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As complexity and size of Systems-on-Chip (SoC) grow, debugging becomes a bottleneck for designing IC
products. In this paper, we present an approach for online debug of NoC-based multiprocessor SoCs. Our
approach utilizes monitors and filters implemented in hardware. Monitors and filters observe and filter
transactions at run-time. They are connected to a Debug Unit (DU). Transaction-based programmable
Finite State Machines (FSMs) in the DU check assertions online to validate the correct relation of transac-
tions at run-time. The experimental results show efficiency and performance of our approach.
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1. Introduction

Modern high-performance Systems-on-Chip (SoC) include
many IP cores such as processors and memories. Network-
on-Chips (NoC) have been proposed as a scalable interconnect
solution to integrate large multiprocessor SoCs [2] [3]. Having a
large SoC with complex communication among its cores, achieving
complete verification coverage at pre-silicon stage is almost
impossible. Therefore in addition to electrical bugs, some design
bugs may also appear in the final prototype of an SoC.

The idea of transaction-based communication-centric debug is
introduced in [4] to debug complex SoCs which interact through
concurrent interconnects such as NoC. The transactions are
observed using monitors [5] and the debug control unit can control
the execution of the SoC (stopping, single stepping, etc.). In [6],
transactions are stored at run-time in a trace buffer using on-chip
circuits. After an SoC run, the content of the trace buffer is read and
analyzed offline with software. The analysis software tries to find
certain patterns [7] in the extracted transactions that are defined
by their Transaction Debug Pattern Specification Language (TDPSL).
Because of limited size of a trace buffer, getting an execution trace
of the transactions related to the time of bug activation is a chal-
lenging problem. To overcome this problem, the content of the
trace buffer is utilized to backtrace the transactions along their
execution paths [8]. The backtracing is performed in transaction-
level states using Bounded Model Checking (BMC). However, back-
tracing needs formal pre-image computations which can blow up
for large and complex designs [9]. To address this problem, we
need to have online detection to stop the SoC close to the time of
bug activation at the transaction level.

In this paper, we present a transaction-based debug infrastruc-
ture which can be used not only for online debug and online sys-
tem recovery but also for interactive debug in which an external
debug platform programs the FSMs and the filters according to
the considered assertions at each round of debugging. Our hard-
ware infrastructure contains monitors, filters, and a debug network
including Debug Units (DU). Filters and DUs are programmed
according to the transaction-based assertions defined by TDPSL.
Transactions are monitored only at master interconnects. Slaves
send information to masters. This redundant information is used
to observe the elements of transactions online. No modification
of the internal components of the NoC is required. At run-time
the programmable FSMs in the DUs investigate the assertions
online and detect an error. Upon detection of an error, the DU
recovers the SoC by informing the masters which have participated
in the observed error. Then, the corresponding masters start the
recovery process at run-time. Also we identify the requirements
which a debug infrastructure has to fulfill in order to perform
transaction-based online debug.

The main contributions of this paper are as follows:

– Introducing a debugging infrastructure to transaction-based
online debug of NoC-based SoCs without modifying the internal
components of the corresponding NoC (non-intrusive to the
NoC).
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– Analyzing and finding transaction-based debug patterns at-speed
using debug units including programmable filters and FSMs.

– Presenting an ordering mechanism in the routers of the debug
network to order the transactions online.

– Online system recovery without stopping and interrupting the
NoC.

The experimental results show the efficiency of our approach
using different assertion patterns defined by TDPSL such as race,
deadlock, and livelock. An NoC-based SoC using a mesh network
is setup in the Nirgam NoC simulator [10] to evaluate our
approach. Also we show the effectiveness of the proposed online
recovery in the experimental results.

The remainder of this paper is organized as follows. Related
work is discussed in Section 2. Section 3 introduces preliminary
information on transactions and TDPSL. Our debug method includ-
ing hardware and software parts is explained in Section 4. The
debug patterns and their corresponding FSMs are explained in
Section 5. This section also presents experimental results on an
NoC-based SoC. The last section concludes the work.
2. Related work

Previous work also considered infrastructures for SoC debug.
The existing debug infrastructures for complex SoCs are reviewed
in [11]. These infrastructures support debugging such that the
internal nodes become observable and controllable from the out-
side. The work in [12] presents a Design-for-Debug (DfD) tech-
nique for NoC-based SoCs. The technique enables data transfer
between a debugger and a Core-Under-Debug (CUD) through the
available NoC to facilitate debugging. A debug platform to support
concurrent debug access to the CUDs and the NoC in a unified
architecture is proposed in [13,14]. This platform is realized by
introducing core-level debug probes in between the CUDs and
their network interfaces and a system-level debug agent. The work
in [15] proposes a ring-based NoC architecture to debug SoCs. The
NoC is used to send back the information observed by monitors to
the debugger. A Non-Uniform Debugging Architecture (NUDA) is pro-
posed in [16] to debug many-core systems. A NUDA node in each
cluster has three main parts: nanoprocessor, memory and commu-
nication. The NUDAs are distributed across a set of hierarchical
clusters and are connected to each other through a ring intercon-
nection. Then the address space is monitored using non-uniform
protocols for race detection. Monitoring the address space without
abstraction consumes a large storage and increases the latency of
the error detection.

