
Runtime Validation of Memory Ordering Using Constraint Graph Checking

Kaiyu Chen, Sharad Malik and Priyadarsan Patra*
Dept. of Electrical Engineering, Princeton University *Intel Validation Research Lab

{kchen, sharad}@princeton.edu priyadarsan.patra@intel.com

Abstract

An important correctness issue for emerging
multi/many-core shared memory systems is to ensure
that the inter-processor communication through shared
memory conforms to the memory ordering rules, as
specified by the architecture’s memory consistency
model [1]. This presents a significant validation
challenge. Growing system complexity makes it
increasingly hard to identify all deep-state logic bugs in
pre-silicon verification. Further, aggressive technology
scaling makes hardware more vulnerable to dynamic
errors that can only be detected at runtime.

In this paper, we propose an approach for runtime
validation of memory ordering. This allows us to
survive bugs that escape pre-silicon verification, as well
as deal with emerging dynamic errors. Our solution
consists of two parts: 1) at the microarchitecture level,
we add efficient hardware support to capture the
observed ordering among shared-memory operations;
2) we perform online verification of the observed
memory ordering by checking for cycles in the
constraint graph [11, 12]. We combine these to achieve
end-to-end correctness validation of the system
execution with respect to the memory ordering
specification. There are several challenges that need to
be addressed to make this approach practical. We
describe these, as well as optimization techniques for
reducing the hardware overhead. Estimates obtained
from preliminary chip multiprocessor simulation
experiments show that the proposed techniques are very
effective in achieving acceptable hardware overhead
and minimal performance impact.

1. Introduction
Validation challenges for memory ordering: On
emerging multi/many-core shared memory systems, the
memory accesses must conform to the memory ordering
rules specified in the architecture’s memory consistency
model [1]. Maintaining the correct memory ordering in
a shared-memory system requires careful consideration
of numerous issues in designing system components
and their interfaces, which imposes a significant

validation challenge. An indicator of this complexity is
that memory interface is the largest subclass of silicon
errors reported in processor errata [2]. In addition to
possible failures due to design errors, due to aggressive
technology scaling, processors are becoming more
vulnerable to dynamic faults resulting from thermal
conditions, aging, or particle hits [3].
Limitations of existing techniques: There has been
substantial previous research on the problem of
verifying shared memory systems. Formal verification
techniques such as model checking have been used to
assist the analysis of memory protocols [4]. However,
this has limited practical success due to the inherent
intractability of checking memory ordering [5]. In
practice, designers rely on simulation and testing based
methods to examine the memory system behavior [6, 7].
However, with these methods the coverage is limited
because it is hard for the test program to exercise all
possible runtime behaviors. Both the formal verification
and simulation methods are ineffective in detecting
possible dynamic errors that occur post-deployment.

Existing systems have also employed other
techniques to improve reliability, such as using
specialized techniques for protecting local components.
However, these are ad-hoc and expensive to adequately
protect the various system components against
operation-time errors.
Our contributions: In this paper, we propose an
approach for runtime validation of memory ordering,
which allows us to overcome the above limitations and
provide a runtime guarantee of the correctness of the
actual system behavior. Our solution consists of two
parts: 1) at the micro-architectural level, we add
efficient hardware support at each processor node and
the cache controller to capture the ordering among
shared-memory operations; 2) we perform online
verification of observed architectural results by
checking for cycles in the constraint graph [11, 12, 13]
that represents the memory ordering rules. This ensures
the end-to-end correctness of the memory operations.

A straightforward implementation of this scheme
would track all executed memory instructions and their
dynamic ordering relationships. However, there are
significant challenges to make this approach practical.

415978-1-4244-2070-4/08/$25.00 ©2008 IEEE

1. The first is to bound the scope of the checking. In
theory, the size of the cycle in the constraint graph may
be unbounded. Thus, the check seems possible only
after the program completes execution. Checking the
entire program execution as done in offline analysis has
limited value because real applications may run billions
of instructions before completion. Ideally we would
like to check short execution intervals of the program
and recover from errors promptly.
2. The second arises from the size of the constraint
graph. Even if we could overcome the first challenge
and check short program execution intervals, each
memory operation would result in a vertex in the
constraint graph. Due to the high instruction execution
rate in modern processors, including all executed
memory instructions in the constraint graph results in
very large storage requirement and latency for cycle
checking, even for relatively short execution intervals.

We describe techniques to address these challenges
and to allow error recovery using check-pointing
schemes (e.g., [9, 10]). We evaluate our design through
simulation of a chip multiprocessor (CMP) system with
selected parallel programs from the SPLASH2
benchmark suite [24].

The rest of the paper is organized as follows.
Section 2 provides some background for this work.
Section 3 presents the overall runtime validation
approach. Section 4 addresses the implementation
issues and design optimization techniques. The
experimental results are presented in Section 5. Section
6 discusses the related work, and Section 7 provides
some conclusions. Additional details on design issues
and experimental results, omitted here due to lack of
space, are available in an extended technical report [30].

2. Background
2.1. Memory models

The most intuitive memory ordering model is
Sequential Consistency (SC). SC requires that all
memory operations appear to execute in a total order,
where instructions from the same processor must follow
the corresponding program order. For conventional
shared memory multiprocessors, a straightforward
implementation of the SC model would serialize all
memory references and preclude high-performance
optimizations such as out of order execution and
memory bypassing or forwarding. To improve the
performance, more relaxed memory ordering models
have been proposed. The basic idea is to allow two
memory operations to be performed out of program
order, so that the subsequent instructions do not have to
wait for a stalled memory operation to complete before
they can be processed. For example, Total Store
Ordering (TSO) relaxes the store-to-load ordering. As

one of the most relaxed memory models, Weak
Ordering (WO) imposes no ordering constraint between
two memory operations on the same processor. When
needed in programming, memory barrier (MB)/fence
instructions are provided to enforce the ordering
between preceding and subsequent memory operations.
A categorization of the memory ordering relaxation in
existing memory models is provided in the survey by
Adve and Gharachorloo [1].
2.2 Constraint graph models

Given the ordering rules specified in different
memory models, an effective method for reasoning
about the correctness of multiprocessor execution is to
use the constraint graph [11, 12, 13]. A constraint graph
is a directed graph whose vertices represent the dynamic
instruction instances in program execution. (In this
paper we use instruction synonymously with operation.
In practice an instruction can involve multiple memory
operations, in which case we will use separate graph
vertices for each operation.) The edges indicate the
ordering relationships among these instructions.
Specifically, the edges can be classified into the
following categories.
1. Consistency edges: These edges reflect the ordering
constraints placed by the memory model among
instructions in the same processor. For example, there is
a consistency edge between any two adjacent memory
instructions in the SC model, while the edge from a
store to a load is relaxed in the TSO model [1].
2. Dependence edges: These edges represent the data
dependence order among conflicting instructions
(accesses to the same address), including the usual
Read-after-Write (RAW), Write-after-Write (WAW),
and Write-after-Read (WAR) dependences. These may
be intra-processor or inter-processor edges.

