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Abstract 
 

An important correctness issue for emerging 
multi/many-core shared memory systems is to ensure 
that the inter-processor communication through shared 
memory conforms to the memory ordering rules, as 
specified by the architecture’s memory consistency 
model [1]. This presents a significant validation 
challenge. Growing system complexity makes it 
increasingly hard to identify all deep-state logic bugs in 
pre-silicon verification. Further, aggressive technology 
scaling makes hardware more vulnerable to dynamic 
errors that can only be detected at runtime. 

In this paper, we propose an approach for runtime 
validation of memory ordering. This allows us to 
survive bugs that escape pre-silicon verification, as well 
as deal with emerging dynamic errors.  Our solution 
consists of two parts: 1) at the microarchitecture level, 
we add efficient hardware support to capture the 
observed ordering among shared-memory operations; 
2) we perform online verification of the observed 
memory ordering by checking for cycles in the 
constraint graph [11, 12]. We combine these to achieve 
end-to-end correctness validation of the system 
execution with respect to the memory ordering 
specification. There are several challenges that need to 
be addressed to make this approach practical. We 
describe these, as well as optimization techniques for 
reducing the hardware overhead. Estimates obtained 
from preliminary chip multiprocessor simulation 
experiments show that the proposed techniques are very 
effective in achieving acceptable hardware overhead 
and minimal performance impact. 
 
1. Introduction 
Validation challenges for memory ordering: On 
emerging multi/many-core shared memory systems, the 
memory accesses must conform to the memory ordering 
rules specified in the architecture’s memory consistency 
model [1]. Maintaining the correct memory ordering in 
a shared-memory system requires careful consideration 
of numerous issues in designing system components 
and their interfaces, which imposes a significant 

validation challenge. An indicator of this complexity is 
that memory interface is the largest subclass of silicon 
errors reported in processor errata [2]. In addition to 
possible failures due to design errors, due to aggressive 
technology scaling, processors are becoming more 
vulnerable to dynamic faults resulting from thermal 
conditions, aging, or particle hits [3].  
Limitations of existing techniques: There has been 
substantial previous research on the problem of 
verifying shared memory systems. Formal verification 
techniques such as model checking have been used to 
assist the analysis of memory protocols [4]. However, 
this has limited practical success due to the inherent 
intractability of checking memory ordering [5]. In 
practice, designers rely on simulation and testing based 
methods to examine the memory system behavior [6, 7]. 
However, with these methods the coverage is limited 
because it is hard for the test program to exercise all 
possible runtime behaviors. Both the formal verification 
and simulation methods are ineffective in detecting 
possible dynamic errors that occur post-deployment.  

Existing systems have also employed other 
techniques to improve reliability, such as using 
specialized techniques for protecting local components. 
However, these are ad-hoc and expensive to adequately 
protect the various system components against 
operation-time errors.  
Our contributions: In this paper, we propose an 
approach for runtime validation of memory ordering, 
which allows us to overcome the above limitations and 
provide a runtime guarantee of the correctness of the 
actual system behavior. Our solution consists of two 
parts: 1) at the micro-architectural level, we add 
efficient hardware support at each processor node and 
the cache controller to capture the ordering among 
shared-memory operations; 2) we perform online 
verification of observed architectural results by 
checking for cycles in the constraint graph [11, 12, 13] 
that represents the memory ordering rules. This ensures 
the end-to-end correctness of the memory operations. 

A straightforward implementation of this scheme 
would track all executed memory instructions and their 
dynamic ordering relationships. However, there are 
significant challenges to make this approach practical.  
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1. The first is to bound the scope of the checking. In 
theory, the size of the cycle in the constraint graph may 
be unbounded. Thus, the check seems possible only 
after the program completes execution. Checking the 
entire program execution as done in offline analysis has 
limited value because real applications may run billions 
of instructions before completion.  Ideally we would 
like to check short execution intervals of the program 
and recover from errors promptly.  
2. The second arises from the size of the constraint 
graph. Even if we could overcome the first challenge 
and check short program execution intervals, each 
memory operation would result in a vertex in the 
constraint graph. Due to the high instruction execution 
rate in modern processors, including all executed 
memory instructions in the constraint graph results in 
very large storage requirement and latency for cycle 
checking, even for relatively short execution intervals.  

We describe techniques to address these challenges 
and to allow error recovery using check-pointing 
schemes (e.g., [9, 10]). We evaluate our design through 
simulation of a chip multiprocessor (CMP) system with 
selected parallel programs from the SPLASH2 
benchmark suite [24]. 

The rest of the paper is organized as follows.  
Section 2 provides some background for this work. 
Section 3 presents the overall runtime validation 
approach. Section 4 addresses the implementation 
issues and design optimization techniques. The 
experimental results are presented in Section 5. Section 
6 discusses the related work, and Section 7 provides 
some conclusions. Additional details on design issues 
and experimental results, omitted here due to lack of 
space, are available in an extended technical report [30]. 

