
of data sharing among the threads, for example, to bet-
ter stimulate the hardware’s memory coherence mechanisms.
Therefore, the concurrently generating threads must come
up with a shared set of addresses to be used in the respective
thread parts of the test-case. Thus, some form of synchro-
nization between the generating threads is needed. How-
ever, executing synchronizing sequences, such as a barrier
or a critical section, can be very costly performance-wise.

To address this challenge we developed a mechanism that
enables the threads to make joint random decisions with no
synchronization. By “joint” we mean that all threads make
the same decision, while keeping the decision random. This
is achieved by a shared random seed. All the generating
threads are provided with a common random number, cre-
ated by the Threadmill builder. Every generating thread
then makes all joint random generation decisions based on
a random number generator initialized with this joint seed.

The joint random decision mechanism is heavily used in
the generation of the addresses to be used by the threads
when constructing their load/store instructions. In addi-
tion to jointly choosing the shared addresses, the gener-
ating threads must also jointly agree on the collision type
(i.e., write-write, write-read, true- and false-sharing colli-
sions, etc). Our approach is to decide on the type of collision
allowed for every memory location. Thus the whole memory
is mapped to the selected random collision types by using a
joint random hash function, which is created using the joint
random seed.

Without making these decisions jointly, the probability of
generating colliding accesses among the threads is negligible
(assuming the shared memory space is large). To demon-
strate the effectiveness of the joint random collision gen-
eration scheme, we ran Threadmill on three configurations
with 2GB of memory - two, four and eight threads. We

46.4

Threads | Read-Read | Write-Write | Read-Write | Total
2 67 64.4 129 260.4
4 200.4 228.6 387.6 816.6
8 476.8 527.6 833.2 1837.6

Table 1: Collision experiment results

used a test template specifying 50 load/store instructions
per thread. We measured the number of generated collision
events, where a collision event is defined as a pair of accesses
by different threads that target (possibly different) locations
in the same cache line (of size 128 bytes in our design). For
example, suppose thread 0 loads twice from some cache line
and thread 1 stores three times to the same cache line. This
would be counted as 6 read-write collision events. The re-
sults of the experiment are presented in Table 1 where every
row gives the average of 5 different runs.

6. CHECKING TECHNIQUES

The goal of checking is to detect failures as soon as pos-
sible and report as many details as possible to facilitate
an effective debug process towards discovering the failure’s
root cause. In pre-silicon verification, the tests run on a
testbench. The testbench incorporates checkers that detect
most of the failures. These checkers, however, are not avail-
able when running on the post-silicon platform. Specifically,
a reference model is not available to us due to its high com-
plexity. We therefore have to devise and apply alternative
checking methods when running Threadmill. While there
are some checkers in the design itself that are monitored by
the environment (e.g., machine went into an error state), our
focus here is on checking done by the exerciser itself while
it is running on the platform.

Threadmill employs a technique called multi-pass consis-
tency checking. In this technique we execute each generated
test-case several times (passes). After each pass we check
that certain resources, including registers and memory areas,
are consistent and have the same end-of-test values. In this
way, we have the first pass essentially serve as a reference
model. This consistency is guaranteed by restricting the
test-case generation as follows. First, we do not randomly
generate any instruction whose behavior is not fully pre-
dictable. This includes, for instance, the Load-and-reserve
instruction, which does a load and additionally attempts to
establish a reservation in memory. This attempt may suc-
ceed or fail depending on run-time conditions that involve
other threads in the system, and cannot, in general, be pre-
dicted during test-case generation. Second, we forbid any
write-write collisions on checked memory areas since we can-
not predict the order between the colliding write accesses.
Third, we must ensure that any data written to a checked
resource is deterministic, in the sense that it has the same
value in every pass. This is achieved either by having an-
other checked resource serve as the source of the data or
by simply using a constant. There is one exception to the
latter restriction. A thread doing a load from a checked
memory area that is written by another thread could be
reading unpredictable data. In this case, Threadmill will
inject into the test-case an additional instruction that over-
rides the target register with some constant, if that target
register is checked. It is important to note that we do allow
loads from unchecked memory areas as well, in which case

864

the same overriding instruction as above is injected into the
test-case.