NoC test and diagnosis is the main focus in most of the previous
work. Packet address driven test configurations are utilized in [17]
to test and to diagnose regular mesh-like NoCs using a functional
fault model. Then, link faults are diagnosed using test results and
a diagnosis tree. The system test is modeled at the transaction level
in [18] in order to facilitate test design space exploration, as well as
the validation of test strategies and schedules. Interconnect faults
in Torus NoCs are detected and diagnosed using BIST structures
in [19]. Afterwards, the NoC is repaired by activating alternative
paths for faulty links. In [20] an NoC with a faulty router or a bro-
ken link is repaired using spare routers. The inherent structural
redundancy of the NoC architecture is exploited in a cooperative
way to detect the faults using BIST [21]. Also diagnosis units in
switches are utilized to localize a fault. In the diagnosis unit there
are different comparators to compare data from all the possible
pairs of switch input ports. A comprehensive defect diagnosis for
NoCs is proposed in [22]. The approach uses an end-to-end error
symptom collection mechanism [23] to localize datapath faults
and a distributed counting and timeout-based technique to localize
faulty control components [22]. The work in [24] diagnoses the
NoC switch faults using hardware redundancy in each switch and
a high level fault model. These approaches focus only on electrical
bugs in the components of an NoC. However we consider design
bugs which influence communications in an NoC-based SoC.

The work in [4] proposes a communication-centric debug
approach. The approach focuses on the communication and the
synchronization between the IP cores. Their approach uses not
only monitors on the IP interconnects but also monitors on the
internal components of an NoC such as routers. Debug data is
read-out using scan chains and Test Access Ports (TAP). In our work,
we do not transfer the debug data out of the SoC. The debug data is
analyzed online using debug units. Also we monitor only the mas-
ter interconnects without modifying the internal components of an
NoC. The work in [6] uses trace buffers to store the transactions at
run-time. The content of the trace buffer is analyzed offline in
order to form transactions and to find debug patterns. Their
approach monitors the bus to store the events in the trace buffer.
However, we present an approach to debug NoC-based SoCs. We
form the transactions online using distributed monitors and debug
units. Also the debug patterns are found at run-time.

3. Preliminaries

3.1. Transaction

In this section we shortly explain the transaction elements from
[25,6]. Each transaction includes a request and a response. Masters
request and slaves respond. Each transaction has four basic ele-
ments: Start of Request (SoRq), End of Request (EoRq), Start of
Response (SoRp), and End of Response (EoRp). In TLM, SoRq corre-
sponds to putting the request in the channel by the master. EoRq
is getting the request by the slave. SoRp corresponds to putting
the response in the channel by the slave. EoRp is getting the
response from the channel by the master. Also there are two addi-
tional elements which are called: Request Error (ErrRq) and
Response Error (ErrRp). These elements handle error conditions
and correspond to any kind of error that causes a request or a
response to fail.

3.2. Transaction Debug Pattern Specification Language (TDPSL)

TPDSL has three layers: Boolean layer, temporal layer, and veri-
fication layer [6]. The Boolean layer includes trans exp which repre-
sents the basic elements of transactions. The trans exp format is as
follows:

trans type ðmaster; slave; type; address; tagÞ

Field trans type can be any transaction element mentioned in
Section 3.1 as well as the Start of Transaction (SoTr) and the End
of Transaction (EoTr) which are similar to SoRq and EoRp respec-
tively. Fields master and slave specify the ID of master and slave.
Field type can be Rd or Wr. Field address indicates the slave address
symbolically as SAME, SEQ, and OTHER. Field tag indicates the
transaction number and is only used for buses that allow non-
blocking requests and out-of-order responses [6]. In our paper,
we show a transaction without considering the field tag.

The motivation to use symbols for the address field is to
abstract and to compress the address bits. In this case, only the
compact address information is stored or sent via network for
debugging. The symbols can be defined with respect to the applica-
tion and the granularity of debugging. SAME specifies that in the
current transaction, slave address is same as the address in the pre-
vious transaction for this slave. SEQ specifies that in the current
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transaction, slave address has one word difference with the pre-
vious address for this slave. OTHER specifies that in the current
transaction, the slave address in neither SAME nor SEQ.

For example transaction EoTr ðm1; s2;Rd;�Þ represents the end
of a read transaction from master m1 to slave s2 with any address.
The symbol ‘‘�’’ indicates that we leave the corresponding field as
don’t care.

The properties in terms of transaction sequences are defined at
the temporal layer. Different operators are utilized at this layer
such as concatenation operator (;), fusion operator (:), or operator
(—), and operator (&), and repetition operators [6]. In the veri-
fication layer, the assert statement is defined. Also a filter can be
defined which specifies a filter over the execution path for the
evaluation of the assertion statement.

Following is an example of a simple assertion in TDPSL:

assert never
EoTr ðm2; s1;Wr;�Þ; SoTr ðm1; s1;Rd;�Þ

This assertion specifies that start of a read transaction from
master m1 to slave s1 must never be directly after the end of a
write transaction from master m2 to slave s1.
Slave1 Slave2

Fig. 1. Debug infrastructure.
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Fig. 2. Tree-based debug infrastructure.
4. Debug method

Transaction level online debug aims at improving the observ-
ability and the controllability of the system. Whenever transac-
tions conform to certain debug patterns, an error is detected. In
this case, the Debug Unit (DU) sends the debug packets to the
SoC nodes in order to control the network and to recover from
the error state.

We have some requirements to enable transaction-based online
debugging:

1. Our debug infrastructure has to be able to collect the elements
of each transaction at run-time.

2. We have to be able to order the transactions online.
3. We need to assert debug patterns, i.e., the relation of transac-

tions, at run-time.

If a debug infrastructure fulfills the three mentioned require-
ments, it can be used for transaction-based online debug.

