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ABSTRACT

Microprocessor design validation is a time consuming and costly
task that tends to be a bottleneck in the release of new
architectures. The validation step that detects the vast majority of
design bugs is the one that stresses the silicon prototypes by
applying huge numbers of random tests. Despite its bug detection
capability, this step is constrained by extreme computing needs
for random tests simulation to extract the bug-free memory image
for comparison with the actual silicon image.

We propose a self-checking method that accelerates silicon
validation and significantly increases the number of applied
random tests to improve bug detection efficiency and reduce time-
to-market. Analysis of four major ISAs (ARM, MIPS, PowerPC,
and x86) reveals their inherent diversity: more than three quarters
of the instructions can be replaced with equivalent instructions.
We exploit this property in post-silicon validation and propose a
methodology for the generation of random tests that detect bugs
by comparing results of equivalent instructions. We support our
bug detection method in hardware with a light-weight mechanism
which, in case of a mismatch, replays the random test replacing
the offending instruction with its equivalent. Our bug detection
method and corresponding hardware significantly accelerate the
post-silicon validation process. Evaluation of the method on an
x86 microprocessor model demonstrates its efficiency over
simulation-based and self-checking alternatives, in terms of bug
detection capabilities and validation time speedup.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of Systems —
reliability, availability, and serviceability. B.8.1 [Hardware]:
Performance and Reliability — reliability, testing, and fault-
tolerance. B.8.2 [Hardware]: Performance and Reliability —
performance analysis and design aids.

General Terms
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1. INTRODUCTION

Aggressive technology scaling and extreme chip integration make
microprocessor validation a daunting task and a major bottleneck
in the development of new architectures. The pressure on the
validation team to deliver correct design in the marketplace on
time is higher than ever although the combination of correctness
and timeliness seems almost infeasible given the complexity of
microprocessor designs (“infinite” validation space) and the
available time-to-market windows [20], [23].

Pre-silicon design verification is mainly based on simulation at
different levels of abstraction [6]. Despite its maturity and the
tremendous utilization of computing resources, it is impossible to
guarantee that all design bugs have been fixed before tape-out
[18] because only a small number of functional scenarios can be
simulated during pre-silicon verification. Statistics show that 12%
of design bugs slip into first silicon prototypes [14] and almost
50% of microprocessor chips require extra unplanned tape-outs
[3]. An ineffective validation process easily leads to product
delays or even product recalls and a severely tarnishing in the
reputation for the company. Thus, an effective post-silicon
validation approach that promptly detects and eliminates design
bugs before volume production can make the difference between
success and failure of a modern microprocessor product [26].

The goal of post-silicon validation is to detect anything that
may lead to incorrect operation: logic bugs, electrical or process-
related bugs and mask-related manufacturing defects. Post-silicon
validation runs a comprehensive collection of test programs on
silicon prototypes in a real system environment. Huge numbers of
tests run 24 hours per day for up to a year, feeding the
microprocessor chip with a varied assortment of test scenarios at
various frequency, voltage, and temperature operating ranges.
Every time a bug is detected the validation team is fed with the
failure data from the execution of the test to debug the design.
When a sufficient number of bugs are detected and fixed, a new
batch of prototypes (step) is manufactured and validation
continues on the new samples. Post-silicon validation ends when
time-to-market window demands volume production to start.

In this paper, we propose a post-silicon validation methodology
for microprocessors with two major objectives: apply more tests
to silicon prototypes and detect bugs earlier. The methodology
does so, by exploiting the inherent diversity of microprocessor
instruction sets (existence of equivalent ways to perform



operations) to mitigate the very expensive and time consuming
simulation step.

2. POST-SILICON VALIDATION
2.1 Challenges

Several years of experience of microprocessor manufacturers have
shown that the combination of design complexity with shrinking
time-to-market windows, lead to numerous important design bug
escapes (errata bugs) in production silicon despite the extremely
large efforts of the validation team. All processors have several
known errata bugs: the Intel Pentium® FDIV bug, the AMD
Opteron™ REP MOVS bug, the IBM PowerPC® bug that caused
some instructions to execute at lower frequencies only [30], and
the recent Intel Sandy Bridge chipset bug in the SATA port [16].
The rate of errata bugs has more than doubled in the latest
generation of Intel processors [11]. More than half of the bugs
that slip into volume production have no fixes and for those that a
fix exists, the in-field workaround is often too costly [5]. Thus,
effective silicon validation methods are needed to ensure that
forthcoming architectures do not suffer from severe bug escapes
due to the following challenges. By effectively addressing these
challenges the number of escaping bugs is expected to be reduced.
Simulation Limitations — Simulation offers excellent control
and monitoring capabilities throughout the entire design, but the
limited simulation throughput has always been a bottleneck in the
microprocessors industry. Expensive server farms devote huge
amounts of time and energy for simulation but only a small
portion of the different modes of operation can be thoroughly
excited before silicon. Table 1 summarizes the throughput of
simulation, emulation and actual hardware execution [13].

Table 1. Simulation, emulation and silicon throughput

Approach Throughput (instructions/sec)
System simulation ~10°
RTL simulation 10' - 10°
Emulation ~10°
FPGA prototyping ~10°
Silicon 10’10’

Validation tests applied to prototype chips range from random
instruction tests (RIT) [9] to user applications [8]. The silicon
validation phase that is based on RITs contributes tremendously
to the detection of design bugs; 71% of the bugs in Intel’s Core™
2 Duo found in post-silicon validation are detected by RITs [9]. In
a RIT-based validation a huge number of random instruction
sequences (trillions of random instructions in total) are executed
and aim to cover all possible architecture and micro-architectural
scenarios defined by the programmer’s reference manual.