Figure 1 shows examples of constraint graphs for
different memory models. We denote the consistency
edges by solid lines, and the dependence edges by
dotted lines. The ordering relation is transitive, and
redundant edges are not shown for clarity. As has been
shown in previous work, this graph is acyclic iff the
parallel execution satisfies the memory ordering rules.
Thus this acyclic property can be used to detect a
memory ordering error.

This graph checking scheme has been effectively
used in industry in testing and simulation based
verification. For example, it has been applied for
checking Alpha’s Weak Ordering (WO) model [6],
Sun’s TSO model [7] and Intel’s Itanium [8]. However,
it has a limitation due to the lack of modeling for write
non-atomicity. On architectures that allow the writes to
be visible in different orders to different processors
(e.g., IA-32), we may get a false-positive error (where a
constraint graph cycle is introduced by a store’s

416

inconsistent visibility orders on
different processors). Such false-
positive errors will incur additional
performance penalty due to
unnecessary error handling, but will
not affect the execution correctness.
Even though TSO does not have write
atomicity, previous work has shown
the false-positive errors can be avoided
by not including the intra-processor
store-to-load dependence edge in the
global constraint graph [15].
2.3 Targeted errors and design assumptions

We target multiprocessor execution errors that
violate the memory ordering model. These may be
caused by various design bugs or dynamic faults in any
shared-memory system component [6, 7, 8], e.g., a
micro-architecture design flaw that allows a memory
operation to be performed too early or a soft-error in the
interconnection network that causes two messages to be
incorrectly re-ordered. Our design builds on other well-
established techniques to address additional
requirements for correct operation of a multi-core
shared-memory system. We make the following
assumptions about the target architecture.
1. Similar to other work in the context of memory
ordering verification [6, 7, 8, 13] we are only concerned
with the memory ordering issues. To ensure the
complete correctness of the multithreaded execution,
one would also have to make sure the data/control flow
dependences among intra-processor ALU/branch
instructions are preserved. We assume these are
enforced by local schemes at each processor core. In
practice, uniprocessor verification has been well-
addressed in both pre- and post-silicon verification.
Moreover, recently dynamic methods such as DIVA
[14] have been proposed to improve uniprocessor
reliability.
2. We assume that the target system is cache coherent.
Most modern multiprocessor systems support this with a
hardware cache coherence protocol. In some of the
literature, cache coherence is confused with memory
consistency, but strictly speaking they are different
issues [1, 22]. The cache coherence problem per se is
less challenging, as it is only concerned with the access
ordering of a single location. In pre/post-silicon
verification, techniques such as random test generation
using false sharing and action/check pairs have been
developed to effectively address this problem [16].
Several dynamic verification techniques have also been
proposed to ensure cache coherence at runtime, by
using a validation protocol or checking the system wide
invariants (e.g., [17, 18]). We also assume that the
cache/memory is protected by techniques such as ECC,

so that for a validated memory access order, the data is
not corrupted between memory accesses and the correct
value flow is guaranteed.

3. Runtime validation method
Due to subtle interactions among many complex

system components, a violation of the memory ordering
model may be due to various reasons, and it is tedious
and expensive to examine each individual component to
detect the error. Further, local observation of memory
operations may not accurately reflect their global
behavior, e.g., two memory operations performed
locally in program order may be perceived as out-of-
order by remote processors. These factors motivate us
to perform global checking of the memory ordering
constraints.

To accurately capture the global behavior, we
propose to dynamically construct and check the
constraint graph on-the-fly. Naively, we should collect
all executed memory instructions, add the consistency
and dependence edges among them as observed at
runtime, then build the constraint graph and check for a
cycle. However, as pointed out in Section 1, there are
two major problems that render this straightforward
implementation impractical. First, the size of the cycle
may be unbounded. Thus, the check seems possible
only at the end of program execution, which is
infeasible for large programs. Second, we need to
reduce the graph size. Even for relatively short
execution intervals, due to the high instruction
execution rate in modern processors, if we include all
executed memory instructions, it will still result in very
large storage requirement and latency for cycle
checking.

To enable the proposed runtime validation approach,
it is essential to solve these problems and come up with
low runtime/hardware overhead graph construction and
checking schemes. The first challenge is addressed by a
periodic graph slicing technique described in Section
4.4. In this section, we address the second challenge,
i.e., reducing the graph size.

ST A

ST B

LD D

LD C

ST A

P1 P2

LD A

ST B

ST C

ST A

ST B

LD D

LD C

ST A

P1 P2

LD A

ST B

ST C

ST A

ST B

MB

LD C

ST A

P1 P2

LD A

ST B

ST C

ST A

ST B

LD D

LD C

ST A

P1 P2

LD A

ST B

ST C

ST A

ST B

LD D

LD C

ST A

P1 P2

LD A

ST B

ST C

ST A

ST B

MB

LD C

ST A

P1 P2

LD A

ST B

ST C

(a) Sequential Consistency (b) Total Store Ordering (c) Weak Ordering

Figure 1: Constraint Graph Examples

417

Constraint graph reduction: We propose to use an
equivalent but significantly reduced graph for detecting
the existence of cycles. Specifically, we show that for
SC and TSO we only need to include instructions with
inter-processor dependence edges. For WO, we also
need to include the memory barrier instructions. We
show the correctness of this technique as follows: for
each considered memory model (SC/TSO/WO), we
enumerate the types of consistency edges and construct
the equivalent reduced graph for detecting cycles.
Formal proofs are omitted here for brevity (available in
the extended version [30]).
Algorithm and Proof sketch: Let each memory access
have a unique identifier <P, ID>, which indicates the
processor number P and program order ID. Let <p, i1>
and <p, i2> be two successive memory accesses that
have observed inter-processor dependence edges for
processor p, with i1 < i2. There may be other memory
accesses <p, i> with i1< i < i2, however we now show
that we do need not include them and the associated
edges. In the reduced graph, we only need to keep the
vertices with inter-processor dependence edges (e.g.,
<p, i1> and <p, i2>) and can derive the necessary local
edges among them as follows:
1. For SC: Since there is a consistency edge between
any two consecutive memory accesses in the SC model,
in the reduced graph, we add an edge from <p, i1> to
<p, i2> which is the transitive closure of all consistency
edges and intra-processor dependence edges between
<p, i1> and <p, i2>.
2. For TSO: In TSO the consistency edge from a ST to a
succeeding LD operation is relaxed. Arvind and
Maessen show that the intra-processor dependence edge
between a ST to a succeeding LD operation to the same
address also need to be excluded in the global constraint
graph [15]. Thus, the intra-processor edges between
memory operations are those captured by the patterns in
Figure 2: (a) gives the canonical form of a general
instruction sequence, where an oval in the figure
denotes a group of consecutive LDs/STs; (b)
summarizes the 5 cases of possible intra-processor
edges. This enables us to determine the transitive
closure of the intra-processor edges as follows. If <p,
i2> is a store (case 2&3) or <p, i1> is a load (case 1&3),
then there is an edge in the reduced graph from <p, i1>
to <p, i2>. In addition, if <p, i1> is a load and <p, i2> is
a store (case 4), we will also need to add an edge from
<p, i1> to the first load instruction after <p, i2> that
appears in the observed inter-processor dependence
edges. Similarly, if <p, i1> is a store and <p, i2> is a
load (case 5), then we will also need to add an edge
from <p, i1> to the first store instruction after <p, i2>
that appears in the observed inter-processor dependence
edges. We note that for the “naïve” constraint graph