2. Background 
2.1. Memory models 

The most intuitive memory ordering model is 
Sequential Consistency (SC). SC requires that all 
memory operations appear to execute in a total order, 
where instructions from the same processor must follow 
the corresponding program order. For conventional 
shared memory multiprocessors, a straightforward 
implementation of the SC model would serialize all 
memory references and preclude high-performance 
optimizations such as out of order execution and 
memory bypassing or forwarding. To improve the 
performance, more relaxed memory ordering models 
have been proposed. The basic idea is to allow two 
memory operations to be performed out of program 
order, so that the subsequent instructions do not have to 
wait for a stalled memory operation to complete before 
they can be processed. For example, Total Store 
Ordering (TSO) relaxes the store-to-load ordering. As 

one of the most relaxed memory models, Weak 
Ordering (WO) imposes no ordering constraint between 
two memory operations on the same processor. When 
needed in programming, memory barrier (MB)/fence 
instructions are provided to enforce the ordering 
between preceding and subsequent memory operations. 
A categorization of the memory ordering relaxation in 
existing memory models is provided in the survey by 
Adve and Gharachorloo [1]. 
2.2 Constraint graph models 

Given the ordering rules specified in different 
memory models, an effective method for reasoning 
about the correctness of multiprocessor execution is to 
use the constraint graph [11, 12, 13]. A constraint graph 
is a directed graph whose vertices represent the dynamic 
instruction instances in program execution. (In this 
paper we use instruction synonymously with operation. 
In practice an instruction can involve multiple memory 
operations, in which case we will use separate graph 
vertices for each operation.) The edges indicate the 
ordering relationships among these instructions. 
Specifically, the edges can be classified into the 
following categories. 
1. Consistency edges: These edges reflect the ordering 
constraints placed by the memory model among 
instructions in the same processor. For example, there is 
a consistency edge between any two adjacent memory 
instructions in the SC model, while the edge from a 
store to a load is relaxed in the TSO model [1].  
2. Dependence edges: These edges represent the data 
dependence order among conflicting instructions 
(accesses to the same address), including the usual 
Read-after-Write (RAW), Write-after-Write (WAW), 
and Write-after-Read (WAR) dependences. These may 
be intra-processor or inter-processor edges. 

Figure 1 shows examples of constraint graphs for 
different memory models. We denote the consistency 
edges by solid lines, and the dependence edges by 
dotted lines. The ordering relation is transitive, and 
redundant edges are not shown for clarity.  As has been 
shown in previous work, this graph is acyclic iff the 
parallel execution satisfies the memory ordering rules. 
Thus this acyclic property can be used to detect a 
memory ordering error. 

This graph checking scheme has been effectively 
used in industry in testing and simulation based 
verification. For example, it has been applied for 
checking Alpha’s Weak Ordering (WO) model [6], 
Sun’s TSO model [7] and Intel’s Itanium [8]. However, 
it has a limitation due to the lack of modeling for write 
non-atomicity. On architectures that allow the writes to 
be visible in different orders to different processors 
(e.g., IA-32), we may get a false-positive error (where a 
constraint graph cycle is introduced by a store’s 
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inconsistent visibility orders on 
different processors). Such false-
positive errors will incur additional 
performance penalty due to 
unnecessary error handling, but will 
not affect the execution correctness. 
Even though TSO does not have write 
atomicity, previous work has shown 
the false-positive errors can be avoided 
by not including the intra-processor 
store-to-load dependence edge in the 
global constraint graph [15]. 
2.3 Targeted errors and design assumptions 

We target multiprocessor execution errors that 
violate the memory ordering model. These may be 
caused by various design bugs or dynamic faults in any 
shared-memory system component [6, 7, 8], e.g., a 
micro-architecture design flaw that allows a memory 
operation to be performed too early or a soft-error in the 
interconnection network that causes two messages to be 
incorrectly re-ordered.  Our design builds on other well-
established techniques to address additional 
requirements for correct operation of a multi-core 
shared-memory system. We make the following 
assumptions about the target architecture. 
1. Similar to other work in the context of memory 
ordering verification [6, 7, 8, 13] we are only concerned 
with the memory ordering issues. To ensure the 
complete correctness of the multithreaded execution, 
one would also have to make sure the data/control flow 
dependences among intra-processor ALU/branch 
instructions are preserved. We assume these are 
enforced by local schemes at each processor core. In 
practice, uniprocessor verification has been well-
addressed in both pre- and post-silicon verification. 
Moreover, recently dynamic methods such as DIVA 
[14] have been proposed to improve uniprocessor 
reliability. 
2. We assume that the target system is cache coherent. 
Most modern multiprocessor systems support this with a 
hardware cache coherence protocol. In some of the 
literature, cache coherence is confused with memory 
consistency, but strictly speaking they are different 
issues [1, 22]. The cache coherence problem per se is 
less challenging, as it is only concerned with the access 
ordering of a single location. In pre/post-silicon 
verification, techniques such as random test generation 
using false sharing and action/check pairs have been 
developed to effectively address this problem [16]. 
Several dynamic verification techniques have also been 
proposed to ensure cache coherence at runtime, by 
using a validation protocol or checking the system wide 
invariants (e.g., [17, 18]). We also assume that the 
cache/memory is protected by techniques such as ECC, 

so that for a validated memory access order, the data is 
not corrupted between memory accesses and the correct 
value flow is guaranteed. 

3. Runtime validation method 
Due to subtle interactions among many complex 

system components, a violation of the memory ordering 
model may be due to various reasons, and it is tedious 
and expensive to examine each individual component to 
detect the error. Further, local observation of memory 
operations may not accurately reflect their global 
behavior, e.g., two memory operations performed 
locally in program order may be perceived as out-of-
order by remote processors. These factors motivate us 
to perform global checking of the memory ordering 
constraints. 