RIT-based post-silicon validation is tightly coupled with a
necessary simulation step and thus suffers from the simulation
throughput problems [29]. A typical RIT-based validation flow
involves the execution of tests on a golden reference model,
which is an instruction-level accurate model of the processor (an
architectural simulator) to produce the correct (golden or
expected) responses. Correct responses must be known to
compare them with the actual prototype responses; in case of a
mismatch, bug-hunting begins.

Effective post-silicon validation of the future must mitigate the
simulation of random instruction tests to save time, resources, and
budget while not limiting bugs detection. How does one know in a
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simulation-less method (without needing ‘“golden responses”)
that a random test ran correctly in the silicon prototype? Our
methodology mainly contributes to this challenge proposing a
self-checking technique.

At this point, it is important to emphasize on a fundamental
requirement we set to ourselves for the proposed methodology:
keeping original random tests unmodified. Several methods for
the generation of effective random instruction tests have evolved
throughout the last years [2], [3], [7]. Important problems in
random tests generation have been addressed, such as avoidance
of the creation of fixed patterns, which introduce interference into
the test. Interference can spoil the test scenario and may hinder
creation of more general patterns, thus reducing bug detection
coverage. An example of interference is the case where a data
processing operation (e.g. integer addition) is always paired with a
data movement instruction (e.g. data loading). In this case, there is
a high probability that the fixed instruction sequence spoils the
contents of caches and leads to cache misses that the validation
scenario is not expecting. Our methodology leaves original RITs
unmodified to fully utilize their bug detection capabilities.

Post-Processing (Triaging) — Triaging is the step in which
validation data (from silicon execution of random tests) is
analyzed to identify common failure modes, which indicate
potential design bugs. In a traditional RIT-based validation flow,
for each failing random test a detailed simulation reproduces the
test to identify the root cause of the mismatch. As reported in
[17], there is a large possibility that multiple fails in the validation
data are due to the same bug. However, the validation team will
necessarily simulate all failing tests before recognizing the cause
of failure. Such delays in bug identification can seriously impact
time-to-market and hinder the detection of other bugs. Thus, after
validation data is collected (memory array dumps from random
tests execution), it is crucial to eliminate or reduce the “dirty” or
“misleading” debugging records inside them and cluster common
failure modes more effectively before the debug process begins.
How can the random tests execution in a self-checking method
provide more useful validation data to the debug engineers? We
contribute to this challenge by providing detailed information
about the offending instructions.

Blocking Bugs — Another major issue of post-silicon validation
is dealing with blocking bugs. Mostly in the first stages of silicon
validation (first prototypes), there are several bugs with blocking
behavior [19]. A bug is a blocking one, if it can potentially mask
out the discovery of other bugs, by stalling the execution of the
subsequent tests (the rest of the validation plan goes wasted),
because no workaround is possible for that bug. In such a case,
validation proceeds only after bug-fixing, re-design, and new
silicon prototypes arrive to the validation teams [12]. Volume
production may be seriously delayed and the overall development
cycle and time-to-market will be prolonged if multiple such
silicon re-spins are necessary before a design is considered
sufficiently bug-free. How can a self-checking RIT-based method
help reducing the effect of blocking bugs? We contribute to this
challenge by providing equivalent instructions workarounds for
the offending instructions.

2.2 Scope of the proposed methodology

The proposed methodology is applied at the post-silicon
validation phase of the microprocessor validation cycle for the
detection of logic and electrical bugs. The proposed approach
aims to detect failures in silicon prototypes (potentially
corresponding to actual silicon bugs) through the comparison of
equivalent instructions responses. Furthermore, it refines the



validation data provided to the debug process, by replaying the

failing random tests. The contributions of the proposed

methodology to post-silicon validation are the following.

e  We introduce a novel methodology for the generation of
enhanced random instruction tests (RITs) able to detect
design bugs by comparing the results of equivalent
instruction sequences. The methodology is therefore self-
checking (does not need golden responses to compare with).
A bug can make either an instruction or its equivalent to fail
but a mismatch in the comparison denotes the existence of a
bug in either case. Bugs can escape only when they affect the
equivalent instructions in the same way. By generating
equivalent instructions that do not activate the same
hardware areas in the processor logic we minimize this
probability. The identification of equivalent instruction
sequences is a key enabler for the execution of subsequent
random tests despite the existence of bugs, so our method
inherently supports bypassing of blocking bugs. When an
offending instruction is identified and while debug engineers
look for fixes before new prototypes are produced, RIT-
based validation can continue normally by avoiding the use
of the problematic instruction and replacing it with its
equivalent.

e We propose a light-weight hardware mechanism that records
the mismatch between the results of two equivalent
instructions to support subsequent identification of the
offending instruction. Furthermore, the hardware mechanism
contributes to the reduction of validation data forwarded to
the debug engineers. After it records the mismatch location,
the hardware mechanism replays the RIT replacing the
offending instruction by its equivalent sequence to take full
advantage of the RIT’s failure detection capabilities: it
allows continuation of the RIT execution and identification
of additional failures. By utilizing the information about the

exact location of mismatches during post-processing triage,
the debug engineer can identify instructions or instruction
classes that fail often and focus root cause analysis to
particular structures of the microprocessor. Note that the
hardware mechanism is complementary to the bug detection
method (checking of equivalent instructions) and is optional.

3. ISA DIVERSITY ANALYSIS

Our bug detection philosophy is based on the existence of
inherent equivalences (i.e. diversity) within instruction sets. We
define ISA diversity as the extent to which operations of an ISA
can be performed equivalently by more than one different ways. If
the same input data is applied to equivalent instructions or
instruction sequences, they will produce identical results,
although they activate different logic paths in the processor logic.
It is exactly this activation of different parts of the processor that
enable bug detection by comparison (self-checking).