modeling of TSO [15],
where the intra-
processor dependence
edge from a ST to a
succeeding LD to the
same address is
included in the
constraint graph, this
intra-processor
dependence edge will
need to be stored
locally at an additional
overhead. With this
additional information
the reduced graph can
be constructed
similarly.
3. For WO: If there is a memory barrier instruction, <p,
m> between <p, i1> and <p, i2>, we add an edge in the
reduced graph between <p, i1> and <p, m> and also
between <p, m> and <p, i2>.This follows directly from
the semantics of the barrier instruction.

Our experiments show that the reduced graph has
orders of magnitude fewer vertices than the naively
built graph for the complete instruction execution trace.
This is critical to make this approach practical. This
reduction benefits from the fact that real applications
are often optimized to reduce inter-processor interaction
through shared data for performance reasons. In the
case that different processors run heterogeneous
applications that have no inter-processor dependences,
no global constraint graph needs to be built and
checked.

4. Hardware design and implementation
4.1 Design overview

The overall system architecture is shown in Figure 3.
For clarity in this discussion, we assume our baseline
architecture is a single-chip CMP system with the SC
model. The hardware support for runtime validation
consists of the following components:
1) We augment each processor pipeline to assign a
monotonically increasing Memory Instruction Identifier

LD

LD LD ST LD

LD ST ST

LD ST

ST LD

ST LD

LD ST

ST

ST

LD

LD

LD

LD

(1) (2) (3)

(4) (5)

LD

LD

LD

LD LD ST LD

LD ST ST

LD ST LD

LD ST ST

LD ST

ST LD

ST LD

LD ST

LD ST

ST LD

ST LD

LD ST

ST

ST

ST

ST

LD

LD

LD

LD

LD

LD

LD

LD

(1) (2) (3)

(4) (5)

(a) (b)

Figure 2: Intra-Processor
Edges in TSO Model

Figure 3: Overall System Architecture

L2 Cache

Interconnection Network

Processor Core

L1 Cache
Cache Controller

Local
Observer

Central
Graph

Checker

Processor Core

L1 Cache
Cache Controller

Local
Observer

L2 Cache

Interconnection Network

Processor Core

L1 Cache
Cache Controller

Local
Observer

Central
Graph

Checker

Processor Core

L1 Cache
Cache Controller

Local
Observer

418

(MID) to each dynamic memory instruction when it is
dispatched. Since instructions are dispatched in program
order, given any two memory instructions, we can
determine their relative order in the program by
comparing their MIDs. The wraparound of MID can be
handled by stalling the processor until all its outstanding
memory operations are retired and validated at a time
established by the method described in Section 4.4.
2) We add additional hardware to the cache structure as
follows. (Their functionality is described in Section
4.2.) We add additional fields to L1 cache blocks to
record the local memory access history and augment the
L1 cache controller logic to record the locally observed
inter-processor dependence edges. To cope with cache
eviction and message forwarding in directory-based
coherence protocols, we add a small fully associative
cache at L2 to keep the access record of evicted L1 data
blocks, and also augment the L2 cache
directory/controller to pass the message sender’s
identity to forwarded coherence request and
acknowledgement messages.
3) We store the dependence edges observed by each
processor in a local hardware buffer. The locally
collected information is sent to a central graph checker
periodically to test the acyclic property. The operation
of the central graph checker is described in Section 4.3.
If an error is detected, the central checker notifies all
processor nodes to invoke the error recovery
mechanisms described in Section 4.5.

To effectively hide the runtime validation latency,
the constraint graph construction and checking is
performed in parallel with the normal computation and
check-pointing process. Figure 4 shows the timing
diagram (Gantt Chart) of our proposed scheme. Using
the constraint graph slicing technique proposed in
Section 4.4, we can perform checking for short program
execution intervals. When the parallel program chunk1
is executed during the time interval [T0, T1], the edges
for the resulting constraint graph k are observed locally
at each processor. During the next interval [T1, T2],
while the program chunk2 continues execution and the
resulting constraint graph k+1 is observed, the
constraint graph k is built at the central checker. During

the interval [T2, T3], the constraint graph k is examined
by the central checker. Suppose we find a cycle in graph
k+1 at T4, then there is an error detected and we resume
the system execution from the last check-point created
at T1.
4.2 Constraint graph edge construction

In constructing the inter-processor edges, we exploit
the fact that each type of edge results in different cache
coherence events:
1. A RAW edge corresponds to a read miss, and
involves transferring the data block modified by the
writer to the reader’s local cache.
2. A WAW edge corresponds to a write miss, and also
involves updating the second writer’s local cache with
the modified data block.
3. A WAR edge corresponds to an upgrade of the cache
access permission if the second writer already has the
data block in shared state, or a write miss otherwise.

Therefore, we can piggyback on the cache coherence
transactions associated with these events to achieve low
performance overhead in constructing the inter-
processor dependence edges. Similar dependence
tracking mechanisms have been used in previous works
in the area of deterministic replay and race detection
[25, 26, 27]. The basic idea is that we first augment
each cache block to record the MID of the last local
load/store instruction that accessed this block. Then the
cache controller piggybacks this information when it
generates a new coherence message, which is
augmented to reflect a global ID (consisting of a tuple
<PID (Processor Identifier), MID>) of the instruction
involved in the coherence activity. When the receiving
processor sees this message, it can construct the
corresponding inter-processor dependence edge by
looking up the piggybacked information and its own
local access history. For example, in Figure 5(b), when
“ST Y” is performed on P2, we will piggyback its ID
<2, 2> to the generated invalidation message. When this
message reaches P1, the observer at P1 can then
construct the dependence edge <1, 4>→<2, 2>. One can
guarantee the correct delivery of the augmented
coherence messages by using ECC-like or residue-code
techniques, and prevent dropped messages by assigning
consecutive IDs to each message or by enforcing a
request time-out scheme [19].