To accurately capture the global behavior, we 
propose to dynamically construct and check the 
constraint graph on-the-fly. Naively, we should collect 
all executed memory instructions, add the consistency 
and dependence edges among them as observed at 
runtime, then build the constraint graph and check for a 
cycle. However, as pointed out in Section 1, there are 
two major problems that render this straightforward 
implementation impractical. First, the size of the cycle 
may be unbounded. Thus, the check seems possible 
only at the end of program execution, which is 
infeasible for large programs. Second, we need to 
reduce the graph size. Even for relatively short 
execution intervals, due to the high instruction 
execution rate in modern processors, if we include all 
executed memory instructions, it will still result in very 
large storage requirement and latency for cycle 
checking.  

To enable the proposed runtime validation approach, 
it is essential to solve these problems and come up with 
low runtime/hardware overhead graph construction and 
checking schemes. The first challenge is addressed by a 
periodic graph slicing technique described in Section 
4.4. In this section, we address the second challenge, 
i.e., reducing the graph size. 

ST A

ST  B

LD D

LD C

ST A

P1 P2

LD A

ST B

ST C

ST A

ST  B

LD D

LD C

ST A

P1 P2

LD A

ST B

ST C

ST A

ST  B

MB

LD C

ST A

P1 P2

LD A

ST B

ST C

ST A

ST  B

LD D

LD C

ST A

P1 P2

LD A

ST B

ST C

ST A

ST  B

LD D

LD C

ST A

P1 P2

LD A

ST B

ST C

ST A

ST  B

MB

LD C

ST A

P1 P2

LD A

ST B

ST C

 
(a) Sequential Consistency (b) Total Store Ordering   (c) Weak Ordering 

Figure 1: Constraint Graph Examples 

417



Constraint graph reduction: We propose to use an 
equivalent but significantly reduced graph for detecting 
the existence of cycles. Specifically, we show that for 
SC and TSO we only need to include instructions with 
inter-processor dependence edges. For WO, we also 
need to include the memory barrier instructions. We 
show the correctness of this technique as follows: for 
each considered memory model (SC/TSO/WO), we 
enumerate the types of consistency edges and construct 
the equivalent reduced graph for detecting cycles.  
Formal proofs are omitted here for brevity (available in 
the extended version [30]). 
Algorithm and Proof sketch: Let each memory access 
have a unique identifier <P, ID>, which indicates the 
processor number P and program order ID. Let <p, i1> 
and <p, i2> be two successive memory accesses that 
have observed inter-processor dependence edges for 
processor p, with i1 < i2. There may be other memory 
accesses <p, i> with i1< i < i2, however we now show 
that we do need not include them and the associated 
edges. In the reduced graph, we only need to keep the 
vertices with inter-processor dependence edges (e.g., 
<p, i1> and <p, i2>) and can derive the necessary local 
edges among them as follows:  
1. For SC: Since there is a consistency edge between 
any two consecutive memory accesses in the SC model, 
in the reduced graph, we add an edge from <p, i1> to 
<p, i2> which is the transitive closure of all consistency 
edges and intra-processor dependence edges between 
<p, i1> and <p, i2>. 
2. For TSO: In TSO the consistency edge from a ST to a 
succeeding LD operation is relaxed. Arvind and 
Maessen show that the intra-processor dependence edge 
between a ST to a succeeding LD operation to the same 
address also need to be excluded in the global constraint 
graph [15]. Thus, the intra-processor edges between 
memory operations are those captured by the patterns in 
Figure 2: (a) gives the canonical form of a general 
instruction sequence, where an oval in the figure 
denotes a group of consecutive LDs/STs; (b) 
summarizes the 5 cases of possible intra-processor 
edges. This enables us to determine the transitive 
closure of the intra-processor edges as follows. If <p, 
i2> is a store (case 2&3) or <p, i1> is a load (case 1&3), 
then there is an edge in the reduced graph from <p, i1> 
to <p, i2>. In addition, if <p, i1> is a load and <p, i2> is 
a store (case 4), we will also need to add an edge from 
<p, i1> to the first load instruction after <p, i2> that 
appears in the observed inter-processor dependence 
edges. Similarly, if <p, i1> is a store and <p, i2> is a 
load (case 5), then we will also need to add an edge 
from <p, i1> to the first store instruction after <p, i2> 
that appears in the observed inter-processor dependence 
edges.  We note that for the “naïve” constraint graph 

modeling of TSO [15], 
where the intra-
processor dependence 
edge from a ST to a 
succeeding LD to the 
same address is 
included in the 
constraint graph, this 
intra-processor 
dependence edge will 
need to be stored 
locally at an additional 
overhead.  With this 
additional information 
the reduced graph can 
be constructed 
similarly. 
3. For WO:  If there is a memory barrier instruction, <p, 
m> between <p, i1> and <p, i2>, we add an edge in the 
reduced graph between <p, i1> and <p, m> and also 
between <p, m> and <p, i2>.This follows directly from 
the semantics of the barrier instruction. 

Our experiments show that the reduced graph has 
orders of magnitude fewer vertices than the naively 
built graph for the complete instruction execution trace. 
This is critical to make this approach practical. This 
reduction benefits from the fact that real applications 
are often optimized to reduce inter-processor interaction 
through shared data for performance reasons. In the 
case that different processors run heterogeneous 
applications that have no inter-processor dependences, 
no global constraint graph needs to be built and 
checked. 