It is beneficial to apply the multi-pass consistency check-
ing technique with some variability between the different
passes. Some variability is created automatically, for exam-
ple due to page tables filling up and different cache states.
Between passes Threadmill also modifies certain things that
have no impact on the architectural behavior of the test-
case, such as thread priority. It is important to note that
the consistency checking technique targets bugs that can be
detected due to different operation timing or order in the
various passes. Specifically, the instructions of the different
threads executing their parts of the test in parallel can be ex-
pected to be interleaved differently in different passes. Many
multi-threading related bugs require a fine relative timing of
the threads’ operations. If the problematic timing occurs in
one of the passes then the bug could be observed by the
consistency check. In addition, the ordering of instructions
executing in the pipeline of the same thread can also be dif-
ferent. However, some type of bugs cannot be detected. For
example, a bug in the processor’s datapath causing 14+1=3
will go undetected. However, we do not expect such bugs
to reach the post-silicon stage at all, but rather be detected
at a much earlier stage. Finally, this checking technique fits
Threadmill very well. Threadmill generates multi-threaded
test-cases by having each thread generate and execute its
own part in the test-case. The consistency checking is done
as follows. At the beginning of a pass, each thread initial-
izes its registers, as well as the checked memory areas to
which it is allowed to write. The thread then samples them
for checking at the end of the pass. As a result, no extra
synchronization barriers are needed, which is significant for
achieving good platform utilization.

Self-checking tests is another checking technique used by
Threadmill. In this case, the test scenario has some as-
sertions embedded in it, and any violation of an assertion
triggers a failure. The following example is based on a set
of tests for shared memory multiprocessor by Collier [10].
The system is partitioned into n writer threads, numbered
0 through n-1, and remaining reader threads. Each writer
thread i makes a series of atomic writes to a shared memory
location, with an ascending series of values starting from i,
i+n, i+2n, ..., and so forth. Each reader thread repeatedly
makes an atomic read from the shared memory location, and
figures out from which writer thread it originated from by
using simple modular arithmetic. The reader thread then
asserts that each series of read values originating from the
same writer thread is monotonically non-decreasing.

7. DEBUGGING FAILING TESTS

Debugging failures on a post-silicon platform is a notori-
ously difficult problem. Many of the debugging aids that are
available on simulation platforms cannot be supported on sil-
icon because of the very limited observability into the state
of the design. Furthermore, despite the fact that Thread-
mill itself is a piece of software, standard software debug-
gers cannot be used to debug it because they are typically
too complex for the fragile state that the design is in dur-
ing bring-up. The design’s instability during bring-up can
also cause unexpected behavior of Threadmill’s core soft-
ware components. It is thus often difficult to determine if a
failure is due to a bug in the design or in Threadmill.

An important technique for debugging failures found by

46.4

Threadmill is to recreate the failing execution on a plat-
form that does provide observability into the design - such
as simulation or hardware acceleration. It is not enough just
to re-execute the failing test-case since the bug could also
have occurred during the test generation (which typically
takes much longer than the test execution). In addition, a
Threadmill image generates, executes, and checks a great
number of test-cases, and a bug found through one test-case
could be the result of a fault that occurred during the han-
dling of a previous test-case. Restarting the image from the
start on the simulation/acceleration platform is typically not
possible because it could take days to simulate all the cycles
executed on silicon before the bug occurs. Our approach is to
restart the failing exerciser image on simulation/acceleration
a few test-cases before the failure. We do this by reusing the
corresponding random seeds that were used by the generat-
ing threads (as saved in the limited memory trace).

Another approach for test-case recreation is to take the
test-template of the Threadmill image that caught the bug
and use it with Genesys-Pro, the pre-silicon test genera-
tor counterpart of Threadmill. Genesys-Pro uses a test-
template language similar to Threadmill’s and can be used
to generate test-cases for simulation with the hope that the
bug re-occurs in one of them. This approach does not guar-
antee a precise recreation, but our experience shows that
using the same test-template can get the design into the gen-
eral area of the bug and improve the chances of re-triggering
the fault under the same or similar circumstances.

8. CONCLUSION AND FUTURE WORK

The growing importance of post-silicon validation to the
functional verification process increases the need to utilize
silicon prototypes as a vehicle for functional verification.
We presented Threadmill, a bare-metal exerciser targeting
multi-threaded processors. Threadmill generates test-cases
on platform, employing a variety of novel techniques opti-
mized for the unique characteristics of the silicon platform.