Nevertheless, there are additional complexities that
need to be addressed in a practical cache design:
1) False sharing: False sharing occurs when two
processors reference different data items within the
same cache line. This may create a false dependence
edge if we only use the cache line address to identify
conflicting accesses. If this edge is involved in a cycle,
we will get a false positive error, which does not affect

Observe Build Check

TimeT1 T2 T3 T4 T5T0

Observe Build Check
Observe Build

Observe

X

Chunk1 Chunk2 Chunk3 Chunk4 Chunk2

Observe Build Check

Parallel Program
Execution Intervals

Create Check-point N Resume from Check-point N

Graphk
Graphk+1
Graphk+2
Graphk+3
Graphk’

Observe Build Check

TimeT1 T2 T3 T4 T5T0

Observe Build Check
Observe Build

Observe

X

Chunk1 Chunk2 Chunk3 Chunk4 Chunk2

Observe Build Check

Parallel Program
Execution Intervals

Create Check-point N Resume from Check-point N

Graphk
Graphk+1
Graphk+2
Graphk+3
Graphk’

Figure 4: Validation Timing Diagram

419

correctness but incurs a performance
penalty. To avoid this, we can augment
the coherence message with the offset of
the actual address of the requested data
in the cache line, and track the
dependence at a finer data granularity
level. This involves a performance vs.
storage tradeoff.
2) Cache eviction: When a data block is
evicted from a processor’s local cache
due to a conflict, the associated local
access history is lost and we may not be
able to construct the corresponding edge
for a later coherence request. To address this problem,
we add a small fully associative “evicted” cache to keep
the access record of the evicted L1 data blocks from
each processor. When this evicted cache is full, we will
need to stall the pipeline until the validation is done for
previous execution, which causes a performance
penalty. To avoid such stalls, we use several
optimization techniques to reduce the evicted cache size
by filtering and recycling the entries. These are omitted
here for brevity (available in the extended version [30]).

Using the above scheme, each processor core
collects a list of the locally observed inter-processor
dependence edges and records them in a hardware
buffer. Each entry in the buffer contains the local
instruction MID and its type (e.g., LD or ST), the
remote instruction’s global ID, plus additional fields to
denote the edge attributes (e.g., incoming or outgoing).
As described in Section 3, we can construct the
transitive closure of the intra-processor edges according
to the specific memory ordering rules. To save the
hardware and communication bandwidth overhead, we
do not explicitly store this transitive closure at each
processor, but construct it at the central checker. For the
example shown in Figure 5, the edge <1,2>→<1,4> will
be added for P1’s instructions. The resulting constraint
graph is shown in Figure 5(c). We can see that in this
case the execution violates the SC ordering, and the
resulting cycle is detected using the following method.
4.3 Constraint graph checking

After each processor has collected the locally
observed edges, the records are periodically transferred
to a central checker to build the complete graph and
perform the checking. To speed up this process, the
record transfer and global graph construction is done
on-the-fly using dedicated point-to-point links to the
central checker. This is feasible as the communication
between the local nodes and the central checker does
not involve complicated arbitration schemes. If no such
link is available, we can utilize the existing inter-

connect network when there is available network
bandwidth.

To come up with efficient design for the central
graph checker, we measured the actual constraint graph
size using simulation of the selected SPLASH2
benchmarks. Our experiment shows that the graph is
fairly sparse, with the number of edges linear in the
number of vertices. Thus, we use an adjacency-list
(edge-list) representation for the graph and use a
dedicated hardware engine to check for cycles using
depth-first search (DFS). This method has complexity
O(E), where E is the number of the graph edges. Details
on straightforward implementations are omitted for
brevity, e.g. hardware linked list to represent the edge
list and a state machine for a DFS-based cycle checker.
As shown in the experiment section, the central checker
has more than enough time to finish its operation during
the typical validation interval.
4.4 Constraint graph slicing

Although the constraint graph reduction method
effectively reduces the graph size by several orders of
magnitude, for a real application that may contain
billions of instructions, it is still too expensive or
impossible to construct/check the complete constraint
graph online. To support effective online checking, it is
desirable to limit the length of the execution interval
that needs to be tracked continuously. For this we need
to know when an observed sub-graph can be checked
for cycles and pruned away safely without affecting the
correctness of future validations as the program
execution continues. This simplifies the hardware
design for the graph checker, reduces the checking
latency and supports prompt error detection/recovery. It
also enables us to de-allocate stale records in hardware
resources such as the edge buffer and the evicted cache.

To tackle this problem, we propose a dynamic graph
slicing technique, as illustrated in Figure 6. The
motivation is that a cycle in the constraint graph is
potentially caused by instruction reordering in a local
processor, cache hierarchy or interconnection network.
Intuitively, given the limited instruction reorder window

<1, 2> STX

<1, 4> LD Y

<2, 2> ST Y

<2,4> LD X

[1] LD A

[4] LD Y

[5] LD C

[6] LD D

[2] ST X

[3] ST B

P1 P2

[1] ST E

[2] ST Y

[3] LD E

[4] LD X

[5] ST F

T
im

e

[1] LD A

[2] ST X

[3] ST B

[4] LD Y

[5] LD C

[6] LD D

P1 P2

[1] ST E

[2] ST Y

[3] LD E

[4] LD X

[5] ST F

Program
 O

rder

<1, 2> STX

<1, 4> LD Y

<2, 2> ST Y

<2,4> LD X

<1, 2> STX

<1, 4> LD Y

<2, 2> ST Y

<2,4> LD X

[1] LD A

[4] LD Y

[5] LD C

[6] LD D

[2] ST X

[3] ST B

P1 P2

[1] ST E

[2] ST Y

[3] LD E

[4] LD X

[5] ST F

T
im

e

[1] LD A

[4] LD Y

[5] LD C

[6] LD D

[2] ST X

[3] ST B

P1 P2

[1] ST E

[2] ST Y

[3] LD E

[4] LD X

[5] ST F

T
im

e

[1] LD A

[2] ST X

[3] ST B

[4] LD Y

[5] LD C

[6] LD D

P1 P2

[1] ST E

[2] ST Y

[3] LD E

[4] LD X

[5] ST F

Program
 O

rder

[1] LD A

[2] ST X

[3] ST B

[4] LD Y

[5] LD C

[6] LD D

P1 P2

[1] ST E

[2] ST Y

[3] LD E

[4] LD X

[5] ST F

Program
 O

rder

(a) Program Instructions (b) Execution Sequence (c) Reduced Graph

Figure 5: SC Constraint Graph Construction Example

420

size and message traversal time in practical systems, it
is unlikely to have an unbounded cycle in real
execution. Further, we exploit the following
observation: if a sub-graph in the constraint graph can
be identified to not have an incoming edge from
subsequent instructions, this sub-graph can be pruned
away since it can never participate in a cycle that
involves instructions executed in the future. This forms
the basic idea of our graph slicing technique described
here.