4. Hardware design and implementation 
4.1 Design overview 

The overall system architecture is shown in Figure 3. 
For clarity in this discussion, we assume our baseline 
architecture is a single-chip CMP system with the SC 
model. The hardware support for runtime validation 
consists of the following components:  
1) We augment each processor pipeline to assign a 
monotonically increasing Memory Instruction Identifier 
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(MID) to each dynamic memory instruction when it is 
dispatched. Since instructions are dispatched in program 
order, given any two memory instructions, we can 
determine their relative order in the program by 
comparing their MIDs. The wraparound of MID can be 
handled by stalling the processor until all its outstanding 
memory operations are retired and validated at a time 
established by the method described in Section 4.4.  
2) We add additional hardware to the cache structure as 
follows. (Their functionality is described in Section 
4.2.)  We add additional fields to L1 cache blocks to 
record the local memory access history and augment the 
L1 cache controller logic to record the locally observed 
inter-processor dependence edges. To cope with cache 
eviction and message forwarding in directory-based 
coherence protocols, we add a small fully associative 
cache at L2 to keep the access record of evicted L1 data 
blocks, and also augment the L2 cache 
directory/controller to pass the message sender’s 
identity to forwarded coherence request and 
acknowledgement messages.  
3) We store the dependence edges observed by each 
processor in a local hardware buffer. The locally 
collected information is sent to a central graph checker 
periodically to test the acyclic property. The operation 
of the central graph checker is described in Section 4.3. 
If an error is detected, the central checker notifies all 
processor nodes to invoke the error recovery 
mechanisms described in Section 4.5. 

To effectively hide the runtime validation latency, 
the constraint graph construction and checking is 
performed in parallel with the normal computation and 
check-pointing process. Figure 4 shows the timing 
diagram (Gantt Chart) of our proposed scheme. Using 
the constraint graph slicing technique proposed in 
Section 4.4, we can perform checking for short program 
execution intervals. When the parallel program chunk1 
is executed during the time interval [T0, T1], the edges 
for the resulting constraint graph k are observed locally 
at each processor. During the next interval [T1, T2], 
while the program chunk2 continues execution and the 
resulting constraint graph k+1 is observed, the 
constraint graph k is built at the central checker. During 

the interval [T2, T3], the constraint graph k is examined 
by the central checker. Suppose we find a cycle in graph 
k+1 at T4, then there is an error detected and we resume 
the system execution from the last check-point created 
at T1. 
4.2 Constraint graph edge construction 

In constructing the inter-processor edges, we exploit 
the fact that each type of edge results in different cache 
coherence events: 
1. A RAW edge corresponds to a read miss, and 
involves transferring the data block modified by the 
writer to the reader’s local cache. 
2. A WAW edge corresponds to a write miss, and also 
involves updating the second writer’s local cache with 
the modified data block. 
3. A WAR edge corresponds to an upgrade of the cache 
access permission if the second writer already has the 
data block in shared state, or a write miss otherwise. 

Therefore, we can piggyback on the cache coherence 
transactions associated with these events to achieve low 
performance overhead in constructing the inter-
processor dependence edges. Similar dependence 
tracking mechanisms have been used in previous works 
in the area of deterministic replay and race detection 
[25, 26, 27]. The basic idea is that we first augment 
each cache block to record the MID of the last local 
load/store instruction that accessed this block. Then the 
cache controller piggybacks this information when it 
generates a new coherence message, which is 
augmented to reflect a global ID (consisting of a tuple 
<PID (Processor Identifier), MID>) of the instruction 
involved in the coherence activity. When the receiving 
processor sees this message, it can construct the 
corresponding inter-processor dependence edge by 
looking up the piggybacked information and its own 
local access history. For example, in Figure 5(b), when 
“ST Y” is performed on P2, we will piggyback its ID 
<2, 2> to the generated invalidation message. When this 
message reaches P1, the observer at P1 can then 
construct the dependence edge <1, 4>→<2, 2>. One can 
guarantee the correct delivery of the augmented 
coherence messages by using ECC-like or residue-code 
techniques, and prevent dropped messages by assigning 
consecutive IDs to each message or by enforcing a 
request time-out scheme [19]. 

Nevertheless, there are additional complexities that 
need to be addressed in a practical cache design: 
1) False sharing: False sharing occurs when two 
processors reference different data items within the 
same cache line. This may create a false dependence 
edge if we only use the cache line address to identify 
conflicting accesses. If this edge is involved in a cycle, 
we will get a false positive error, which does not affect 
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419



correctness but incurs a performance 
penalty. To avoid this, we can augment 
the coherence message with the offset of 
the actual address of the requested data 
in the cache line, and track the 
dependence at a finer data granularity 
level. This involves a performance vs. 
storage tradeoff. 
2) Cache eviction: When a data block is 
evicted from a processor’s local cache 
due to a conflict, the associated local 
access history is lost and we may not be 
able to construct the corresponding edge 
for a later coherence request. To address this problem, 
we add a small fully associative “evicted” cache to keep 
the access record of the evicted L1 data blocks from 
each processor. When this evicted cache is full, we will 
need to stall the pipeline until the validation is done for 
previous execution, which causes a performance 
penalty. To avoid such stalls, we use several 
optimization techniques to reduce the evicted cache size 
by filtering and recycling the entries. These are omitted 
here for brevity (available in the extended version [30]). 