In the following, we explain our debug infrastructure fulfilling
the above mentioned requirements. To collect all elements of each
transaction in a system based on NoC (first requirement), we need
distributed monitors and Debug Redundant Information (DRI).
Monitors and DRI are explained and discussed in Sections 4.1
and 4.2, respectively.

The transaction ordering mechanism in the Debug Units (DU) is
responsible to order transactions (Section 4.4) fulfilling the second
requirement. A DU is the main part of the debug infrastructure
which searches for certain debug patterns in the received transac-
tions. We use a tree-based debug network structure in which all
monitors have a short distance to DUs. In the debug network, the
transactions are ordered using DUs. The ordered transactions are
transferred on each link of the debug network from bottom to
top such that the ordered transactions can be utilized in each level
of the debug network for hierarchical and assertion-based debug.

FSMs in DUs are utilized to investigate transaction-based asser-
tions at run-time to fulfill the third requirement (Section 4.6). The
filters in DUs and in monitors help FSMs by dropping unrelated
transactions (Section 4.5).

Fig. 1 shows the hardware infrastructure of our approach for an
SoC including four IPs, 2 masters and 2 slaves. The debug infras-
tructure has the following parts: monitors, filters, DU, and DRI.
The internal structure of a DU has also three main parts: transac-
tion ordering, filter, and FSM. Each IP in Fig. 1 is connected via a
Network Interface (NI) to the NoC.

Fig. 2 shows the tree-based debug infrastructure. The lowest
level of the infrastructure includes monitors and filters. Monitors
are connected to Master Interconnects (MI) to observe the transac-
tions. A Central Debug Unit (CDU) is only at the top level. The other
levels have Local Debug Units (LDU). LDU and CDU structures are
explained in Section 4.3.

4.1. Monitor

Monitors extract the basic elements of a transaction as men-
tioned in Section 3.2. They observe master interconnects to enable
transaction-based debug [4]. In a packet-based protocol in an NoC,
we can immediately extract the elements master; slave, and type by
observing the master interconnects. But to extract the element
address as SAME, SEQ, and OTHER, which is a comparison of the
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slave address in the current transaction and the previous transac-
tion for the corresponding slave, we need some DRI. The next
section explains the DRI.

A monitor in our infrastructure observes a master interconnect
and signals a matching transaction expression explained in
Section 3.2 as an output.

Each monitor includes also a timer. The timer is used to attach a
timestamp to each observed transaction. The timestamp attached
to a packet is utilized at DUs to order the transactions arriving from
the left and right input links of DUs. As the transactions are con-
sumed online using FSMs, large timestamps are not required.
Timestamps only need to distinguish the order of transactions
arriving at DUs.

In an SoC with asynchronous IPs, the CDU sends synchroniza-
tion packets to monitors. The timers in monitors are synchronized
according to the synchronization packets. As only the CDU sends
the packets from the top level to the bottom level in the tree-based
debug network, the delay of synchronization packets arriving at
monitors are predetermined. In this case, the time in monitors is
synchronized with the time in the CDU by incrementing the CDU
time included in the synchronization packet with the delay of syn-
chronization packet.

Another approach to synchronize the transactions is using the
relative timestampes. In this approach, the time of each transaction
is calculated in comparison to the time of the front transaction in
the debug network. Then, this relative timestamp is attached to
the corresponding transaction. To use this approach, some timers
are required in LDUs and CDU.

4.2. Debug Redundant Information (DRI)

DRI is used to extract and to transfer the element address of a
transaction. We can form the element address using slaves
(slave-based approach) or using debug units (DU-based approach).
In the following we discuss these two approaches.

In a slave-based approach, the element address is formed in the
slaves and is sent as redundant information to masters through the
NoC. Because the element address is a comparison of the address of
the current transaction with the address of the previous transac-
tion for the corresponding slave, this comparison can be simply
done in each slave.

The slave should send two bits redundant information to mas-
ters. These two bits specify the symbols SAME, SEQ, and OTHER.
We can also use more symbols for the slave address to have more
accurate data depending on the applications running on the SoC.
We use the slave-based approach to detect deadlock and livelock.

The DRI section in each slave in Fig. 1 compares the slave
address of the current transaction with the slave address of the
previous transaction in the corresponding slave. Then the DRI sec-
tion selects a symbol (SAME, SEQ, or OTHER) and adds this symbol
in the response packet as two redundant bits. On the master side
these two bits are read by monitors to constitute a complete trans-
action expression. These two redundant bits are used only in moni-
tors. The master applications should ignore these two redundant
bits.

In this case, we can have the address information for the
corresponding slave only in the EoTr. The element address is not
available in SoTr. To have this information, we should wait to
receive an EoTr by the corresponding slave.

The second approach to form the element address uses debug
units, i.e., DU-based approach. In this approach, the slave addresses
are observed by monitors and sent to the DUs. In the DU, there is
one address register for each slave. The address registers keep
the address of the previous transaction for each slave indepen-
dently. When a new transaction is performed, the content of the
address register related to the corresponding slave is compared
to the new transaction address. Then the symbols SAME, SEQ,
and OTHER are derived and the address register is updated to keep
the slave address in the latest transaction for the corresponding
slave. We use the DU-based approach to detect races.