To be able to reason about the execution states of
different processors based on a common logical time
base, we assume that a loosely synchronized physical
clock is available on the target system. This has been
conveniently used in previous multiprocessor research
work [9] and is relatively easy to implement on a CMP
system. We also developed alternative techniques that
relax this assumption. These are omitted here for
brevity (available in the extended version [30]).

We perform the proposed validation at the end of
fixed logical time intervals. Let us consider the case
illustrated in Figure 6, which shows the execution trace
of the two processors at the end of a validation interval
T. Processor 1 has retired instructions up to instruction
10. Instruction 11 is not executed yet, while instruction
12 is executed out-of-order before instruction 11.
Processor 2 has retired instructions up to instruction 11,
and we have observed a WAR edge from <1, 12> to <2,
10>. Our goal is to identify a boundary in the retired
instructions, such that the constraint sub-graph
observed before the boundary can be safely validated
and removed from future checking. In this case there
can be only forward directed edges from instructions
before the boundary to instructions after the boundary.
Since such a forward edge represents the “happens
before” causal relationship in a parallel system [20], we
call this boundary the Forward Causality Frontier
(FCF). The key property of FCF is that there is no back-
edge across the boundary, so that it is not possible to
have a cycle that contains both instructions before and
after the boundary. The FCF for the given example is
shown in Figure 6. We need to exclude instruction <2,
10>, since there is a back edge from <1, 12> to it. In
fact, we can see that as time moves forward, there may
be another WAR edge from <2, 11> to <1, 11>, which
will form a cycle and violate the memory ordering
model.

A key observation for us to identify an FCF is that
the instructions at the FCF boundary are the oldest
retired instructions that are reachable from any unretired
instruction. By “retire”, we mean the instruction has left
the local write buffer and has been globally performed
(the coherence transactions generated by the read/write
request should have all been acknowledged). Based on

this, for the example shown in Figure 6, we can
efficiently implement a dynamic graph slicing protocol
as follows:
1) At the end of a validation interval T, each processor
Pi sends the following information to the central
checker: a) the ID of the oldest unretired instruction at
Pi (where all instructions before it must have been
retired); b) the list of locally observed edges in the order
sorted by the IDs of Pi’s local instructions that appear in
the recorded edge list.
2) The central checker collects the records reported by
all the processors and computes the FCF as follows: for
each processor Pi, it scans the reported edge list and
constructs a vector ID that contains an instruction ID for
each processor Pj (j≠i), which reflects the minimal ID
among all Pj’s instructions that are connected by inter-
processor edges originated from Pi’s unretired
instructions. For simplicity, we can set the entry for Pi
itself in the vector as the ID of Pi’s oldest unretired
instruction. For the example shown in Figure 6, at the
end of interval T, the vector ID for P1 is [11, 10], and
the vector ID for P2 is [10, 12]. It then calculates the
point-wise minimum of all vector IDs, which should be
the corresponding FCF. For the example shown in
Figure 6, the FCF is calculated as [10, 10]. In this case
the sub-graph formed by instructions before instruction
10 on P1 and instruction 10 on P2 can be reduced.
3) The central checker validates the acyclic property of
the identified sub-graph. If no error is detected, the
central checker notifies each processor about the ID of
instructions at the identified FCF, so that they can free
the observed records for the already validated
instructions. This notification serves as the
acknowledgement of this validation phase.

In theory, there may be cases where there is a long
path from an unretired instruction to a retired instruction
through edges between other retired instructions. For
example, suppose there is an edge from <2, 11> to <1,
9> in Figure 6, then <1, 9> is reachable from <1, 12>
through the path <1, 12> → <2, 10> → <2, 11> → <1,

Processor-1
…

(9) load C

(10) store D

(11) store B

(12) load A

Processor-2

…

(10) store A

(11) load B

(12) Store E

(13) load Dwar

Retired instructions Forward
Causality
Frontier

war

Processor-1
…

(9) load C

(10) store D

(11) store B

(12) load A

Processor-2

…

(10) store A

(11) load B

(12) Store E

(13) load Dwar

Retired instructions Forward
Causality
Frontier

war

Figure 6: Example of Constraint Graph Slicing

421

9>. In this case the FCF should be located at instruction
<1, 9> and <2, 10>. To count in these special cases, we
extend Step 2 above to perform a fixed-point iterative
computation of the FCF: the procedure is the same
except that at the beginning of each iteration, we need
to update a processor Pi’s vector ID, such that it reflects
the minimal ID of other processor’s instructions that are
successors of any Pi’s instruction after the previously
computed FCF. For the example in Figure 6, the FCF
computed in the first iteration would be [10, 10].
Suppose we have the edge from <2, 11> to <1, 9>, then
in the second iteration, we first need to double check
P2’s recorded edges after <2, 10> and update P2’s
vector ID as [9, 10], because <1, 9> is reachable from
<2, 11>. Then we repeat the remaining operation
described for step 2 above. The computation stops when
the calculated FCF no longer changes. In the worst case,
the FCF may get back to the starting instructions.
However, in practice there are rarely long dependence
chains from unretired instructions to retired instructions,
and the computation of FCF converges quickly in
mostly one and occasionally two or three iterations.