Using the above scheme, each processor core 
collects a list of the locally observed inter-processor 
dependence edges and records them in a hardware 
buffer. Each entry in the buffer contains the local 
instruction MID and its type (e.g., LD or ST), the 
remote instruction’s global ID, plus additional fields to 
denote the edge attributes (e.g., incoming or outgoing). 
As described in Section 3, we can construct the 
transitive closure of the intra-processor edges according 
to the specific memory ordering rules. To save the 
hardware and communication bandwidth overhead, we 
do not explicitly store this transitive closure at each 
processor, but construct it at the central checker. For the 
example shown in Figure 5, the edge <1,2>→<1,4> will 
be added for P1’s instructions. The resulting constraint 
graph is shown in Figure 5(c). We can see that in this 
case the execution violates the SC ordering, and the 
resulting cycle is detected using the following method. 
4.3 Constraint graph checking 

After each processor has collected the locally 
observed edges, the records are periodically transferred 
to a central checker to build the complete graph and 
perform the checking. To speed up this process, the 
record transfer and global graph construction is done 
on-the-fly using dedicated point-to-point links to the 
central checker. This is feasible as the communication 
between the local nodes and the central checker does 
not involve complicated arbitration schemes. If no such 
link is available, we can utilize the existing inter-

connect network when there is available network 
bandwidth. 

To come up with efficient design for the central 
graph checker, we measured the actual constraint graph 
size using simulation of the selected SPLASH2 
benchmarks. Our experiment shows that the graph is 
fairly sparse, with the number of edges linear in the 
number of vertices. Thus, we use an adjacency-list 
(edge-list) representation for the graph and use a 
dedicated hardware engine to check for cycles using 
depth-first search (DFS). This method has complexity 
O(E), where E is the number of the graph edges. Details 
on straightforward implementations are omitted for 
brevity, e.g. hardware linked list to represent the edge 
list and a state machine for a DFS-based cycle checker. 
As shown in the experiment section, the central checker 
has more than enough time to finish its operation during 
the typical validation interval. 
4.4 Constraint graph slicing 

Although the constraint graph reduction method 
effectively reduces the graph size by several orders of 
magnitude, for a real application that may contain 
billions of instructions, it is still too expensive or 
impossible to construct/check the complete constraint 
graph online. To support effective online checking, it is 
desirable to limit the length of the execution interval 
that needs to be tracked continuously. For this we need 
to know when an observed sub-graph can be checked 
for cycles and pruned away safely without affecting the 
correctness of future validations as the program 
execution continues. This simplifies the hardware 
design for the graph checker, reduces the checking 
latency and supports prompt error detection/recovery. It 
also enables us to de-allocate stale records in hardware 
resources such as the edge buffer and the evicted cache. 

To tackle this problem, we propose a dynamic graph 
slicing technique, as illustrated in Figure 6. The 
motivation is that a cycle in the constraint graph is 
potentially caused by instruction reordering in a local 
processor, cache hierarchy or interconnection network. 
Intuitively, given the limited instruction reorder window 
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(a) Program Instructions     (b) Execution Sequence   (c) Reduced Graph 

Figure 5: SC Constraint Graph Construction Example 
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size and message traversal time in practical systems, it 
is unlikely to have an unbounded cycle in real 
execution. Further, we exploit the following 
observation: if a sub-graph in the constraint graph can 
be identified to not have an incoming edge from 
subsequent instructions, this sub-graph can be pruned 
away since it can never participate in a cycle that 
involves instructions executed in the future. This forms 
the basic idea of our graph slicing technique described 
here. 

To be able to reason about the execution states of 
different processors based on a common logical time 
base, we assume that a loosely synchronized physical 
clock is available on the target system. This has been 
conveniently used in previous multiprocessor research 
work [9] and is relatively easy to implement on a CMP 
system. We also developed alternative techniques that 
relax this assumption. These are omitted here for 
brevity (available in the extended version [30]). 

We perform the proposed validation at the end of 
fixed logical time intervals. Let us consider the case 
illustrated in Figure 6, which shows the execution trace 
of the two processors at the end of a validation interval 
T. Processor 1 has retired instructions up to instruction 
10. Instruction 11 is not executed yet, while instruction 
12 is executed out-of-order before instruction 11. 
Processor 2 has retired instructions up to instruction 11, 
and we have observed a WAR edge from <1, 12> to <2, 
10>. Our goal is to identify a boundary in the retired 
instructions, such that the constraint sub-graph 
observed before the boundary can be safely validated 
and removed from future checking. In this case there 
can be only forward directed edges from instructions 
before the boundary to instructions after the boundary. 
Since such a forward edge represents the “happens 
before” causal relationship in a parallel system [20], we 
call this boundary the Forward Causality Frontier 
(FCF). The key property of FCF is that there is no back-
edge across the boundary, so that it is not possible to 
have a cycle that contains both instructions before and 
after the boundary. The FCF for the given example is 
shown in Figure 6. We need to exclude instruction <2, 
10>, since there is a back edge from <1, 12> to it. In 
fact, we can see that as time moves forward, there may 
be another WAR edge from <2, 11> to <1, 11>, which 
will form a cycle and violate the memory ordering 
model. 

A key observation for us to identify an FCF is that 
the instructions at the FCF boundary are the oldest 
retired instructions that are reachable from any unretired 
instruction. By “retire”, we mean the instruction has left 
the local write buffer and has been globally performed 
(the coherence transactions generated by the read/write 
request should have all been acknowledged). Based on 