In the DU-based approach, the element address is available for
both SoTr and EoTr. The DU-based approach needs more memory in
the debug units storing slave addresses. Also it needs more band-
width for the debug network to transfer slave addresses to DUs.
The advantage of this approach is being non-intrusive to the SoC.
4.3. Debug Unit (DU)

A debug unit can be an LDU or a CDU. A CDU is used at the top
level in the tree-based debug network (Fig. 2). An LDU is used in
other levels of the debug network. The structure of an LDU is suit-
able to build a tree-based network. An LDU has three ports
(Fig. 3(a)): top port T, left port L, and right port R. The right and left
ports transfer the data observed by monitors to the top level. Also
the synchronization packets sent by the CDU are transferred from
the top port to the left and right ports reaching timers. The CDU
controls the traffic of the packets sent from the top level to the
leaves in the debug network. In this case, we use only one buffer
in each LDU to transfer synchronization packets.

The packets arriving at the inputs of the right and left ports are
stored in the right and left FIFOs. Then the transaction ordering
selects a transaction packet such that the transactions are ordered
based on their timestamps. The filter does not allow a transaction
to be forwarded if the transaction is not related to the considered
assertions. The related transactions regarding the considered
assertions are used in the FSM to investigate the assertions. If an
assertion fails, an error message is sent to the CDU.

The CDU is used at the top level of the debug network. The CDU
has two additional tasks: synchronizing the timers and handling
error cases (Fig. 3(b)). Synchronization is performed by part
Synch in Fig. 3(b). When there is an error, the error handler in
the CDU manages the network by sending some debug packets to
other nodes in the SoC. The CDU is connected to the NoC communi-
cating with other nodes in the network. In this case, the CDU can
send the error state to all nodes or some special nodes in the net-
work in order to collect more accurate debug information or to
recover the SoC from the error state.

Fig. 4 shows the CDU procedure to recover the SoC from an
error. At the step of pattern detection, the CDU checks the debug
patterns at run-time. If the CDU detects an error, the second step
is started. In this step, the CDU sends a recovery packet to the
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masters which have contributed to the observed error. A recovery
packet contains an error type and additional information helping
the masters to start a recovery process. In the third step, the CDU
restarts its own FSM. Then, the CDU sends a restart packet to the
LDUs restarting the LDU-FSMs. Afterwards, the procedure contin-
ues with the step of pattern detection.

Fig. 5 shows an example for a master recovery process in the
case of a software deadlock. In this case, when a master receives
a recovery packet from the CDU with the error type deadlock, the
master releases the locked resources. Then the master waits for a
random time and proceeds its main function again. With this pro-
cedure, the system is recovered online from the error state without
stopping and interrupting the NoC.

DUs include FSMs to investigate transaction-based assertions at
run-time. To check an assertion in an efficient way, we need to pro-
gram both LDU-FSMs and CDU-FSM. Distributed online assertion
checking can be performed through programming the FSMs in dif-
ferent levels.

4.4. Transaction ordering

When there is more transaction traffic on one link than another
link in the debug network, some early-generated transactions are
accumulated and buffered in the FIFO of the corresponding DU.
This case may also occur when the bandwidth of the debug net-
work is less than the bandwidth of the NoC. When there are some
transactions in the FIFO of the left link which have been generated
earlier than the transaction available in the FIFO of the right link,
the transaction of the right link has to wait until the transactions
with smaller timestamps on the other link have been transferred.
By comparing the timestamp of a packet in the left FIFO and the
right FIFO, the packets are ordered based on their generation time.
Wait for Recovery 
Packet

Release 
Resources

Wait for a 
Random Time

Proceed again

Error

Continue

Fig. 5. An example for master recovery thread in the case of a software deadlock.
The length of the timestamp depends on the worst case delay of
the debug network. A timestamp should only be able to distinguish
the packets based on the time in which they have been generated
or sampled. In Fig. 3(a) and (b), the part Order in DU compares the
timestamps of a packet in the right and the left FIFOs and selects a
packet which has a smaller timestamp.

The size of the left and right FIFOs may influence the accuracy of
the debug pattern detection because if the FIFO becomes full, some
transactions are lost. In this work, we assume that the size of the
FIFOs is sufficient to process the transactions.
4.5. Filter

A filter is located in monitors and DUs. A filter is used to filter
unrelated transactions in a trace. In this way, the debug unit
receives only the related transactions for the assertion statements.
Filtering can be done over all parameters of a transaction expres-
sion, i.e., trans type; master; slave; type, and address. The filter is
programmable according to the main assertion statements.

Fig. 6 shows the filter structure. A filter has five fields:
trans type; master; slave; type, and address. In the fields master
and slave, multiple IDs can be stored. When a transaction is
received from the ordering section, the received transaction is
compared to all fields of the filter. If at least one element of the
received transaction is equal to its corresponding field in the filter,
the transaction is considered as unrelated transaction and is not
passed to the FSM. Otherwise, the transaction is transferred to
the FSM as a related transaction.

If a special field in the filter is not used, the corresponding field
should be programmed such that its value becomes always differ-
ent from the corresponding transaction element. In this case, the
output of the inequality operation for that field in Fig. 6 becomes
always 1 which is a non-controlling value for the AND gate. In this
case, the value of the corresponding field in the filter is called don’t
care value.
4.6. Debug FSM

Debug FSMs are programmable FSMs which are utilized in
debug units to investigate the assertions online. Debug FSMs
include local FSMs and global FSMs verifying local assertions and
global assertions. Debug units can be programmed to implement
distributed FSMs validating online assertions in different levels.
To do this, first the transaction-based assertions should be ana-
lyzed based on their locality in the corresponding SoC. We need
to know which task is running on which IP. Accordingly, the filters
should be programmed and the assertions should be distributed
among debug units (LDUs and CDU).