To prove the correctness of the proposed graph
slicing technique, below we show that there is no back-
edge across the FCF derived in the scheme above.
Formal proofs are omitted here for brevity (available in
the extended version [30]).
Proof sketch: 1) Since all instructions before the
identified boundary have already retired and are
globally performed by the end of the validation interval
T, they should have been made visible to all other
processors (i.e., the coherence transactions generated by
the read/write request should have all been
acknowledged). Therefore, all incoming edges to these
instructions should have been observed using the
methods described in Section 4.2 and it is not possible
for them to have an additional incoming edge that
originates from instructions executed after the interval
T.
2) When a new instruction is executed after the interval
T, the generated coherence requests may infer an
additional causal dependence on a retired instruction
(e.g., for the example shown in Figure 6, a “load D”
executed after T at P2 will result in a RAW edge from
<1, 10>). However, they will only be perceived as
“happened after” the retired instruction, and cannot
result in a back edge across the identified boundary.
Note that this argument does not hold for the unretired
instructions. An unretired instruction may be stalled in
the pipeline and waiting to be executed, and the
generated in-flight coherence messages may not have
been observed by other processors yet. Therefore, it is
possible that a back-edge to such an instruction is
observed later and results in a cycle. This is why we

exclude these instructions from the sub-graph that can
be reduced.
3) The vector operation performed by the central
checker in step 2 of the validation protocol effectively
performs a backward reachability analysis in the
currently observed constraint graph, which ensures that
any instruction that is reachable from the unretired
instructions is after the identified boundary. Therefore,
there should be no back edge from instructions after the
identified boundary to instructions preceding the
identified boundary. Combined with fact 1) and 2), we
can see that the identified boundary satisfies the
requirements for the forward causality frontier.
4.5 Error recovery

When an error is detected, we rely on commonly
used check-pointing schemes to resume the execution
from a previously validated state. Since we perform
online checking, the check-pointing scheme should also
be fast and incur low overhead. A good match for these
requirements is the SafetyNet scheme [9].

While it is not the focus of this work, we briefly
discuss the resumption of computation based on the
nature of the expected errors. For transient errors (e.g.
soft errors) the computation is simply repeated, the
probability of the error recurring is low. For permanent
errors (e.g. design errors or permanent device defects),
additional steps will be needed to ensure that the error
does not recur. For example, enforcing a less aggressive
execution mode (e.g., by temporarily serializing the
execution) provides for an alternate constraint graph
that can avoid the recurrence of the error.

5. Experimental results
Simulation environment: We evaluate our proposed
approach through simulation of a dual-core chip
multiprocessor system. Our simulation environment is
built on the Wisconsin Multifacet GEMS simulator
[23]. The baseline system parameters are summarized in
Table-1.
Constraint graph evaluation: We conducted
experiments with 5 programs from the SPLASH-2
parallel benchmark suite [24]. The remaining
SPLASH-2 programs are not included due to
infrastructure issues. Note that the original GEMS

Table 1. System Configuration

Processor Core SPARC V9 processor
4-way , out-of-order

L1 Cache (Private) 64KB, 4-way 64-byte blocks
L2 Cache (Shared) 4MB, 4-way 64-byte blocks
Memory 1G bytes
Coherence Protocol MSI_MOSI_CMP_Directory
Interconnection Network PT_TO_PT

422

implementation only supports SC
execution. The support for non-SC
executions is based on GEMS extensions
described by Meixner et al. [21], e.g., by
adding a write-buffer to model TSO and
allowing out-of-order loads in WO. We
observed a simulation performance
impact similar to what is reported by
them. However, when running some
SPLASH-2 benchmarks, the program
encounters live-locks or execution errors.

To test the error detection capability of
our method, we manually introduced
errors in the system such that it may
execute instructions in illegal order, and
found cycles in the resulting constraint
graphs in various cases. For example,
when performing SC verification, if we
allow out-of-order load/store, we found 4
cycles for FFT and 1 cycle for WATER-
NSQUARED.

Figure 7 shows the maximum number
of vertices of the constructed global
constraint graphs when we perform the
graph slicing and checking scheme
described in Section 4 for SC execution.
The X-axis denotes the size of the
validation interval T (e.g., performing the
checking at every 10K clock cycles).
Figure 8 shows the maximum number of
graph edges.

We can see that number of graph
vertices is relatively small for a given
time interval. For example, for benchmark
RADIX, the graph that we need to check
at the 10K-cycle interval has only 221
vertices at most. This is because our
global constraint graph only consists of
those memory instructions that have inter-
processor dependence edges, as described
in Section 3. In comparison, we observed
that the naively built constraint graph that
consists of all memory instructions has
orders of magnitude more vertices (e.g.,
more than 5K vertices for the 10K-cycle
interval).

Second, we can see that there is a rapid
increase of the graph size when we
perform checking at longer validation
intervals, and the checking is performed most cost-
effectively at the 10K-cycle interval. For example, for
benchmark WATER-NSQUARED, the maximum
number of graph vertices is 134 at 10K-cycle validation
interval, which increases to 881 at the 100K-cycle

interval and 3033 at the 1M-cycle interval. Without the
graph slicing method presented in Section 4.4., we will
have to check the entire program execution. This takes
556 million cycles for WATER-NSQUARED, and the
resulting constraint graph will have over a million
vertices.

Figure 7: Maximum Number of Global Constraint Graph Vertices

Figure 8: Maximum Number of Global Constraint Graph Edges

Figure 9: Maximum Size of Locally Recorded Edge List

Figure 10: Maximum Size of Evicted Access Record Set

0

500

1000

1500

2000

2500

100 500 1K 5K 10K 50K 100K
Validation Interval

M
a
x
i
m
u
m

N
u
m
b
e
r

o
f

G
r
a
p
h

E
d
g
e
s FFT LU RADIX CHOLESKY WATER-NSQUARED

0
200

400
600
800

1000

1200
1400

100 500 1K 5K 10K 50K 100K

Validation Interval

M
a
x
i
m
u
m

N
u
m
b
e
r

o
f

G
r
a
p
h

V
e
r
t
i
c
e
s FFT LU RADIX CHOLESKY WATER-NSQUARED

0

200

400

600

800

1000

100 500 1K 5K 10K 50K 100K
Validation Interval

M
a
x
i
m
u
m

N
u
m
b
e
r

o
f

L
o
c
a
l
l
y

S
t
o
r
e
d

E
d
g
e
s

FFT LU RADIX CHOLESKY WATER-NSQUARED

0
500

1000
1500
2000
2500
3000
3500

100 500 1K 5K 10K 50K 100K
Validation Interval

M
a
x
i
m
u
m

Si

z
e

o
f

E
v
i
c
t
e
d

R
ec

o
r
d

S
e
t

FFT LU RADIX CHOLESKY WATER-NSQUARED

423

Third, we can see that the graph is quite
sparse. In fact, the number of graph edges is a
small multiple of the number of graph vertices.
This motivates us to use the optimized design
described in Section 4.3 to perform online
checking of the global constraint graph. As
shown in the figures, at the 10K cycle
validation interval, we have 10K cycles for the
graph checker to check a graph with only a few
hundred edges. There is sufficient time to
process this with a dedicated hardware engine
without stalling.

