
Decoupling Dynamic Information Flow Tracking with a Dedicated Coprocessor
Hari Kannan Michael Dalton Christos Kozyrakis

Computer Systems Laboratory
Stanford University

{hkannan, mwdalton, kozyraki}@stanford.edu

Abstract

Dynamic Information Flow Tracking (DIFT) is a promis-
ing security technique. With hardware support, DIFT pre-
vents a wide range of attacks on vulnerable software with
minimal performance impact. DIFT architectures, however,
require significant changes in the processor pipeline that in-
crease design and verification complexity and may affect clock
frequency. These complications deter hardware vendors from
supporting DIFT.

This paper makes hardware support for DIFT cost-effective
by decoupling DIFT functionality onto a simple, separate co-
processor. Decoupling is possible because DIFT operations
and regular computation need only synchronize on system
calls. The coprocessor is a small hardware engine that per-
forms logical operations and caches 4-bit tags. It introduces
no changes to the design or layout of the main processor’s
logic, pipeline, or caches, and can be combined with various
processors. Using a full-system hardware prototype and re-
alistic Linux workloads, we show that the DIFT coprocessor
provides the same security guarantees as current DIFT archi-
tectures with low runtime overheads.

Keywords: Software security, Semantic Vulnerabilities, Dynamic in-

formation flow tracking, Processor architecture, Coprocessors

1 Introduction

Dynamic information flow tracking (DIFT) [10, 19] is a

promising technique to detect security attacks on unmodi-

fied binaries ranging from buffer overflows to SQL injec-

tions [8, 27]. The idea behind DIFT is to tag (taint) untrusted

data and track its propagation through the system. DIFT asso-

ciates a tag with every word of memory. Any new data derived

from untrusted data is also tainted using the tag bits. If tainted

data is used in a potentially unsafe manner, for instance as a

code pointer or as a SQL command, a security exception is

immediately raised.

The generality of the DIFT model has led to the develop-

ment of several implementations. To avoid the need for recom-

pilation [27], most software DIFT systems use dynamic bi-

nary translation, which introduces significant overheads rang-

ing from 3x to 37x [18, 20]. Additionally, software DIFT does

not work safely with self-modifying and multithreaded pro-

grams [6]. Hardware DIFT systems have been proposed to

address these challenges [5, 7, 8, 24, 26]. They make DIFT

practical for all user or library executables, including multi-

threaded and self-modifying code, and even the operating sys-

tem itself [9].

Existing DIFT architectures follow two general ap-

proaches. Integrated architectures provide DIFT support

within the main pipeline [5, 7, 8, 24]. While these archi-

tectures minimize runtime overhead, they require significant
modifications to the processor design. All processor registers,

pipeline buffers, and internal buses must be widened to ac-

commodate tag bits. Storing tags requires either modification

of processor caches, or introduction of an additional tag cache

that can be accessed in parallel to the first-level cache. These

changes make it difficult for processor vendors to adopt hard-

ware support for DIFT. First, invasive modifications to the pro-

cessor core increase the design and verification time and may

have an impact on the clock frequency. Moreover, the design

changes for DIFT are not portable across designs, as DIFT

logic is interleaved with conventional logic in a fine-grained

manner.

The second architectural approach is to leverage multi-core

chips [4]. One core captures a trace of the instructions ex-

ecuted by the application, while another core runs the DIFT

analysis on the trace. While this approach offers the flexibility

of analysis in software, it introduces significant overheads. It

requires a dedicated core to process the trace, which halves the

throughput of the overall system, or doubles the power con-

sumption due to the application. The hardware cost is further

increased by pipeline changes and custom hardware necessary

to produce, compress, and decompress the trace. Compres-

sion is necessary to avoid increased contention and power con-

sumption in the multi-core interconnect.

This paper builds upon the FlexiTaint design [26], which

implements DIFT similar to the DIVA architecture for relia-

bility checks [2]. It introduces two new stages prior to the

commit stage of an out-of-order (OOO) processor pipeline,

that accommodate DIFT state and logic. FlexiTaint relies on

the OOO structures to hide the latency of the extra stages.