To implement programmable FSMs, we use lookup-table mem-
ory [26] which can be programmed in every debug round accord-
ing to the new assertions. Fig. 7 shows the structure of an FSM
using lookup-table memory. As shown in Fig. 7, in this method
the current state bits and inputs are connected to the address
bus of a memory. The next state is taken from the memory output.
The correct next states have to be stored in each location of the
memory to ensure the correct operation [26].

The number of bits for the current state depends on the total
number of states in an FSM. For input bits we can connect all ele-
ments of a transaction directly to the input lines of the lookup-
table memory. In this case, if element trans type has 1 bit (SoTr
and EoTr), element master has 2 bits (4 IDs), element slave has 2
bits (4 IDs), element type has 1 bit (Wr and rd), and element address
has 2 bits (SAME, SEQ, and OTHER), totally we need 8 bits for the
input part of the FSM. To decrease the number of input bits, we
can firstly encode the transactions. Then we connect the encoded
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transaction to the input of the memory. As shown in Fig. 8, to
encode a received transaction, we use some programmable trans-
action patterns. In each transaction pattern, all elements of one
transaction are specified and stored. A received transaction is com-
pared to the transaction patterns. If it is equal to one transaction
pattern, the output of the corresponding AND gate becomes 1.
Then an encoder converts 2n bits input to n bits output. In Fig. 8,
the encoder has 4 bits input and 2 bits output. The output of the
encoder is connected to the input of the lookup-table memory.
The goal of the encoder is to reduce the size of lookup-table
memory, while the goal of the filter is to discard a group of unre-
lated transactions.

In this paper, the size of the lookup-table memory, i.e., the num-
ber of address bits and data bits in Fig. 7, and the number of trans-
action patterns in Fig. 8 are used to measure the area overhead of
the assertion-based FSMs.

The worst case size of the FSM memory can be estimated based
on the worst case number of transactions t and the worst case
number of states s. In this case, the input of the address requires
dlog2te bits and the current state of the address requires dlog2se
bits. Totally the address of the FSM memory requires
dlog2se þ dlog2te bits (Fig. 7). The data of the FSM memory requires

dlog2se bits. Totally a memory with ðdlog2se þ dlog2teÞ2 � dlog2se
bits is required.

In Fig. 8, field M is a mask bit for the address field. When M is 1,
the address is considered as don’t care, and the corresponding
input of the AND gate becomes 1. One mask bit can be utilized
for each field of a transaction pattern. However in Fig. 8 we show
a mask bit only for the address field.

A complex assertion including many master and slave IDs may
increase the size of the FSM. To handle this case, a complex asser-
tion should be divided into different parts such that each part is
checked by its respective LDU. Main FSM structure can be imple-
mented in the CDU. The main FSM has some sub-FSMs. Each
sub-FSM is implemented in its respective LDU. The LDUs send
the state of the sub-FSMs to the CDU updating the state of the main
FSM.
4.7. Design decisions and limitations of the approach

We use a tree-based network to connect the DUs. In a tree-
based network, all of the leaves have a short distance to the CDU.
Therefore, the detection latency of an error is short as all transac-
tions can arrive at the CDU in a short time. The latency of the debug
network depends on the traffic of transactions and the number of
hops (levels) from the leaves to the CDU. If the number of monitors
is m, the tree debug network has l ¼ dlog2me levels. In Fig. 2, the
number of monitors (the number of masters) is m ¼ 4 and the
debug network has 2 levels. Using a tree-based debug network
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Fig. 8. Encoding of transaction patterns.
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needs a large number of DUs (routers) when the number of mas-
ters increases. When the number of masters m is a power of two
ð2nÞ, the number of DUs in a tree-based network is

#DU ¼
Pl

i¼1m=2i ¼ m� 1. In each level i of the debug network,

the number of DUs is m=2i.
For the topology of the debug network, other alternatives can be

used in order to decrease the hardware cost. One of the topologies
which has been used for a debug network is ring topology [16,15].
Using a ring topology for our approach decreases the number of
DUs (routers) in the debug network. In the ring network, the num-
ber of required DUs is #DU ¼ dm=2e þ 1. We assume that each LDU
can be connected to at most two monitors. The LDUs are also con-
nected to each other in a serial manner. A CDU closes the ring. One
disadvantage of the ring topology is that some LDUs have a close
distance to the CDU while some other LDUs have a far distance
from the CDU. The ring debug network requires some special
approaches to balance the traffic in the network [15]. In the ring
network, the CDU has to wait until all of the required transactions
from all the LDUs have arrived. Afterwards, the CDU can check the
assertions. In the ring topology, the worst case number of hops
from an LDU to the CDU is l ¼ d#LDUs=2e ¼ dm=4e which influ-
ences the latency of error detection in the CDU. In this case, as
the CDU has to wait for the transactions of the longest path (dis-
tance), the CDU needs larger FIFOs storing all the transactions
which have arrived through the shorter paths.

Another challenge is ordering the transactions of the FIFO by
the CDU based on the timestamps. In [16], a nanoprocessor is used
in order to investigate the transactions and their timestamps.
However, in the tree network, the transactions are automatically
ordered by a simple hardware mechanism from the bottom level
to the top level such that at every level of the debug network,
the ordered transactions are available.