To evaluate the hardware size required for
storing the locally recorded edges and evicted
cache access records, we also measured the
maximum size of these at different validation
intervals. Figure 9 and 10 show the results
respectively. We have similar observations as
the data shown in Figure 7/8, which
demonstrate the effectiveness of applying the
optimization techniques.
Bandwidth overhead evaluation: Since our
method piggybacks on the cache coherence
messages for inter-processor dependence edge
observation, it incurs additional communication
overhead. To measure this we run the
simulation with the augmented coherence
messages using 4 bytes to represent the
instruction ID, and compare the reported
average total traffic size and link utilization
with results obtained without applying the runtime
validation (i.e., coherence messages unmodified).
Figure 11 shows that the average traffic overhead is
4.3%, while the average link utilization overhead is only
4.6% (figure not shown due to limited space).
Performance impact evaluation: Currently we do not
have the check-point support available in our baseline
simulator, so we cannot evaluate the precise
performance impact with error recovery enabled. We
simply let the simulation continue when an error is
detected. In a system with check-point support enabled,
the graph checking is done in a pipelined fashion as
described in Section 4.1. Since our validation process is
not on the system’s critical path and is in parallel with
the check-pointing process, the checking latency can be
effectively hidden.

To get a better idea about what potential
performance impact our method may have due to
resource stalls, we examine the cumulative distribution
of the measured constraint graph size for both
benchmark FFT and WATER-NSQUARED at the 10K-
cycle interval duration, measured over the different
intervals (FFT has a total of 4681 intervals, and
WATER-NSQUARED has 55641 intervals). Figure 12

plots the cumulative distribution of the number of graph
edges, where the y-axis shows the cumulative fraction
of graphs (over the different intervals) that have the
corresponding size shown along the x-axis. So for FFT,
more than 96% of the intervals have at most 40 edges in
the graphs being checked. We have similar observations
on other resource usage, including the locally recorded
edge list and the evicted access record set, which shows
that the expected performance impact in average is
much lower than the worst case.
Hardware cost analysis: The hardware overhead
required for performing the validation at the 10K-cycle
interval is summarized in Table 2 (shown on the next
page). The hardware size is determined as follows. For
each augmented hardware component, we set the size to
an empirical value based on the experiment results. In
this experiment we perform dependence tracking at the
cache block granularity, and each L1 cache block is
augmented with a 4-byte field to record the access
instruction information. The hardware buffer for storing
the locally recorded edge list has 128 entries, where
each entry has 8 bytes. The evicted cache for storing the
evicted access records has 256 entries, where each entry
has 12 bytes (including the address and instruction ID).

Table 2. Validation Hardware Overhead

Local access record at L1 cache 4K bytes
Locally recorded edge list 1K bytes

Evicted access record at L2 cache 3072 bytes
Central graph checker 4K bytes

0.8
0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

FFT LU RADIX CHOLESKY WATER-

NSQUAREDBenchmark

T
o
t
a
l

T
r
a
f
f
i
c

O
v
e
r
h
e
a
d

SC TSO WO

Figure 11: Total Traffic Overhead

 Figure 12: Cumulative Distribution of the Number of Graph Edges

0.75

0.8

0.85

0.9

0.95

1

1.05

20 40 60 80 100 120 140 160

Number of Constraint Graph Edges

C
u
m
u
l
a
t
i
v
e

D
i
s
t
r
i
b
u
t
i
o
n

FFT WATER-NSQUARED

424

In the central graph checker, the size of the input buffer
is 2KB, and the internal graph structure has 256
vertices. These are sufficiently large to avoid resource
overflow in our experiments. In general, if there is a
resource overflow, we handle it as follows: if the
resource overflow happens locally at a processor core,
we need to stall the processor execution until the
observed information is verified at the end of the
validation interval; if the evicted cache gets full, we can
leverage the existing NACK scheme [22] to stall the
cache eviction operation, until the old entries are
removed at the end of the validation interval; if the
resource overflow happens at the central graph checker,
we need to resume the execution from the previous
check-point, and perform the checking at a shorter
execution interval to avoid recurring overflows or
enforce a less aggressive execution mode to effectively
perform graph slicing.

6. Related work
Some related work done in the area of deterministic

replay and race detection [25, 26, 27] has also utilized
coherence hardware based support for recording
dependence edges. The authors also proposed some
transitive reduction methods, which are complementary
to our graph reduction technique, and when applicable,
can be employed to further reduce the number of inter-
processor dependence edges in our work. However,
they do not address the constraint graph verification
issues discussed in our work. Cain et al. proposed a
dynamic verification algorithm for constraint graphs
[28]. However, their work assumes only sequential
consistency and in-order execution. No implementation
is provided for the algorithm, which has a high space
complexity (e.g., it associates each memory location
with two vector time stamps).

To our knowledge, the only previous work on
runtime validation of general memory consistency
models is the DSN’06 paper by Meixner and Sorin [21],
which is an extension of their previous work on
verifying SC [29]. Their approach is different from ours
in that, instead of checking the constraint graph as a
direct verification against the memory ordering rules,
they perform indirect verification of system invariants
that are required to ensure memory consistency. As
pointed out by the authors, their indirect checking
approach is conservative and subject to false positive
errors. Compared with the direct verification of the
observed global behavior in our method, a false positive
may be introduced when a detected violation of their
sub-invariant does not actually cause a cycle in the
global constraint graph. Further, their solution is based
on the assumption that in a cache coherent system, a
memory operation “performs globally as soon as it

accesses the highest level of the local cache hierarchy”.
While they perform global checking of cache coherence
property, this does not address possible design bugs or
runtime errors that lead to illegal global ordering of
memory accesses to different locations.

In practice, enforcing the assumed global access
order is one of the most complicated issues in shared-
memory system design. To improve memory bandwidth
and performance, a memory operation is often not
performed atomically, but involves several sub-
transactions to allow multiple outstanding requests to be
performed in parallel. Due to the delay in the
interconnection network and intermediate buffers, a
memory request may be visible to a local processor and
remote processors at different times, during which the
observed access order is vulnerable to intervention of
other memory requests [22]. In general, it is a very
complicated design problem to coordinate them to
ensure memory ordering in a parallel system, and it
relies on multiple system components to obey subtle
design rules to prevent ordering violations among
different memory requests. Even if cache coherence is
strictly maintained, since it is only concerned with the
access order to the same memory location, it does not
necessarily guarantee the visibility order of memory
requests to different addresses. In our case, we construct
the inter-processor dependence edges based on when a
load/store request is actually visible to another
processor, and the dynamically maintained constraint
graph reflects the actual global behavior of the target
system. Thus our validation approach is more complete.

7. Conclusions
Validation of memory ordering poses a significant

challenge for emerging multi-core shared-memory
systems. This paper proposes a runtime validation
approach to address this problem, which combines
efficient hardware schemes for capturing the system
behavior and effective end-to-end validation of memory
ordering based on the constraint graph model. This
allows us to overcome the limitations of conventional
testing/simulation based verification methods, as well as
to detect dynamic errors resulting from thermal
conditions, aging, or particle hits. To make this
approach practical, we have presented several
optimization techniques that can effectively reduce the
runtime validation overhead. As two key enabling
techniques, we show how to use constraint graph
reduction to effectively reduce the number of graph
vertices, and how to use the constraint graph slicing,
performed during incremental validation, to reduce the
size of the execution interval that needs to be checked
periodically.