By performing DIFT checks and propagation before each in-

struction commits, FlexiTaint synchronizes regular computa-

tion and DIFT on each instruction.

We observe that frequent synchronization performed by the

FlexiTaint model is overkill. To maintain the same security

model, it is sufficient to synchronize regular computation and

DIFT operations at the granularity of system calls. System call

monitoring has been established as a well accepted technique

for detecting compromised applications [11, 13]. A compro-

mised application needs to be able to exploit system calls to

cause real damage, thus making this interface a great point for

detecting errors. Such coarse-grained synchronization allows

us to move all DIFT state and logic out of the main core, to

a small coprocessor located physically next to the processor

core. Our scheme requires no changes to the design or layout

of the processor’s logic, pipeline, or caches. Hence, it miti-

gates all risk factors for hardware vendors, as it eliminates the

impact of DIFT on the processor’s design time, verification

time, and clock frequency. Moreover, it allows for portability,

as the coprocessor can selectively be paired with multiple pro-

cessor designs, even in-order cores such as Intel’s Atom and

Larrabee, and Sun’s Niagara.

We describe the coprocessor architecture and its inter-

face to the main core. We also present a prototype that at-

taches the coprocessor to a SPARC core. By mapping the

design to an FPGA board and running Linux, we create a

full-featured workstation. We demonstrate that the coproces-

sor provides the same security features as Raksha, the inte-

grated DIFT architecture that provides comprehensive protec-

tion against both memory corruption and high-level security

exploits [8, 9]. Specifically, the coprocessor supports multi-

ple and programmable security policies, protects all memory

regions (text, heap, stack), correctly handles all types of bina-

ries (dynamically generated, self-modifying, shared libraries,

OS, and device drivers), and supports inter-process informa-

tion flow tracking.

The specific contributions of this work are:

• We describe an architecture that performs all DIFT oper-

ations in a small off-core, attached coprocessor. The co-

processor supports a strong DIFT-based security model

by synchronizing with the main core only on system

calls. No changes are necessary to the main proces-

sor’s pipeline, design, or layout. The proposed design

addresses the complexity, verification time, power, area,

and clock frequency challenges of previous proposals for

DIFT hardware.

• Using a full-system prototype, we show that the decou-

pled coprocessor provides the same degree of security

as the most complete integrated DIFT architecture. It

can protect real-world Linux applications from both low-

level and high-level security attacks.

• We show that the coprocessor has a small area footprint

(8% of a simple RISC core), and is significantly sim-

pler than log compression and decompression hardware

needed for multi-core DIFT. Even with a small cache

for tags, the coprocessor introduces less than 1% run-

time overhead for the SPECint2000 applications. This

is similar to the performance of the integrated DIFT de-

signs and to that of FlexiTaint, despite running stronger

security analyses and without an OOO main core. It is

also a significant improvement over the multi-core DIFT

designs that slow down applications by up to 36%.

Overall, the coprocessor provides a balanced approach for

DIFT in terms of performance, cost, complexity, and practi-

cality that is not possible with the known alternatives.

The remainder of the paper is organized as follows. Section

2 provides an overview of hardware DIFT systems. Section 3

presents the design of the DIFT coprocessor, while Section

4 describes the full-system prototype. Section 5 provides an

evaluation of the security features, performance, and cost. Fi-

nally, Section 6 concludes the paper.

2 Hardware Support for DIFT

Hardware support for DIFT provides a powerful platform

for security that can prevent information leaks [22, 25] and

protect unmodified binaries against attacks such as buffer

overflows and SQL injection [5, 7, 8, 9, 24, 26]. Hardware

DIFT systems have been shown to protect against both control

and non-control data attacks [9].

2.1 DIFT Background

Hardware DIFT systems logically extend each register and

word of memory by a small number of tag bits [5, 7, 8, 24].