To identify the extent of ISA diversity in microprocessors, we
analyze four popular instruction set architectures: ARM, MIPS,
PowerPC, and x86 and provide examples of diversity and
statistics for each ISA.

3.1 Diversity Examples

Table 2 lists examples of equivalent instruction sequences for
ARM, MIPS, PowerPC, and x86 ISAs. In most cases, more than
one equivalent instruction sequences exist for each original
instruction, but only one alternative appears in Table 2. We use
the actual assembly instruction mnemonics of each ISA to
describe the equivalent code. For uniformity, we use the same
generic names (RA, RB, RC, etc.) for general purpose registers.
Note that whenever an equivalent code modifies a register —
which is not affected by the original instruction — its value has to
be saved before and restored after the execution of the equivalent
code (the save and restore instructions are omitted).

Table 2. ISA diversity examples of four popular ISAs

ARM ISA diversity
Original Instruction Equivalent Sequence Description
mvn RA, RB sub RC, RC, RC Uses exclusive OR operation and an all 1’s mask stored in
move not sub RC,RC,#1 RC to invert the bits of RB.
eor RA,RC,RB
mlas RA, RB,RC, RD mul RA, RB, RC Splits the complex operation into a multiplication and an
multiply and accumulate adds RA,RA,RD addition.
smuad RA, RB,RC smulbb RA, RB, RC Executes two signed 16-bit multiplications in the bottom
dual 16-bit signed multiply with add smultt RD, RB, RC and top halves of the source registers RB and RC and then
add RA, RA,RD adds the intermediate products.
stmia RA! {RB-RD} str RB, [RA] Executes multiple single register store instructions which
store multiple increment after str RC, [RA, #4]! (except the first one) update the index.
str RD, [RA, #4]!
MIPS ISA diversity
Original Instruction Equivalent Sequence Description
slt RA, RB, RC sub RD, RB, RC Executes subtraction and checks if the result is negative
set on less than srl RA,RD, 31 (RO = zero register).
Iw RA, addr(RB) lhu RA, addr(RB) Executes two load halfword unsigned instructions and
load word lhu RC, (addr+2)(RB) places the second halfword to upper bytes.
sll RC,RC, 16
or RA, RA,RC
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MIPS ISA diversity (cont.)

lui RA, immq addi RB, RO, OxFFFF Resets the upper half of RA and then uses add and shift
load upper immediate and RA,RA,RB instructions to load the constant (R0 = zero register).
addi RB, RO, imm,¢
sll RB, RB, 16
or RA, RA, RB
srlv RA, RB, RC rotrv RA, RB, RC Executes rotate right instruction and then left shift to mask
shift word right sub RC, RO, RC upper bits in the rotated result (RO = zero register).
addi RC, RC, 32
sllv RB, RB, RC
Xor RA, RA,RB
PowerPC ISA diversity
Original Instruction Equivalent Sequence Description
eqv RA, RB,RC andc RD, RB, RC Executes the logic operation:
equivalent andc RE, RC, RB —((RB & —RC) | ("RB & RC))
nor RA, RD, RE
rldimi RA, RB, SH, MB rldicr RC, RB, SH,63-SH | Performs successive rotate and mask operations using other
rotate left doubleword immediate then | clrldi RC, RC, MB rotate instructions.
mask insert rldicl RB, RB, MB,63-SH
rotrdi RB, RB, MB
or RA, RB,RC
Iwaux RA, RB, RC Iwzx RA, RB, RC Loads word first, then updates RB with the new address
load word algebraic with update | add RB, RB,RC and finally extends sign.
indexed extsw RA, RA
cntlzd RA,RB addi RA, 0,0 Implements a loop that uses rotate and mask operations to
count leading zeros Loop: add RA, RA, 1 count leading zeros. Each loop iteration rotates reg RB left
rldel RC, RB, RA, 63 by RA locations and clears the 63 upper bits (and update
beq Loop flags). If the result is zero continues, otherwise exits.
addi RA, RA, -1
x86 ISA diversity
Original Instruction Equivalent Sequence Description
add RA, [m32] fild [m32] Moves data from integer register file to FP-stack and uses
integer addition mov m32, RA the FP addition instead of integer addition.
fiadd [m32]
fistp m32
mov RA, [m32]
mov RA, [m32] push [m32] Next instruction that uses RA operand should load the data
load data from memory into register add ESP, 0x4 from the stack. Restore stack pointer (ESP).
cle mov RA, 0x0 Sets RA to zero and performs a bit test and set instruction
clear carry flag bts RA, 0x0 which clears the carry flag.
jmp target mov RA, 0x1 Sets RA to a value and performs a compare instruction
Jjump to target address cmp RA, 0x1 which activates the ZF flag. The conditional jump (je) is
je target then used instead of jmp.
cvtdq2pd RA, [m64] cvtsi2sd  RA, [m64,,] Executes two convert dword integer to scalar double
convert packed dword integers to cvtsi2sd  RB, [m64yg] precision FP values instructions followed by two load
packed double-precision FP values movlpd  mé4, RA operations. The intermediate results (low 32-bits, high 32-
movhpd mé64, RB bits) are merged into the same register.
movlpd  RA, [m64]
movhpd RA, [m64]
fadd [m64] movlpd  RA, [m64] m64y,,, and m64;,, are consecutive memory addresses filled
floating-point addition fst mo64 with zeros. Modifies operands values and replaces the
movhpd RA, [m64] floating point operation by a packed double-fp horizontal
mov m64,,, 0x0 addition.
mov m64;,,, 0x0
haddpd  RA, [m128]
movlpd  m64, RA
fld [m64]
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Figure 1. Diversity statistics of four popular ISAs

3.2 Diversity Statistics
We classify the instructions of the ARM, MIPS, PowerPC, and
x86 ISAs in 3 categories.

(a) Full Equivalence: instructions for which there are one or
more equivalent ways to realize their operation. This category
includes the vast majority of arithmetic and logic instructions,
data transfer instructions, compare instructions, and a large
number of control flow instructions.