The selection of the topology of the debug network is a trade-off
between hardware cost and diagnosis latency. Using a hybrid
topology may alleviate hardware costs and may help achieving a rea-
sonable diagnosis latency. A tree network is suitable for hierarchical
debugging while a ring network is suitable for local debugging. The
many-core systems can be divided into different clusters [16]. In
each cluster, a ring sub-network can be used to evaluate the local
assertions. The local ring sub-networks are connected to each other
using a tree topology evaluating the global assertions.

The functionality of filters in tree-based debug networks has
some limitations. In the debug network, each LDU has two subnet-
works, i.e., right subnetwork and left subnetwork. In this case, a fil-
ter in an LDU can only be applied on the transactions which arrive
from the masters being at the lower levels of the subnetworks of
the corresponding LDU. The LDUs in the same level cannot
communicate with each other. Therefore, each LDU can only check
the assertions which are related to the masters falling in the leaves
of the corresponding LDU. Only the CDU can have a comprehensive
assertion checking the transactions of all masters.

In order to use our approach, first the address space of slaves
has to be categorized in an offline step. In this step, symbols are
assigned to each relevant address range. Also, the ID of each IP rele-
vant for the assertion of interest is determined in the offline step.
The IDs are required in order to write a transaction expression.

In our approach, an FSM is derived from assertions. Then, the
FSMs are distributed among LDUs. Each LDU includes the FSMs
which are relevant to the masters being at its lower levels. A DU
can have multiple FSMs running in parallel. Parallel FSMs also help
checking assertions for different address spaces. In this case, each
FSM can have its own filter. The following experiments show the
application of our approach and indicate the hardware overhead
required.

A hardware fault in the NoC may cause an EoTr failing to reach
the corresponding master. In this case, the CDU detects an error.
But our approach cannot recover the NoC from the error. The
recovery example of Fig. 5 is suitable for software deadlocks. In
the case of a hardware fault in the network which leads to a wrong
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routing and consequently results in a deadlock; the recovery algo-
rithm has to select a new route avoiding the faulty route. In this
case, the recovery algorithm can be enhanced using a diagnosis
approach such as [22] to localize faulty components in the
network.

Our approach detects the errors which are related to the trans-
actions between the cores. But it does not detect the deadlocks
which may happen between different threads of a single core.
Table 1
Area overhead.

Debug Pattern Lookup Table Size (#Bits) #Tr Patterns

Address Data
5. Implementation

For the experiments we setup a 3 � 3 mesh network in the
Nirgam NoC simulator [10]. Nirgam is a cycle-accurate simulator
which is implemented in SystemC language. We have simulated
the system for one million cycles. During the run-time of the
SoC, our debug infrastructure asserts the debug FSMs which are
mentioned in the next sections. We have implemented dining
philosophers [6] and a random application [8] as example applica-
tions. In the random application, each master waits for a random
time. Then the master selects a random list of slaves as resources.
If the master can lock all the required resources, the processing is
started. Afterwards, the resources are released and the procedure is
repeated. If the master cannot lock all the required resources, the
master waits for a random time and tries again [8].

In our experimental setup, the SoC has four masters (philoso-
phers) and four slaves (chopsticks) which are divided into two
groups communicating in parallel. Each group has two masters
and two slaves (first group: m1; s1; m2; s2. second group:
m3; s3; m4; s4). Four monitors are used to observe the master
interconnects. Also two LDUs and one CDU constitute the debug net-
work. In the following sections, we discuss debug patterns for race,
deadlock, and livelock as an example. In each section, we also discuss
the hardware and storage costs in terms of the size of lookup-table
memory and the number of required transaction patterns. In the
slave-based approach in which the address symbol is transferred
by each slave, the bandwidth of the debug network is 8 bits/cycle,
as a transaction has 8 bits: 1 bit for element trans type (SoTr and
EoTr), 2 bits for element master (4 IDs), 2 bits for element slave (4
IDs), 1 bit for element type (Wr and Rd) and 2 bits for element
address (SAME, SEQ and OTHER). In the DU-based approach, the
debug network needs a higher bandwidth, as the slave address is
transferred by the debug network (Section 4.2). In this case, the
bandwidth of the debug network has to be ð6þ#Address BitsÞ=cycle.

If the filter is implemented with one ID in the field master and one
ID in the field slave (Fig. 6), the size of the filter is same as the size of a
transaction, i.e. 8 bits. In our experiments we considered two IDs in
the field master and two IDs in the field slave. As each additional ID
requires 2 bits, the filter requires 8þ 2þ 2 ¼ 12 bits. In addition,
the filter requires 12 XOR gates with two inputs for the inequality
operations and 1 AND gate with twelve inputs.

The size of the encoder structure depends on the maximum
number of transaction patterns. In our experiments the maximum
number of transaction patterns is 8. The size of a transaction pat-
tern is the size of a transaction (8 bits) plus 1 mask bit as shown
in Fig. 8. Therefore, the encoder structure requires 8 � 9 ¼ 72 bits.
In addition, the encoder structure requires 8 multiplexers, 8 AND
gates with eight inputs, 64 XNORs with two inputs and one 8-to-
3 encoder. For the experiments we used a FIFO with the capacity
of 5 transactions. The size of the FIFO is 5 � 8 ¼ 40 bits.
Race Pattern 1 4 2 3
Race Pattern 2 6 3 8
Deadlock Pattern 1 6 3 6
Deadlock Pattern 2 7 4 6
Livelock Pattern 1 7 4 6
Livelock Pattern 2 7 4 6
5.1. Debug pattern for race

A race may occur when one write transaction to the same place
occurs during the previous write. In TDPSL this case is written as
follows:
assert neverf
SoTrðm1; s1;Wr;�Þ; SoTrðm2; s1;Wr; SAMEÞ;
EoTrðm1; s1;Wr; SAMEÞ
gfilterð�; �; �Þ

Filtering is done on the three first parameters of transaction
expressions. Sign ⁄ in the filter means only the related transaction
types, masters, and slaves should be considered. Therefore the
transactions related to slave s2 are omitted. Also all transactions
related to the second group, i.e. group of master m3 and master
m4, have to be omitted. In our infrastructure, the filters are pro-
grammed such that the transactions related to slave s2, master
m3 and master m4 are filtered online. The field slave in the filter
of Fig. 6 has to include the slave ID 2. The field master has to
include the master ID 3 and 4. Other fields in the filter have to have
don’t care values.