this, for the example shown in Figure 6, we can 
efficiently implement a dynamic graph slicing protocol 
as follows:  
1) At the end of a validation interval T, each processor 
Pi sends the following information to the central 
checker: a) the ID of the oldest unretired instruction at 
Pi (where all instructions before it must have been 
retired); b) the list of locally observed edges in the order 
sorted by the IDs of Pi’s local instructions that appear in 
the recorded edge list. 
2) The central checker collects the records reported by 
all the processors and computes the FCF as follows: for 
each processor Pi, it scans the reported edge list and 
constructs a vector ID that contains an instruction ID for 
each processor Pj (j≠i), which reflects the minimal ID 
among all Pj’s instructions that are connected by inter-
processor edges originated from Pi’s unretired 
instructions. For simplicity, we can set the entry for Pi 
itself in the vector as the ID of Pi’s oldest unretired 
instruction. For the example shown in Figure 6, at the 
end of interval T, the vector ID for P1 is [11, 10], and 
the vector ID for P2 is [10, 12]. It then calculates the 
point-wise minimum of all vector IDs, which should be 
the corresponding FCF. For the example shown in 
Figure 6, the FCF is calculated as [10, 10]. In this case 
the sub-graph formed by instructions before instruction 
10 on P1 and instruction 10 on P2 can be reduced. 
3) The central checker validates the acyclic property of 
the identified sub-graph. If no error is detected, the 
central checker notifies each processor about the ID of 
instructions at the identified FCF, so that they can free 
the observed records for the already validated 
instructions. This notification serves as the 
acknowledgement of this validation phase. 

In theory, there may be cases where there is a long 
path from an unretired instruction to a retired instruction 
through edges between other retired instructions. For 
example, suppose there is an edge from <2, 11> to <1, 
9> in Figure 6, then <1, 9> is reachable from <1, 12> 
through the path <1, 12> → <2, 10> → <2, 11> → <1, 

Processor-1
…

(9) load C

(10) store D

(11) store B

(12) load A

Processor-2

…

(10) store A

(11) load B

(12) Store E 

(13) load Dwar

Retired instructions Forward 
Causality 
Frontier

war

Processor-1
…

(9) load C

(10) store D

(11) store B

(12) load A

Processor-2

…

(10) store A

(11) load B

(12) Store E 

(13) load Dwar

Retired instructions Forward 
Causality 
Frontier

war

Figure 6: Example of Constraint Graph Slicing 
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9>. In this case the FCF should be located at instruction 
<1, 9> and <2, 10>. To count in these special cases, we 
extend Step 2 above to perform a fixed-point iterative 
computation of the FCF: the procedure is the same 
except that at the beginning of each iteration, we need 
to update a processor Pi’s vector ID, such that it reflects 
the minimal ID of other processor’s instructions that are 
successors of any Pi’s instruction after the previously 
computed FCF. For the example in Figure 6, the FCF 
computed in the first iteration would be [10, 10]. 
Suppose we have the edge from <2, 11> to <1, 9>, then 
in the second iteration, we first need to double check 
P2’s recorded edges after <2, 10> and update P2’s 
vector ID as [9, 10], because <1, 9> is reachable from 
<2, 11>. Then we repeat the remaining operation 
described for step 2 above. The computation stops when 
the calculated FCF no longer changes. In the worst case, 
the FCF may get back to the starting instructions. 
However, in practice there are rarely long dependence 
chains from unretired instructions to retired instructions, 
and the computation of FCF converges quickly in 
mostly one and occasionally two or three iterations. 

To prove the correctness of the proposed graph 
slicing technique, below we show that there is no back-
edge across the FCF derived in the scheme above. 
Formal proofs are omitted here for brevity (available in 
the extended version [30]). 
Proof sketch: 1) Since all instructions before the 
identified boundary have already retired and are 
globally performed by the end of the validation interval 
T, they should have been made visible to all other 
processors (i.e., the coherence transactions generated by 
the read/write request should have all been 
acknowledged).  Therefore, all incoming edges to these 
instructions should have been observed using the 
methods described in Section 4.2 and it is not possible 
for them to have an additional incoming edge that 
originates from instructions executed after the interval 
T. 
2) When a new instruction is executed after the interval 
T, the generated coherence requests may infer an 
additional causal dependence on a retired instruction 
(e.g., for the example shown in Figure 6, a “load D” 
executed after T at P2 will result in a RAW edge from 
<1, 10>). However, they will only be perceived as 
“happened after” the retired instruction, and cannot 
result in a back edge across the identified boundary. 
Note that this argument does not hold for the unretired 
instructions. An unretired instruction may be stalled in 
the pipeline and waiting to be executed, and the 
generated in-flight coherence messages may not have 
been observed by other processors yet. Therefore, it is 
possible that a back-edge to such an instruction is 
observed later and results in a cycle. This is why we 

exclude these instructions from the sub-graph that can 
be reduced. 
3) The vector operation performed by the central 
checker in step 2 of the validation protocol effectively 
performs a backward reachability analysis in the 
currently observed constraint graph, which ensures that 
any instruction that is reachable from the unretired 
instructions is after the identified boundary. Therefore, 
there should be no back edge from instructions after the 
identified boundary to instructions preceding the 
identified boundary. Combined with fact 1) and 2), we 
can see that the identified boundary satisfies the 
requirements for the forward causality frontier. 
4.5 Error recovery 

When an error is detected, we rely on commonly 
used check-pointing schemes to resume the execution 
from a previously validated state. Since we perform 
online checking, the check-pointing scheme should also 
be fast and incur low overhead. A good match for these 
requirements is the SafetyNet scheme [9]. 

While it is not the focus of this work, we briefly 
discuss the resumption of computation based on the 
nature of the expected errors. For transient errors (e.g. 
soft errors) the computation is simply repeated, the 
probability of the error recurring is low. For permanent 
errors (e.g. design errors or permanent device defects), 
additional steps will be needed to ensure that the error 
does not recur. For example, enforcing a less aggressive 
execution mode (e.g., by temporarily serializing the 
execution) provides for an alternate constraint graph 
that can avoid the recurrence of the error. 