(b) Partial Equivalence: instructions for which there are
partially equivalent ways to realize their operation. This is due to:
(i) different modes of operation for these instructions some of
which cannot be realized differently, (ii) inherent loss of accuracy
in the operation of an instruction (floating-point conversions).
This category includes some of the instructions not included in the
previous category, a number of floating point instructions, and
some data transfer instructions that involve system storage areas.

(¢) No Equivalence: instructions with no equivalences. This
category includes mainly the privileged instructions that access
system resources, complex control operations, input and output
instructions, interrupts, exceptions and very complex arithmetic
instructions (of CISC architectures).

Figure 1 shows the statistics of our analysis for the four
popular instruction set architectures where all instructions are
classified in the three categories. For each ISA, our statistics
present the percentage of different instruction mnemonics that fall
in each category and not the different opcodes. In many cases
(particularly in x86) the same mnemonic includes several tens of
different opcodes. For the x86 ISA, we focused on the general
purpose instructions set and not the special ISA extensions. It is
evident from Figure 1 that all four ISAs have a large amount of
instructions in the full equivalence category.
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4. SILICON VALIDATION BY
EXPLOITING ISA DIVERSITY

The proposed post-silicon validation methodology consists of four
stages:

(1) Generation of the ISA diversity database.
(2) Generation of enhanced random instruction tests.
(3) Hardware replay mechanism.

(4) Post-processing (triage).

We propose a novel, self-checking, diversity-based, hardware
supported framework to accelerate post-silicon validation and
improve its quality. An overview of the framework is shown in
Figure 2, where our major contributions are highlighted. A
detailed analysis of each feature of the methodology follows.

(1) ISA Diversity Database Generation. The fundamental
first step of the proposed framework is the identification of ISA
diversity, i.e.  microprocessor instruction equivalences.
Identification of equivalent instruction sequences and population
of the ISA diversity database heavily depends on the designer’s
knowledge about the underlying architecture (detailed knowledge
of the architecture, micro-architecture and microcode of the
design). For this reason it is very likely to provide high quality
results given the insights that the design team has on the
microprocessor architectural details. The database contains for
each instruction a list of equivalent instruction sequences. (In our
case, this step took approximately one and a half man month to
study in detail the x86 ISA and identify its diversity; effort was
much less for the RISC ISAs we studied — see Section 3).
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Figure 2. Proposed silicon validation framework

(2) Generation of Enhanced Random Instruction Tests. The
validation flow is fed with effective Random Instruction Tests
(RITs) already generated (but not simulated) by sophisticated
random generators that all microprocessor companies internally
use. We pair each RIT with an Equivalent RIT (ERIT), to
implement our basic bug detection concept: bugs are detected in
our method by comparing the execution results of a RIT and its
ERIT (a mismatch indicates a potential silicon bug). An ERIT is
automatically generated from a RIT replacing its instructions with
their equivalent counterparts that have been stored in the ISA
diversity database. When the database contains more than one
entry with equivalent instructions for an original instruction, our
approach randomly picks one of the alternatives. Instructions
without equivalents are simply duplicated (in this case, only
electrical bugs related to these instructions can be detected).

The enhanced RITs that our methodology automatically
generates have the following structure:

/* Original RIT code starts here. */

/* End of Original RIT code. Original RIT responses have been
stored to memory. */

/* Equivalent RIT (ERIT) code starts here. */

/* End of Equivalent RIT (ERIT) code. ERIT responses have been
stored to memory. */

/* Checking code starts here. Compare RIT to ERIT responses. */

/* End of Checking code. */

Each enhanced RIT consists of the following:

(a) An original RIT which is left unmodified; we assume each
RIT consists of a few thousands of instruction cycles as
reported in the literature (each RIT we use in our
experimental evaluation consists of 4K instruction cycles).
An equivalent RIT (ERIT) generated as described above
using the ISA diversity database. For each instruction in

(b)
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the RIT, an equivalent instruction or instruction sequence
is inserted.

A checking code that compares the stored results of the
original RIT and the equivalent RIT to identify
mismatches as indications of potential silicon bugs.

Bug detection in our method takes place by recording
mismatches during silicon execution (through the checking code);
therefore our method provides immediate bug detection. On the
contrary, in a typical RIT-based flow, mismatches (due to bugs)
are only detected very late and off-line when dedicated servers
(i.e. validation host machines) compare the memory dumps (i.e.
memory locations that are accessed or modified by the test,
register files and any other data structures that can be scanned out
from the silicon prototype) of the actual silicon execution with the
expected memory dump contents from simulation. Figure 3
outlines the bug detection concept for the traditional and the
proposed RIT-based silicon validation flow for microprocessors.

(©

simulator
. Bu i
i Expected s detecst;ed i
| Responses © '
1 © 1
1 a '
1 Actual £ :
\| Responses 8 '
____________ T""""""""_I
1
Host Machine Host Machine
4
RIT
Actual RIT v
Responses Prototype
v
RIT Bug
ERIT detected
Prototype
Check —»

Figure 3. Traditional (left) vs. proposed (right) RIT-
based validation flow

(3) Hardware Support for Validation. In our method we take
advantage of the fast bug detection that takes place during RIT
execution on the prototype chip, and we support it with a
hardware mechanism that is part of the microprocessor design
(Figure 2). The hardware mechanism records the failing
comparisons and pins the execution points where mismatches
happen. Moreover, when a mismatch is detected, the hardware
mechanism allows replay of the RIT by replacing the execution of
the offending instruction with its equivalent. If the offending
instruction is the original one and its equivalent is bug-free the
enhanced RIT replay produces the useful logging information we
want. If this is not the case (i.e. the equivalent instruction is the
offending one) the enhanced RIT replay does not produce useful
logging information. Bugs in the instructions of the ERIT will be
identified subsequently by other RITs that are explicitly generated
to test them.