As explained in Section 4.2, the DRI can be transferred using the
slave-based approach or the DU-based approach. As in the race
assertion we need the element address in SoTr, therefore we can
only use the DU-based approach to investigate this assertion. In
the slave-based approach, we can have the element address only
for EoTr. If we use the slave-based approach, we need to change
the race assertion such that only EoTrs includes element address.
But this case causes some latency in the detection of the assertion
violation.

To build the FSM, first we sign each transaction with a unique
number. For example, transaction SoTrðm1; s1;Wr;�Þ is written
as T1. The address field in each transaction can be �, SAME, SEQ
or OTHER. We use an index for each transaction in order to distin-
guish different cases in the field address. We use index 1–3 for
SAME, SEQ, and OTHER, respectively. For example
SoTrðm1; s1;Wr; SAMEÞ is written as T11. Transactions T11; T12,
and T13 are a subclass of transaction T1. In this case, the race asser-
tion is written as T1T21 T31.

The race FSM is implemented using four states which need 2
bits from the address line of the lookup-table memory. Also there
are three transactions T1; T21, and T31. To program a transaction
pattern in Fig. 8 by T1, the mask bit of the corresponding transac-
tion pattern is set to consider the address field as don’t care.

By using the encoding structure of Fig. 8, three transactions are
encoded into 2 bits as input bits of the memory. Totally the race
assertion needs 4 bits (2 bits current states + 2 bits input) for the
memory address and 2 bits for the memory data. Also 3 transaction
patterns are required (Race Pattern 1 in Table 1).

To increase the verification coverage of the FSM, we need to
have a more comprehensive pattern. In the following, we write
an improved race pattern to cover more race conditions happening
on slave s1 : T1 T21 T31 jT2T11 T41:

assert neverf
SoTrðm1; s1;Wr;�Þ; SoTrðm2; s1;Wr; SAMEÞ;
EoTrðm1; s1;Wr; SAMEÞ
jSoTrðm2; s1;Wr;�Þ; SoTrðm1; s1;Wr; SAMEÞ;
EoTrðm2; s1;Wr; SAMEÞ
gfilterð�; �; �Þ
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In the first part of the assertion, the pattern checks a race condi-
tion in which master m1 starts a race. The second part of the asser-
tion specifies a race condition in which master m2 starts a race. Six
states are used to check this assertion online. For the improved race
assertion, we need 3 bits for the FSM states. We need the following
8 transaction patterns: T11; T12; T13; T21; T22; T23; T31, and
T41. Eight transaction patterns are encoded into 3 bits. Therefore
the size of the memory address is 6 bits (Race Pattern 2 in Table 1).
Table 2
Number of debug patterns detected for each application.

Rand. application Din. application

Race Pattern 2 62 0
Deadlock Pattern 2 0 1
Livelock Pattern 2 0 0
5.2. Debug pattern for deadlock and livelock

When some masters are waiting for other masters to release
shared resources, deadlock happens. Here we show the case of
two masters and two slaves as an example. Each slave has a sema-
phore which specifies its access permission. When semaphore is 0,
the slave is free. When semaphore is 1, the slave is locked. Each
master should first lock required slaves, then it can start its process
using the corresponding slaves as resources. To lock a slave, a mas-
ter has to first read the semaphore of the corresponding slave. If
the semaphore is 0, then the master can write 1 to the semaphore
to lock the corresponding slave. Therefore to lock a slave, a master
needs two transactions, i.e., one read transaction and one write
transaction. If the semaphore is 1, i.e., the slave is already locked,
then the master should wait until the corresponding slave becomes
released (in the application of dining philosophers). Both masters
have access to the semaphore of each slave. Accessing a semaphore
is equivalent to accessing the same address by different masters.

A simple deadlock scenario for two masters and two slaves is as
follows [6]: (1) Master1 locks the first semaphore. (2) Master2
locks the second semaphore. (3) Master1 waits for the second
semaphore. (4) Master2 waits for the first semaphore. (5) Steps 3
and 4 are repeated. This deadlock condition is written in TDPSL
as follows [6]:

assert neverf
EoTrðm1; s1;Rd;�Þ; EoTrðm1; s1;Wr; SAMEÞ;
EoTrðm2; s2;Rd;�Þ; EoTrðm2; s2;Wr; SAMEÞ;
fEoTrðm1; s2;Rd; SAMEÞ; EoTrðm2; s1;Rd; SAMEÞ
jEoTrðm2; s1;Rd; SAMEÞ; EoTrðm1; s2;Rd; SAMEÞ
g½þ�
filter(⁄,⁄,⁄)

This assertion is written for applications in which each master
first locks the slave with the same ID. For example master m1 first
locks slave s1. If it is successful, then it locks slave s2. To implement
this assertion by our debug infrastructure, the filters are pro-
grammed such that transactions SoTr are filtered online as unre-
lated transactions. Also all transactions related to the second
group, i.e. group of master m3 and master m4, are filtered. In the
filter structure of Fig. 6, the field trans type is programmed to have
SoTr. The field master has to include the master ID 3 and 4. Other
fields are programmed to have don’t care values.