The hardware propagates and checks tags transparently during

instruction execution. Tag propagation allows us to track the

flow of untrusted data. During instruction execution, hardware

propagates the tags of the source operands to the tag of the

destination operand. For example, an add instruction with a

tainted source register will taint the destination register. Tag

checks ensure that the instruction does not perform a forbidden

operation using a tagged value, such as a data or code pointer

dereference. If the check fails, a security exception is raised

and control is transferred to a trusted security monitor. The

monitor may run in kernel mode [5, 7, 24] or user mode [8].

The latter approach makes DIFT applicable to the OS code

and allows software analysis to complement hardware checks

without high overheads [9].

There is no single propagation or check policy that can pre-

vent all attacks. Raksha, a recent DIFT architecture, provides

support for four hardware policies and allows software to man-

age them through configuration registers [8]. This flexibility is

necessary to prevent both high-level and low-level attacks, as

well as to adapt to future exploit techniques. Policies are spec-

ified at the granularity of primitive operations such as move,

arithmetic, and logical operations. ISA instructions are de-

composed into one or more of these operations before DIFT

propagation and checks are applied. This decomposition is

necessary to avoid security loopholes that could arise due to

the way certain ISAs package multiple operations into a sin-

gle instruction. Moreover, the decomposition allows propaga-

tion and check policies to be independent of the underlying

instruction set.

 Main Core

Tag
Pipeline

Tag Cache

Core 1
(App)

Core 2
(DIFT)

ICache T

Decode Reg
File ALU

DCache T

DRAM

Security
Decode

Tag
Reg
File

 Tag
ALU

T

Cache Cache

Main
Core

Cache

DRAM T

capture analysis

(a) In-core DIFT (c) Off-core DIFT

T DIFT Tags DIFT Logic

L2 Cache L2 Cache

DRAM

compress decompress

(b) Offloading DIFT

L2 Cache

Log buffer

DIFT Coprocessor

Figure 1: The three design alternatives for DIFT architectures.

2.2 DIFT Design Alternatives

Figure 1 presents the three design alternatives for hardware

support for DIFT: (a) the integrated, in-core design; (b) the

multi-core based, offloading design; and (c) an off-core, co-
processor approach.

Most of the proposed DIFT systems follow the integrated

approach, which performs tag propagation and checks in the

processor pipeline in parallel with regular instruction execu-

tion [5, 7, 8, 24]. This approach does not require an addi-

tional core for DIFT functionality and introduces no overhead

for inter-core coordination. Overall, its performance impact in

terms of clock cycles over native execution is minimal. On the

other hand, the integrated approach requires significant mod-

ifications to the processor core. All pipeline stages must be

modified to buffer the tags associated with pending instruc-

tions. The register file and first-level caches must be extended

to store the tags for data and instructions. Alternatively, a spe-

cialized register file or cache that only stores tags and is ac-

cessed in parallel with the regular blocks must be introduced

in the processor core. Overall, the changes to the processor

core are significant and can have a negative impact on design

and verification time. Depending on the constraints, the intro-

duction of DIFT may also affect the clock frequency. The high

upfront cost and inability to amortize the design complexity

over multiple processor designs can deter hardware vendors

from adopting this approach. Feedback from processor ven-

dors has impressed upon us that the extra effort required to

change the design and layout of a complex superscalar pro-

cessor to accommodate DIFT, and re-validate are enough to

prevent design teams from adopting DIFT [23].

FlexiTaint [26] uses the approach introduced by the DIVA

architecture [2] to push changes for DIFT to the back end of

the pipeline. It adds two pipeline stages prior to the final com-

mit stage, which access a separate register file and a separate

cache for tags. FlexiTaint simplifies DIFT hardware by requir-

ing few changes to the design of the out-of-order portion of the

processor. Nevertheless, the pipeline structure and the proces-

sor layout must be modified. To avoid any additional stalls due

to accesses to the DIFT tags, FlexiTaint modifies the core to

generate prefetch requests for tags early in the pipeline. While

it separates regular computation from DIFT processing, it does

not fully decouple them. FlexiTaint synchronizes the two on

every instruction, as the DIFT operations for each instruction

must complete before the instruction commits. Due to the fine-

grained synchronization, FlexiTaint requires an OOO core to

hide the latency of two extra pipeline stages.