With our hardware replay described below, the test can
continue execution and more bugs can be detected. Replay can
happen several times for a single enhanced RIT as long as it
detects more mismatches (potential bugs). In a typical RIT-based
flow, after the first mismatch the remaining execution of the test is
most probably useless since many subsequent responses are
corrupted (since an output value of one operation can propagate to



the input value of the subsequent operations). Other bugs that
could possibly be detected by the remaining of the test are left
undetected. In the replaying of the test using our hardware
mechanism, the mismatch is bypassed, subsequent responses are
not corrupted and if the remaining test can detect another
mismatch (more bugs) it is allowed to do so. The last execution of
the enhanced RIT is mismatch-free and detailed logging
information is available for post-processing.

To analyze the hardware mechanism, we assume that an
enhanced RIT (original RIT + ERIT + checking code) will be
executed on the prototype chip. The original RIT includes k store
instructions that write the results of the computation to the
memory. For a typical RIT of ~4K instructions, it is realistic to
assume that k£ is between 500 and 1000. Similarly, the ERIT
(equivalent RIT) includes £ store instructions that write the results
of the equivalent computations. The checking code compares the
results stored by instruction sfore[i] and estore[i], where store[i]
is the i store of the RIT and estore[i] is the i store of the ERIT,
withi=1..k.

The basic concept of the mechanism is that when a mismatch is
detected between store[i] and estore[i], during replay, instead of
executing the “buggy” code between store[i—1] and store[i], the
processor executes the equivalent code between esfore[i—1] and
estore[i]. The mismatch has been bypassed.

The hardware mechanism is shown in Figure 4 and operates as
follows:

First run of the enhanced RIT. The checking code finishes with
the first mismatch among the k responses of RIT and the &
responses of ERIT stored in variable mid (mismatch id), with mid
between 0 and £. If mid = 0 (i.e. the queue is empty), then there is
no mismatch and the chip passes the enhanced RIT; validation
continues with the next RIT. If mid > 0 (i.e. the queue is not
empty) the enhanced RIT will be replayed because store[mid] and
estore[mid] instructions generated different results. Moreover,
during the first run of the enhanced RIT the addresses of all store
instructions (of the RIT and the ERIT) are saved in the store-addr
and estore-addr buffers of the hardware mechanism to facilitate
replay. Each of these two structures has a size of k words
(addresses) for a total of 2k words. The store-addr and estore-
addr buffers record the address of the store instructions
themselves and not the address they store the data to. The contents
of the two buffers are needed to replay the enhanced RIT by
manipulating the contents of the program counter — PC (or
Instruction Pointer — IP) in hardware, as explained below.

mids-queue

monitor |
| store counter }

hit
\4

'

bypass control t

A
mids from checking

code (from a register)

store-addr
estore-addr

y
[ program counter |

Figure 4. Hardware mechanism structure

Subsequent runs of the enhanced RIT. Every mismatch
produced in previous runs is stored in an entry of the mids-queue.
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The hardware mechanism counts the number of stores (monitoring
instruction decoding) in the new run of the RIT in a store-counter
(which is reset at the beginning of each run of the enhanced RIT).
When store-counter gets equal to mid — 1 (i.e. before execution of
the corrupted sequence) where mid is the mismatch id at the head
of the mids-queue a “bypass” must happen (managed by the
bypass control component), i.e. execution of the RIT code
between store[mid—1] and store[mid] must be “replaced” by the
execution of the ERIT code between estore[mid—1] and
estore[mid] (this is why store-counter must be equal to mid-1).
The “replacement” is done on-the-fly as follows using the store
addresses information saved in buffers store-addr and estore-
addr:

e After instruction store[mid —1] finishes, PC gets the address

of the instruction following estore[mid—1].

e After the instruction before estore[mid] finishes, PC gets the

address of instruction store[mid].

Therefore, instead of executing the “buggy” code between
store[mid—1] and store[mid], the processor executes the
equivalent code between estore[mid—1] and estore[mid]. The
mismatch has been bypassed.

During each replay run, this bypass process is repeated for each
mid saved in the mids-queue. At the end of each “replay” run a
new non-zero mid may be produced (in the checking code) and
stored in the mids-queue. This means that in the subsequent replay
execution one more bypassing will take place because the RIT
found one more mismatch. Eventually, the last “replay” (in which
multiple bypasses took place) will produce a mid = 0 denoting a
mismatch-free execution. Table 3 summarizes the operation of the
hardware replay mechanism.

Table 3. Hardware mechanism operation

inputs: Set of RITs: original random instruction tests
Set of ERITs: equivalent random instruction tests
output: Log information {mids-queue}

for all RITs do
execute RIT; save store addresses to store-addr buffer,
execute ERIT; save store addresses to estore-addr buffer;,
execute checking code; compare R/T/ERIT responses;
update mids-queue: add entry if mismatch found;
if (mid = 0) then
TestPassed;
else
while (mid > 0) do
store-counter = 0,
replay(RIT, ERIT);
if (store-counter hits a mid — 1 in mids-queue) then
PC & estore[mid— 1] +4;
execute equivalent operation;
PC & store[mid);
end if
execute checking code; compare R/T/ERIT responses;
update mids-queue: add entry if new mismatch found,
end while
end if
end

The logging information produced for the debug engineer is the
queue of the mismatch identifiers mids-queue. For example, if at
the end of the execution of an enhanced RIT (including all
replays) the mids-queue contains integers 10, 25, 130, and 0, this
means that mismatches have been detected between store[10] and



estore[10], between store[25] and estore[25], and between
store[130] and estore[130], and that the fourth “replay” was
mismatch-free. With this logging information in hand, the debug
engineer can directly locate the code portions with mismatches
and focus on them for root-cause analysis. The debug engineer
can also easily identify the RIT code replaced by the equivalent
ERIT code for each bypass (it is of course the code before the
stores with mismatches). We note also that the mids-queue
contents must be also saved in memory so that after the end of the
test they are passed as the methodology log to the debug team.
Inside the hardware mechanism itself, mid information is passed
by the checking code in one of the processor registers and the
hardware mechanism records it in the mids-queue.