5. Experimental results 
Simulation environment: We evaluate our proposed 
approach through simulation of a dual-core chip 
multiprocessor system. Our simulation environment is 
built on the Wisconsin Multifacet GEMS simulator 
[23]. The baseline system parameters are summarized in 
Table-1.  
Constraint graph evaluation: We conducted 
experiments with 5 programs from the SPLASH-2 
parallel benchmark suite [24].  The remaining 
SPLASH-2 programs are not included due to 
infrastructure issues. Note that the original GEMS 

Table 1. System Configuration 

Processor Core SPARC V9 processor  
4-way , out-of-order      

L1 Cache (Private) 64KB, 4-way 64-byte blocks 
L2 Cache (Shared) 4MB, 4-way 64-byte blocks 
Memory 1G bytes 
Coherence Protocol MSI_MOSI_CMP_Directory 
Interconnection Network PT_TO_PT 
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implementation only supports SC 
execution. The support for non-SC 
executions is based on GEMS extensions 
described by Meixner et al. [21], e.g., by 
adding a write-buffer to model TSO and 
allowing out-of-order loads in WO. We 
observed a simulation performance 
impact similar to what is reported by 
them. However, when running some 
SPLASH-2 benchmarks, the program 
encounters live-locks or execution errors.  

To test the error detection capability of 
our method, we manually introduced 
errors in the system such that it may 
execute instructions in illegal order, and 
found cycles in the resulting constraint 
graphs in various cases. For example, 
when performing SC verification, if we 
allow out-of-order load/store, we found 4 
cycles for FFT and 1 cycle for WATER-
NSQUARED.  

Figure 7 shows the maximum number 
of vertices of the constructed global 
constraint graphs when we perform the 
graph slicing and checking scheme 
described in Section 4 for SC execution. 
The X-axis denotes the size of the 
validation interval T (e.g., performing the 
checking at every 10K clock cycles). 
Figure 8 shows the maximum number of 
graph edges.  

We can see that number of graph 
vertices is relatively small for a given 
time interval. For example, for benchmark 
RADIX, the graph that we need to check 
at the 10K-cycle interval has only 221 
vertices at most. This is because our 
global constraint graph only consists of 
those memory instructions that have inter-
processor dependence edges, as described 
in Section 3. In comparison, we observed 
that the naively built constraint graph that 
consists of all memory instructions has 
orders of magnitude more vertices (e.g., 
more than 5K vertices for the 10K-cycle 
interval).  

Second, we can see that there is a rapid 
increase of the graph size when we 
perform checking at longer validation 
intervals, and the checking is performed most cost-
effectively at the 10K-cycle interval. For example, for 
benchmark WATER-NSQUARED, the maximum 
number of graph vertices is 134 at 10K-cycle validation 
interval, which increases to 881 at the 100K-cycle 

interval and 3033 at the 1M-cycle interval. Without the 
graph slicing method presented in Section 4.4., we will 
have to check the entire program execution. This takes 
556 million cycles for WATER-NSQUARED, and the 
resulting constraint graph will have over a million 
vertices. 

 

 

 

 

 
Figure 7: Maximum Number of Global Constraint Graph Vertices 

 

 

 

 

 

Figure 8: Maximum Number of Global Constraint Graph Edges 

 

 

 

 

Figure 9: Maximum Size of Locally Recorded Edge List 

 

 

 

 

Figure 10: Maximum Size of Evicted Access Record Set 
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Third, we can see that the graph is quite 
sparse. In fact, the number of graph edges is a 
small multiple of the number of graph vertices. 
This motivates us to use the optimized design 
described in Section 4.3 to perform online 
checking of the global constraint graph. As 
shown in the figures, at the 10K cycle 
validation interval, we have 10K cycles for the 
graph checker to check a graph with only a few 
hundred edges. There is sufficient time to 
process this with a dedicated hardware engine 
without stalling. 

To evaluate the hardware size required for 
storing the locally recorded edges and evicted 
cache access records, we also measured the 
maximum size of these at different validation 
intervals. Figure 9 and 10 show the results 
respectively. We have similar observations as 
the data shown in Figure 7/8, which 
demonstrate the effectiveness of applying the 
optimization techniques. 
Bandwidth overhead evaluation: Since our 
method piggybacks on the cache coherence 
messages for inter-processor dependence edge 
observation, it incurs additional communication 
overhead. To measure this we run the 
simulation with the augmented coherence 
messages using 4 bytes to represent the 
instruction ID, and compare the reported 
average total traffic size and link utilization 
with results obtained without applying the runtime 
validation (i.e., coherence messages unmodified).  
Figure 11 shows that the average traffic overhead is 
4.3%, while the average link utilization overhead is only 
4.6% (figure not shown due to limited space).  
Performance impact evaluation: Currently we do not 
have the check-point support available in our baseline 
simulator, so we cannot evaluate the precise 
performance impact with error recovery enabled. We 
simply let the simulation continue when an error is 
detected. In a system with check-point support enabled, 
the graph checking is done in a pipelined fashion as 
described in Section 4.1. Since our validation process is 
not on the system’s critical path and is in parallel with 
the check-pointing process, the checking latency can be 
effectively hidden. 