425

Acknowledgments
The authors acknowledge the support of the

Gigascale System Research Center, one of five research
centers funded under the Focus Center Research
Program, a Semiconductor Research Corporation
program. We thank Albert Meixner, Daniel J. Sorin,
and the Wisconsin GEMS group for their help and
suggestions.

References
[1] S. V. Adve and K. Gharachorloo, "Shared Memory
Consistency Models: A Tutorial", IEEE Computer, vol. 29, pp
66-76, Dec. 1996.
[2] S. Sarangi, S. Narayanasamy, B. Carneal, A. Tiwari, B.
Calder, and J. Torrellas, “Patching Processor Design Errors
with Programmable Hardware”, IEEE Micro 27, 1, Jan. 2007.
[3] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The Soft
Error Problem: An Architectural Perspective”, International
Symposium on High-Performance Computer Architecture
(HPCA), 2005.
 [4] S. Qadeer, “Verifying Sequential Consistency on Shared-
Memory Multiprocessors by Model-Checking,” IEEE Trans.
Parallel and Distributed Systems, vol. 14, no. 8, Aug. 2003.
[5] J. F. Cantin, M. H. Lipasti, and J. E. Smith, "The
Complexity of Verifying Memory Coherence and
Consistency", IEEE Transactions on Parallel and Distributed
Systems, Vol. 16, No. 7, July 2005.
[6] S. A. Taylor, C. Ramey, C. Barner, and D. Asher: “A
Simulation-Based Method for the Verification of Shared
Memory in Multiprocessor Systems”. IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD), 2001.
[7] S. Hangal, D. Vahia, C. Manovit, J. J. Lu, and Sridhar,
“TSOtool: A Program for Verifying Memory Systems Using
the Memory Consistency Model”, International Symposium
on Computer Architecture (ISCA), 2004.
[8] A. Roy, S. Zeisset, C. Fleckenstein, and J. Huang, “Fast
and Generalized Polynomial-time Memory Consistency
Verification”, International Conference on Computer Aided
Verification (ICCAD), 2006
[9] D. J. Sorin, M.M.K. Martin, M. D. Hill, and D. A. Wood.
“SafetyNet: Improving the Availability of Shared Memory
Multiprocessors with Global Checkpoint/Recovery”,
International Symposium on Computer Architecture, 2002.
[10] M. Prvulovic, Z. Zhang, and J. Torrellas, “ReVive: Cost-
Effective Architectural Support for Rollback Recovery in
Shared-Memory Multiprocessors,” International Symposium
on Computer Architecture (ISCA), 2002.
[11] D. Shasha and M. Snir, "Efficient and correct execution
of parallel programs that share memory", ACM Transactions
on Programming Languages and Systems (TOPLAS), 1988.
[12] Harold W. Cain, Mikko H. Lipasti, and Ravi Nair,
"Constraint Graph Analysis of Multithreaded Programs",
International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2003.
[13] A. Condon and A. J. Hu, “Automatable Verification of
Sequential Consistency”, ACM Symposium on Parallel
Algorithms and Architectures, January 2001.

[14] T. M. Austin, “DIVA: A Reliable Substrate for Deep-
submicron Microarchitecture Design”, International
Symposium on Microarchitecture (MICRO), Nov. 1999.
[15] Arvind and J.-W. Maessen, "Memory Model =
Instruction Reordering + Store Atomicity", International
Symposium on Computer Architecture” (ISCA), 2006
[16] D. A. Wood, G. A. Gibson and R. H. Katz, “Verifying a
Multiprocessor Cache Controller Using Random Test
Generation”. IEEE Design & Test of Computers 7(4) 1990.
[17] A. Meixner and D. J. Sorin. "Error Detection via Online
Checking of Cache Coherence with Token Coherence
Signatures", International Symposium on High-Performance
Computer Architecture (HPCA), 2007.
[18] D. J. Sorin, M. D. Hill, and D. A. Wood, “Dynamic
verification of end-to-end multiprocessor invariants”,
International Conference on Dependable Systems and
Networks (DSN), 2003.
[19] J. Duato, S. Yalamanchili, and L. Ni. "Interconnection
Networks". IEEE Computer Society Press, 1997.
[20] L. Lamport, "Time, Clocks, and the Ordering of Events
In A Distributed System", Communications of the ACM, 21-
7, 1978.
[21] A. Meixner and D. J. Sorin. "Dynamic Verification of
Memory Consistency in Cache-Coherent Multithreaded
Computer Architectures", International Conference on
Dependable Systems and Net-works (DSN), June 2006.
[22] D. E. Culler, J. P. Singh, and A. Gupta. "Parallel
Computer Architecture: A Hardware/Software Approach",
Morgan Kaufmann Publishers, 1998.
[23] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill,
and D. A. Wood, "Multifacet's General Execution-driven
Multiprocessor Simulator (GEMS) Toolset", Computer
Architecture News (CAN), September 2005.
[24] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, A. Gupta,
“The SPLASH-2 Programs: Characterization and
Methodological Considerations”, International Symposium on
Computer Architecture (ISCA), June 1995.
[25] R. H. B. Netzer, “Optimal Tracing and Replay for
Debugging Shared-Memory Parallel Programs”, ACM/ONR
Workshop on Parallel and Distributed Debugging, 1993.
[26] M. Xu, R. Bodik and M. D. Hill, "A Flight Data Recorder
for Enabling Full-system Multiprocessor Deterministic
Replay", International Symposium on Computer Architecture
(ISCA), June 2003.
[27] M. Xu, R. Bodik and M. D. Hill, "A Regulated Transitive
Reduction (RTR) for Longer Memory Race Recording",
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
Oct. 2006.
[28] H. W. Cain and M. H. Lipasti, “Verifying Sequential
Consistency Using Vector Clocks”, 14th Symposium on
Parallel Algorithms and Architectures, August, 2002.
[29] A. Meixner and D. J. Sorin. "Dynamic Verification of
Sequential Consistency", International Symposium on
Computer Architecture (ISCA), 2005.
 [30] K. Chen, S. Malik and P. Patra, “Runtime Validation of
Memory Ordering Using Constraint Graph Checking”, Tech.
Report, Dept. of Electrical Engr., Princeton University, 2007
http://www.princeton.edu/~kchen/rv/papers/RVMO.pdf

426