The size of the hardware mechanism depends on the size of the
store-addr and estore-addr buffers (we assume a maximum size of
1000 address entries words for each), the size of the mids-queue
(we assume a maximum of 10 entries; it is very unlikely for a
single RIT to detect more bugs), the store-counter, and the bypass
control logic that includes multiplexers and comparators. The
hardware mechanism is deactivated after the end of post-silicon
validation and thus it does not consume any power and does not
affect performance in the field.

(4) Post-processing (triage). As we mentioned earlier, it has
been reported in the literature that the same bug can corrupt a
large number of RITs. When the debug engineer is fed with many
failing RIT memory dumps that are due to the same bug (in the
same instruction, operation, or structure) the debug phase takes
unnecessarily long time in order to determine if that failure is
unique. This is an inherent inefficiency of traditional RIT-based
flow since mismatches are detected much later in the server that
compares the memory dumps. Our method offers a very important
advantage to the post-processing (triage) phase: validation data
provided by our hardware mechanism can help clustering of
failure modes. This can be achieved through post-processing of
the enhanced logs generated by the hardware mechanism (list of
mismatch identifiers, mids, i.e. stores that saved different results
to memory).

The list of mismatch identifiers (mids) is the log information
our method provides. An integer m in the log (an entry in the
mids-queue) means that: (a) the m™ pair of stores produced a
mismatch, i.e. store[m] and estore[m] produced different results;
(b) the code between store[m—1] and sfore[m] has been replaced
by the code between estore[m—1] and estore[m] and the RIT
continued. These two pieces of information can help the debug
engineer identify the offending instructions and work on them.

Apart from the instruction bypassing realized by the hardware
mechanism, our methodology and corresponding logging data
provide a fast workaround solution necessary to allow validation
to continue running subsequent RITs: buggy instructions can be
avoided in subsequent RITs by using their bug-free equivalents
from the ISA diversity database.

5. EXPERIMENTAL EVALUATION

We assess our validation methodology by performing a
comprehensive bug injection experiments campaign on a
superscalar, out-of-order, single-core x86-compatible model in the
PTLsim simulator [35]. PTLsim supports the full x86-64
instruction set of Pentium 4 (and subsequent), Athlon 64, and
similar machines with all extensions (x86-64, SSE/SSE2/SSE3,
MMX, x87).

For the experimental evaluation of our microprocessor
validation methodology, we set up the tool chain outlined in
Figure 5.
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Figure 5. Experimental setup and tool chain

The experimental framework consists of the following:

(a) The PTLsim architectural simulator for the x86
MiCroprocessor.

Our RIT enhancement tool described previously that gets
original RITs and produces enhanced RITs applying the
equivalence-based methodology utilizing the ISA diversity
database.

A bug injection tool that injects both logic and electrical
bug at various locations throughout the entire processor.
The bug injection tool uses our bug database which has
been populated with bugs of either type.

(b)

©

For a given set of bugs in the design bugs database and a given
set of enhanced RITs produced by our methodology, the
experimental framework executes the enhanced RITs and records
if a bug is detected or not.

We have injected both Jogic and electrical bugs to model
different design bug conditions throughout the entire x86
architecture. For electrical bugs injection, we follow [21] which
assumes that an effective and realistic way to model electrical
bugs is to model them as transient bit flips at the microprocessor’s
flip-flops. On the other hand, logic bugs have a permanent effect
and we model them through a modification in the semantic
correctness [31] of the architectural simulator’s source code.
Table 4 summarizes the types of the injected logic bugs.

Table 4. Types of logic bugs injected into the simulator

Semantic Correct Buggy
Modification Instance Instance
wrong operator a=b+c a=b-c
wrong conditional statement if(a>b) if(a>b)
wrong signal assignment a—b+c a«—d
if(a>b)then | if (a>b) then
conceptual error
a<c a<—c+b
wrong constant assignment a = 0x000F a=0x0002

Table 5 presents a summary of the logic and electrical bugs we
injected. In total, 1025 design bugs were injected, 802 of them are
logic and 223 are electrical, covering all pipeline stages and
hardware components of the x86 microprocessor. We injected
electrical bugs mostly in the components that integrate large
memory arrays, i.e. branch prediction unit, register file, etc. since
the memory-dominated modules are more vulnerable to electrical
bugs due their high density. The bit-flips are activated randomly
in any position of a data structure. On the other hand, we injected



logic bugs mostly in the control-related components where design
errors in the complex conditional decisions are more likely to
occur.