Threadmill is an important enabler of the unified pre-
and post-silicon verification methodology described in [3].
This methodology relies on a shared test plan and similar
test template languages for the pre- and post-silicon test
generators. Threadmill was used in the verification of the
POWERT processor chip. Results of this experience con-
firm our beliefs about the benefits of the various techniques
described in this paper.

We are exploring further opportunities to leverage smart
off-line pre-generation to improve the test quality — focusing
on creating interesting address translation paths. This will
enable Threadmill to become a more important player in
areas such as caches and memory and I/O subsystems.

9. REFERENCES

[1] International technology roadmap for semiconductors
2009 edition - design.
http:/www.itrs.net/Links/2009I1TRS/2009Chapters
_2009Tables/2009_Design.pdf.

[2] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin,

G. Memmi, and D. Miller. A reconfigurable

design-for-debug infrastructure for socs. In Proceedings

of the 43rd Design Automation Conference, pages

7-12, July 2006.

A. Adir, S. Copty, S. Landa, A. Nahir, G. Shurek, and

A. Ziv. A unified methodology for pre-silicon

3

865

(8]

[10]

(1]

[12]

(13]

[14]

(15]

(16]

(17]

verification and post-silicon validation. In Proceedings
of the 2011 Design, Automation and Test in Europe
Conference, pages 1590-1595, 2011.

A. Adir, A. Nahir, A. Ziv, C. Meissner, and

J. Schumann. Reaching coverage closure in post-silicon
validation. In Proceedings of the 6rd Haifa Verification
Conference, pages 60-75, 2010.

M. Aharoni, S. Asaf, L. Fournier, A. Koyfman, and
R. Nagel. FPgen - a deep-knowledge test generator for
floating point verification. In Proceedings of the 8th
High-Level Design Validation and Test Workshop,
pages 17-22, 2003.

M. L. Behm, J. M. Ludden, Y. Lichtenstein,

M. Rimon, and M. Vinov. Industrial experience with
test generation languages for processor verification. In
Proceedings of the 41st Design Automation
Conference, pages 36-40, 2004.

E. Bin, R. Emek, G. Shurek, and A. Ziv. Using a
constraint satisfaction formulation and solution
techniques for random test program generation. /BM
Systems Jouranl, 41(3):386-402, 2002.

K.-h. Chang, I. L. Markov, and V. Bertacco.
Automating post-silicon debugging and repair. In
Proceedings of the 2007 international conference on
Computer-aided design, pages 91-98, November 2007.
K. Chen, S. Malik, and P. Patra. Runtime validation
of memory ordering using constraint graph checking.
In Proceedings of the 14th International Symposium on
High-Performance Computer Architecture, pages
415-426, 2008.

W. W. Collier. Reasoning About Parallel
Architectures. Prentice Hall, 1992.

F. M. De Paula, M. Gort, A. J. Hu, S. J. E. Wilton,
and J. Yang. Backspace: formal analysis for
post-silicon debug. In Proceedings of the 2008
International Conference on Formal Methods in
Computer-Aided Design, pages 1-10, November 2008.
S. Mitra, S. A. Seshia, and N. Nicolici. Post-silicon
validation opportunities, challenges and recent
advances. In Proceedings of the 47th Design
Automation Conference, pages 12-17, 2010.

A. Nahir, A. Ziv, R. Galivanche, A. J. Hu,

M. Abramovici, A. Camilleri, B. Bentley, H. Foster,
V. Bertacco, and S. Kapoor. Bridging pre-silicon
verification and post-silicon validation. In Proceedings
of the 47th Design Automation Conference, pages
94-95, 2010.

H. G. Rotithor. Postsilicon validation methodology for
microprocessors. IEEE Design & Test of Computers,
17(4):77-88, 2000.

J. Storm. Random test generators for microprocessor
design validation, 2006.
http://www.inf.ufrgs.br /emicro.

D. W. Victor et al. Functional verification of the
POWERS5 microprocessor and POWERS5
multiprocessor systems. IBM Journal of Research and
Development, 49(4):541-554, 2005.

I. Wagner and V. Bertacco. Reversi: Post-silicon
validation system for modern microprocessors. In
Proceedings of the IEEE International Conference on
Computer Design, pages 307314, 2008.

46.4