To get a better idea about what potential 
performance impact our method may have due to 
resource stalls, we examine the cumulative distribution 
of the measured constraint graph size for both 
benchmark FFT and WATER-NSQUARED at the 10K-
cycle interval duration, measured over the different 
intervals (FFT has a total of 4681 intervals, and 
WATER-NSQUARED has 55641 intervals). Figure 12 

plots the cumulative distribution of the number of graph 
edges, where the y-axis shows the cumulative fraction 
of graphs (over the different intervals) that have the 
corresponding size shown along the x-axis. So for FFT, 
more than 96% of the intervals have at most 40 edges in 
the graphs being checked. We have similar observations 
on other resource usage, including the locally recorded 
edge list and the evicted access record set, which shows 
that the expected performance impact in average is 
much lower than the worst case.  
Hardware cost analysis: The hardware overhead 
required for performing the validation at the 10K-cycle 
interval is summarized in Table 2 (shown on the next 
page). The hardware size is determined as follows. For 
each augmented hardware component, we set the size to 
an empirical value based on the experiment results.  In 
this experiment we perform dependence tracking at the 
cache block granularity, and each L1 cache block is 
augmented with a 4-byte field to record the access 
instruction information. The hardware buffer for storing 
the locally recorded edge list has 128 entries, where 
each entry has 8 bytes. The evicted cache for storing the 
evicted access records has 256 entries, where each entry 
has 12 bytes (including the address and instruction ID). 

Table 2. Validation Hardware Overhead 
 

Local access record at L1 cache 4K bytes 
Locally recorded edge list 1K bytes 

Evicted access record at L2 cache 3072 bytes 
Central graph checker 4K bytes 
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In the central graph checker, the size of the input buffer 
is 2KB, and the internal graph structure has 256 
vertices. These are sufficiently large to avoid resource 
overflow in our experiments. In general, if there is a 
resource overflow, we handle it as follows: if the 
resource overflow happens locally at a processor core, 
we need to stall the processor execution until the 
observed information is verified at the end of the 
validation interval; if the evicted cache gets full, we can 
leverage the existing NACK scheme [22] to stall the 
cache eviction operation, until the old entries are 
removed at the end of the validation interval; if the 
resource overflow happens at the central graph checker, 
we need to resume the execution from the previous 
check-point, and perform the checking at a shorter 
execution interval to avoid recurring overflows or 
enforce a less aggressive execution mode to effectively 
perform graph slicing. 

6. Related work 
Some related work done in the area of deterministic 

replay and race detection [25, 26, 27] has also utilized 
coherence hardware based support for recording 
dependence edges. The authors also proposed some 
transitive reduction methods, which are complementary 
to our graph reduction technique, and when applicable, 
can be employed to further reduce the number of inter-
processor dependence edges in our work. However, 
they do not address the constraint graph verification 
issues discussed in our work. Cain et al. proposed a 
dynamic verification algorithm for constraint graphs 
[28]. However, their work assumes only sequential 
consistency and in-order execution. No implementation 
is provided for the algorithm, which has a high space 
complexity (e.g., it associates each memory location 
with two vector time stamps). 

To our knowledge, the only previous work on 
runtime validation of general memory consistency 
models is the DSN’06 paper by Meixner and Sorin [21], 
which is an extension of their previous work on 
verifying SC [29]. Their approach is different from ours 
in that, instead of checking the constraint graph as a 
direct verification against the memory ordering rules, 
they perform indirect verification of system invariants 
that are required to ensure memory consistency. As 
pointed out by the authors, their indirect checking 
approach is conservative and subject to false positive 
errors. Compared with the direct verification of the 
observed global behavior in our method, a false positive 
may be introduced when a detected violation of their 
sub-invariant does not actually cause a cycle in the 
global constraint graph. Further, their solution is based 
on the assumption that in a cache coherent system, a 
memory operation “performs globally as soon as it 

accesses the highest level of the local cache hierarchy”. 
While they perform global checking of cache coherence 
property, this does not address possible design bugs or 
runtime errors that lead to illegal global ordering of 
memory accesses to different locations. 

In practice, enforcing the assumed global access 
order is one of the most complicated issues in shared-
memory system design. To improve memory bandwidth 
and performance, a memory operation is often not 
performed atomically, but involves several sub-
transactions to allow multiple outstanding requests to be 
performed in parallel. Due to the delay in the 
interconnection network and intermediate buffers, a 
memory request may be visible to a local processor and 
remote processors at different times, during which the 
observed access order is vulnerable to intervention of 
other memory requests [22]. In general, it is a very 
complicated design problem to coordinate them to 
ensure memory ordering in a parallel system, and it 
relies on multiple system components to obey subtle 
design rules to prevent ordering violations among 
different memory requests. Even if cache coherence is 
strictly maintained, since it is only concerned with the 
access order to the same memory location, it does not 
necessarily guarantee the visibility order of memory 
requests to different addresses. In our case, we construct 
the inter-processor dependence edges based on when a 
load/store request is actually visible to another 
processor, and the dynamically maintained constraint 
graph reflects the actual global behavior of the target 
system. Thus our validation approach is more complete. 

7. Conclusions 
Validation of memory ordering poses a significant 

challenge for emerging multi-core shared-memory 
systems. This paper proposes a runtime validation 
approach to address this problem, which combines 
efficient hardware schemes for capturing the system 
behavior and effective end-to-end validation of memory 
ordering based on the constraint graph model. This 
allows us to overcome the limitations of conventional 
testing/simulation based verification methods, as well as 
to detect dynamic errors resulting from thermal 
conditions, aging, or particle hits. To make this 
approach practical, we have presented several 
optimization techniques that can effectively reduce the 
runtime validation overhead. As two key enabling 
techniques, we show how to use constraint graph 
reduction to effectively reduce the number of graph 
vertices, and how to use the constraint graph slicing, 
performed during incremental validation, to reduce the 
size of the execution interval that needs to be checked 
periodically. 
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