Table S. Injected design bugs distribution in the components of
the x86 processor model

explained by the activation of more hardware areas by the
equivalent RIT. The instruction reversing method (Reversi)
detects 903 bugs (coverage 88.10%) because there are cases
where an instruction cannot be inverted. Furthermore, the
flexibility of the ISA diversity concept to deploy equivalent
instructions which activate totally different path in processor’s

Pipeline C ¢ Logic | Electrical | Total logic provides us with the ability to avoid bug masking conditions
Stage omponen bugs bugs bugs (e.g. integer addition and subtraction happen on the same module,
Branch Predictor 71 16 87 while in our method the equivalent addition take place on the
floating point logic). Finally, the duplicated instructions approach
Prefetch 29 12 .
Fetch/ retete .er 41 (QED) detects 210 bugs (coverage 20.49%) because it can only
Decode In§truct10n Decoder 100 - 100 detect electrical bugs, since a logic bug will act in an identical
Microcode 62 - 62 way in both original and duplicated instruction.
Instruction Buffer - 18 18 Detected Bugs 100%
Intege.r Arlth.metlc 95 - 95 9054%
FP Arithmetic 97 - 97 88.10% 1025
Issue/ Jump logic 46 - 46 928
ssue
Load/Store logic 66 21 87 903
Execute
Issue Queue 42 - 42
Scheduler 32 - 32
Register File 61 63 124 20.49%
Retire  |Reorder Buffer 101 41 142 210
Instruction & Data — 52 52 Traditional Reversi QED Proposed
RIT-based flow
Total 802 223 1025

We compare our methodology with the traditional RIT-based
validation flow. Moreover, we perform the same set of
experiments for two other self-checking validation approaches
presented in the literature that also aim to mitigate the time-
consuming simulation step of RIT-based validation: (a) Reversi
[33], according to which each instruction is followed by a reverse
instruction; a bug is detected when the final result is not equal to
the initial one (i.e. it has not been reversed correctly); (b) QED or
instruction duplication [15], according to which each instruction
is duplicated and electrical bugs are detected when execution of
duplicated instructions gives different results. For each of the
three methods (Reversi, QED, and ours), we use the same original
RIT as input and we enhance it according to the basic idea of each
method.

Each of the original RIT sequences we use as an input consists
of 4K instruction cycles and was generated by the tool generously
provided to us by the authors of [33]. In our experiments we used
154 original RITs produced by the RIT generator, thus we ran a
total of 616K random instructions in the simulator for each of the
1025 injected bugs. Our RIT enhancement methodology
increases, on average, the RIT code size by 6 times compared with
the original RIT size (min=4.3X, max=9X, for the 154 RITs). The
total number of instructions for the full campaign of 154 enhanced
RITs (includes the original RITs, the equivalent RITs, and the
checking code) is 3.7M of x86 instructions. The corresponding
increase in RIT size by Reversi is on average 4 times (i.e. total
number of instructions is approximately 2.5M instructions) and by
QED is on average 3 times (i.e. total instructions is approximately
1.9M).

The results of our bug injection experiments are shown in
Figure 6. Our methodology detects all 1025 bugs injected into the
simulator (bug coverage 100%) because we stopped generation of
more RITs when all the injected bugs were detected. The
traditional post-silicon validation flow detects 928 bugs (coverage
90.54%). This difference, against the proposed method, is
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Figure 6. Design bugs coverage (1025 bugs injected in
total) for the four different methods

For a complete validation plan (trillions of instructions), we
expect our approach to have the same bug detection capability
with the traditional RIT-based flow since our bug detection
capability relies on the original RITs which are carefully
generated by sophisticated industrial random generators. The
advantage of our method is that mitigating the time-consuming
simulation step it is able to apply more RITs and thus detect
potential bugs earlier. Our methodology compares favorably with
the other two self-checking approaches Reversi and QED. This is
because Reversi is based on instructions whose effect can be
reversed; this is not possible in many cases, and thus a number of
bugs are not detected. QED on the other hand is based on
instruction duplication and is very effective only for electrical
bugs but not for logic ones.

Another advantage of the proposed method is that, it refines the
validation data using the hardware replay mechanism. During our
bug injection experiments, we observed that the average number
of different bugs that were detected by a single RIT is about 4.
Therefore, we integrated the hardware replay mechanism in the
PTLsim simulator and conducted a second set of experiments: we
injected all the bugs at the beginning of the simulation and
executed all RITs with the highest bug detection capability. The
proposed hardware mechanism detected all the injected bugs
(through bypassing the offending instructions with their
equivalents in the replay executions). This is a significant benefit
of the proposed framework compared to the traditional flow
which requires more tests to detect the same number of bugs.

A second observation deduced by our bug injection
experiments is that the average number of RITs affected by a
single bug in each component is 67 (out of 154 RITs we applied).
This observation highlights the requirement for fast workaround
solutions, since a bug may corrupt more than one test. However
the number of corrupted tests highly depends on the location of



the activated bug. For instance, a bug injected in a functional unit
will probably corrupt all subsequent tests that utilize this unit,
while a bug injected in a cache memory cell may not affect the
subsequent tests due to the local use of the specific memory
location. The proposed technique contributes to this requirement
providing equivalent instructions workarounds for the early
detected bugs.

Table 6 presents a comparison in terms of validation time (all
timing measurements are on an Atom N270 with 1 GHz clock
frequency) for the traditional RIT-based flow, Reversi, QED and
the proposed method. Note that in post-silicon validation stage
numerous (hundreds of millions for almost a year) random tests
are generated; therefore Table 6 represents only a snapshot of the
whole process. We discuss the different parts of the total
validation time in the following.

Table 6. Validation times

Time (sec) | Trad. RIT | Reversi QED Proposed
Generation 4.460 6.310 5.530 7.680
Simulation 51.000 - - -
Execution 0.027 0.110 0.071 0.176
Total 55.487 6.420 5.601 7.856

In a typical microprocessor post-silicon validation flow, the
total validation time consists of the following parts.

1. Generation time: The time required to generate the
random tests in the host machine. In our experiments, we
generate 154 random tests, each one consisting of 4K
instructions (summing up to 616K instructions for the
traditional RIT flow, 2.4M instructions for Reversi, 1.8M
instructions for QED, and 3.7M instructions for the
proposed method).