We abstract the deadline assertion to T1T21 T3T41

fT51T61 jT61T51g. Fig. 7 shows the FSM related to the deadlock
assertion. In the deadlock assertion, there is a repetition operator
þwhich means the transaction sequence between the correspond-
ing two brackets f. . .g may be repeated one or more times. For the
sake of simplicity, we show the case of one repetition in the FSM.
The operator þ can be implemented using a counter in the FSM
which checks how many times a special transaction sequence is
repeated. In Fig. 7, states ðStart;A;B; C;DÞ check the transaction
sequence T1T21 T3T41. The transaction sequences T51 T61 and
T61 T51 are verified by states ðD; E; ErrÞ and ðD; F; ErrÞ. The FSM
works correctly in the presence of suitable filters. In this case, only
the related transactions are investigated by the FSM.
The deadlock FSM requires 3 bits to indicate eight states and
requires 6 transaction patterns: T1; T21; T3; T41; T51, and T61.
The transaction patterns are encoded into 3 bits. Therefore the
address line has 6 bits (3 + 3). The size of memory data is 3 bits
(Deadlock Pattern 1 in Table 1).

In the mentioned deadlock assertion, first the lock process from
master m1 is checked, then the lock process from master m2. To
illustrate this case better, we denote a read transaction (write
transaction) from master mx to slave sx as Rxy (Wxy). In the pre-
vious deadlock assertion only the sequence ðR11;W11;R22;W22Þ
is checked for the lock process. To increase the verification cover-
age of the deadlock assertion we check the following sequences
for the lock process: ðR11;W11;R22;W22Þ, ðR11;R22;W11;W22Þ,
ðR11;R22;W22;W11Þ, ðR22;W22;R11;W11Þ, ðR22;R11;W22;
W11Þ, ðR22;R11;W11;W22Þ.

The improved deadlock assertion requires 4 bits to implement
thirteen states. Also it uses 6 transactions (3 bits input). Thus the
size of address and data are 7 bits (4 + 3) and 4 bits (Deadlock
Pattern 2 in Table 1).

A livelock is similar to a deadlock where two or more processes
proceed accessing shared resources which are already locked. But
in the case of a livelock, they release the locked resources permit-
ting the other processes to continue. A simple livelock scenario for
two masters and two slaves is as follows [6]: (1) Master1 locks the
first semaphore. (2) Master2 locks the second semaphore. (3)
Master1 waits for the second semaphore. (4) Master2 waits for
the first semaphore. (5) Master1 unlocks the first semaphore. (6)
Master2 unlocks the second semaphore. (7) Steps 1–6 are repeated.

To implement the livelock FSM, the deadlock pattern 1 and the
deadlock pattern 2 are enhanced to check the steps 5 and 6. Table 1
shows the area overhead of the livelock pattern.

Our debug infrastructure is programmed according to race,
deadlock, and livelock debug patterns and detects the occurrence
of each debug pattern at run-time. Table 2 shows the number of
times a debug pattern is detected during the simulation time of
one million cycles. In the random application, the race pattern is
detected 62 times. Also at run-time, this information is sent to
the corresponding masters (Fig. 4). In the application of dining
philosophers, the deadlock pattern is detected one time. In this
case, after the first deadlock detection, the group of deadlocked
masters cannot proceed with their process anymore.

As explained in Section 4.3 (Fig. 5), the masters can start a
recovery process after the CDU has sent them the error state.
Table 3 indicates the effect of using the recovery process in the
masters. Without recovery process in the application of dining
philosophers, the masters in one group can eat only 6 times.
After that a deadlock happens and the masters cannot pick up their
required chopsticks. However, the recovery process of Fig. 5 causes
that the masters can continue their main process even if they get
into a deadlock. In this case, a deadlock happens 77 times. But in
each time, the CDU detects the deadlock at run-time and triggers
the recovery process in the masters to recover the deadlocked net-
work. Consequently, the masters can eat more often (3276 times)
as shown in Table 3.

The recovery example of Fig. 5 is suitable for software dead-
locks. In the case of a hardware fault in the network which leads
to a wrong routing and consequently results in a deadlock, the
recovery algorithm has to select a new route avoiding the faulty



Table 3
Effect of online recovery.

Without recovery With recovery

#Eating 6 3276
#Resolved Deadlock 0 77
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route. In this case, the recovery algorithm can be enhanced using a
diagnosis approach such as [22] to localize faulty components in
the network.

6. Conclusion

We introduced an approach to online debug for NoC-based
multiprocessor SoCs. Our approach contains a hardware infrastruc-
ture, debug redundant information, and FSMs. Monitors, filters,
and debug units are considered in our debug hardware infrastruc-
ture. This infrastructure allows us to investigate and to debug the
behavior of an NoC-based SoC at run-time. Filters and FSMs are
programmed according to the transaction-based assertions defined
by TDPSL. In the experimental results, we investigated the effi-
ciency of our approach for the debug patterns race, deadlock, and
livelock. Our debug infrastructure is used not only for online debug
and online system recovery but also for interactive debug in which
an external debug platform programs the FSMs and the filters
according to the considered assertions at each round of debugging.
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