Upload time: The time required to upload the test from the
host machine to the prototype for execution. This is
typically performed through a standard PCle interface (or
any other host debug interface). Given that the size of a
random test is only a few kilobytes the PCle throughput
guarantees a nearly zero upload time and we do not
include this time in Table 6.

Simulation time: Only the traditional RIT-based flow
needs to be simulated, since the other three approaches are
self-checking.

Execution time: The actual silicon execution time.
Download time: The time required to download the
responses (memory locations affected by the random test)
of the test from the prototype to the host machine using the
PCle or other host interface. For the three self-checking
methods the responses are downloaded only in the case of
a failing RIT, while for the traditional RIT-based flow
responses’ downloading always follows each test
execution. Since PCle throughput guarantees a nearly zero
download time, we don’t include it in Table 6.

Compare time: The time required to compare the actual
responses with the expected ones (golden signatures). This
is again very fast and we do not include it in Table 6.

The timing measurements demonstrate that the proposed
method is much faster than the traditional RIT-based flow: more
RITs can be applied in the same time. In addition, the longer test
execution time of the proposed method compared to the two self-
checking alternatives is due to the longer random tests it uses.
However, this is alleviated by the improved bug detection
capability of our method as shown in Figure 6.
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Note that the speedup offered by our methodology by the
mitigation of simulation applies only to the validation of
instructions that have equivalents (more than three quarters of the
ISAs — see Section 3). For the remaining instructions, the classic
simulation-based RIT flow must be followed and thus our
methodology is complementary to current industry practice.

Figure 7 roughly visualizes the timing of a traditional RIT-
based flow and the timing of the proposed flow to give a clear
idea of the timing advantages of the proposed method. In the host
machine, we assume that generation (G) of random tests,
uploading (U), simulation (S), downloading (D) and comparison
(C) of the actual responses with the expected can take place in
parallel. The prototype starts execution of legacy tests available
from pre-silicon verification (or from previous architectures) and
then executes the newly generated post-silicon random tests.
Although, in our experiments the upload, download and compare
times are negligible because of the high throughput of PCle
interface, in Figure 7 we include them for demonstration
purposes. The upload and download times can be significant if a
slower interface than PCle is used or if the size of the tests is
much larger than a few kilobytes.

Traditional Flow time

G,
Host
Machine |
/'y ?
v pass/fail pass/fail pass/fail
Prototype I?g:éy idle idle
Proposed Flow — best case scenario
6 lelala]e]s]es]
ro | BB b] b B
Machine &
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Figure 7. Traditional vs. proposed RIT-based validation

Figure 7 shows that the proposed methodology mitigates the
simulation phase and also downloads only the responses of the
failing RITs to the host machine. In a sense, the silicon prototypes
are better utilized with our method and they execute more random
tests during the same time. For example, Figure 7 shows that the
proposed flow executes five random tests in the worst case (all
failing) and seven random tests in the best case (all passing) while
the traditional RIT-based flow executes only three. Thus, it
accelerates post-silicon validation significantly.



6. RELATED WORK

Self-checking methods. Previous studies [27], [33] have
proposed the generation of reversible test programs, where the
program’s final state is known a priori, as a way to avoid the
simulation step of golden signature production. However,
generating reversible operations is not always an easy task and in
some cases is partially or totally infeasible, like in the case of
floating point operations. Another recent approach [15] targets to
minimize the error detection latency of electrical bugs by
duplicating instructions.

Software diversity. Previous approaches have adopted the
concept of software diversity, as a zero-overhead alternative of
design diversity, to build fault-tolerant systems. The key idea is to
modify the executed code when a hard fault is present, without
spoiling the original code functionality [22]. Independent
generation of programs has been also proposed as a fault tolerant
approach [10]. Construction of programs with duplicated
instruction and diverse data operands has been proposed as a way
to detect temporal and permanent faults in the field [24]. Software
implemented fault tolerance aims to provide soft error tolerance
by instruction duplication [28]. Our method, for first time, utilizes
the concept of ISA diversity for efficient post-silicon validation.

Online bug detection. Previous approaches propose the use of
dedicated hardware to detect and recover from bugs in the field
[4], [11], [30], [32], [34]. Semiconductor industry needs bugs
detected as soon as possible before massive production of the
microprocessor chip. The proposed post-silicon validation
methodology aims to satisfy this requirement.

Design for debug. Recent studies [1], [25] propose hardware
modifications in order to improve bugs root cause analysis. Our
method does not aim to enhance the debug phase directly, but
rather it attempts to extract as useful as possible debug
information from random test execution “replay”. Therefore, it
collaterally favors the subsequent debug phase by providing
useful logs.

7. CONCLUSION

Effective post-silicon validation for modern architectures must
minimize the simulation bottleneck for random instruction tests to
save time, resources, and budget while not limiting bug detection
capabilities. We have presented a novel, self-checking, hardware
supported framework to accelerate and improve the quality of
post-silicon validation by exploiting diversity (instructions
equivalence) in instruction set architectures. Our analysis for
ARM, MIPS, PowerPC, and x86 instruction sets shows that
despite their differences, modern ISAs can perform an operation
with many equivalent ways. We exploit this ISAs property to
generate random tests that detect bugs by comparing results of
equivalent instructions. Moreover, we support our bug detection
method in hardware with a light-weight mechanism which records
mismatches and replays the random tests after bypassing the
offending instruction. Hardware-based replay allows the RIT to
detect as many failures (potential silicon bugs) as it can and it
provides exact information on the offending instructions. We
evaluate the methodology experimentally on an x86 model with a
comprehensive bug injection campaign. Our methodology
successfully detected all injected bugs (1025 bugs in total) while
the traditional RIT-based approach and the two self-checking
methods we compared with did not. Furthermore, the proposed
methodology accelerates the post-silicon validation process by
increasing the prototype utilization since a larger number of
random tests are executed.
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