An alternative approach is to offload DIFT functionality to

another core in a multi-core chip [3, 4, 16]. The application

runs on one core, while a second general-purpose core runs

the DIFT analysis on the application trace. The advantage of

the offloading approach is that hardware does not need explicit

knowledge of DIFT tags or policies. It can also support other

types of analyses such as memory profiling and locksets [4].

The core that runs the regular application and the core that runs

the DIFT analysis synchronize only on system calls. Never-

theless, the cores must be modified to implement this scheme.

The application core is modified to create and compress a trace

of the executed instructions. The core must select the events

that trigger tracing, pack the proper information (PC, register

operands, and memory operands), and compress in hardware.

The trace is exchanged using the shared caches (L2 or L3).

The security core must decompress the trace using hardware

and expose it to software.

The most significant drawback of the multi-core approach

is that it requires a full general-purpose core for DIFT analysis.

Hence, it halves the number of available cores for other pro-

grams and doubles the energy consumption due to the applica-

tion under analysis. The cost of the modifications to each core

is also non-trivial, especially for multi-core chips with simple

cores. For instance, the hardware for trace (de)compression

uses a 32-Kbyte table for value prediction. The analysis core

requires an additional 16-Kbyte SRAM for static informa-

tion [3]. These systems also require other modifications to

the cores, such as additional TLB-like structures to maintain

metadata addresses, for efficiency [4]. While the multi-core

DIFT approach can also support memory profiling and lock-

set analyses, the hardware DIFT architectures [8, 9, 26] are

capable of performing all the security analyses supported by

offloading systems, at a lower cost.

The approach we propose is an intermediate between Flex-

iTaint and the multi-core one. Given the simplicity of DIFT

propagation and checks (logical operations on short tags), us-

ing a separate general-purpose core is overkill. Instead, we

propose to use a small attached coprocessor that implements

DIFT functionality for the main processor core and synchro-

nizes with it only on system calls. The coprocessor includes

all the hardware necessary for DIFT state (register tags and tag

caches), propagation, and checks.

Compared to the multi-core DIFT approach, the copro-

cessor eliminates the need for a second core for DIFT and

does not require changes to the processor and cache hierarchy

for trace exchange. Compared to FlexiTaint, the coprocessor

eliminates the need for any changes to the design, pipeline,

or layout of the main core. Hence, there is no impact on de-

sign, verification or clock frequency of the main core. Coarse-

grained synchronization enables full decoupling between the

main core and the coprocessor. As we show in the following

sections, the coprocessor approach provides the same security

guarantees and the same performance as FlexiTaint and other

integrated DIFT architectures. Unlike FlexiTaint, the copro-

cessor can also be used with in-order cores, such as Atom and

Larrabee in Intel chips, or Niagara in Sun chips.

2.3 Related Work

The proposed DIFT techniques resemble previous architec-

tural approaches to reliability. The DIVA checker architec-

ture [2] verifies the correctness of the executing instruction

stream. While both the DIFT coprocessor and DIVA perform

a dynamic analysis on the committing instruction stream, they

differ in terms of the granularity of synchronization. DIVA has

to synchronize the checker and processor on every instruction.

The DIFT coprocessor can however, delay synchronization to

system calls. This allows us to decouple the DIFT function-

ality from the main core, giving us the design and verifica-

tion advantages mentioned earlier. The RSE architecture [17]

provides a flexible mechanism to run different reliability and

security checks in hardware. This requires heavy integration

with the main core, similar to the in-core DIFT designs [5, 8].

The DIFT coprocessor is closest to watchdog proces-

sors [15] proposed for reliability checks. A watchdog proces-

sor is a simple coprocessor used for concurrent system-level

error detection. It monitors the processor’s input and output

streams, and detects errors pertaining to memory access be-

havior, control flow, control signals or validity of results. Un-

like watchdog processors, the DIFT coprocessor must execute

the instructions committed by the main processor, in order to

find security flaws.

3 An Off-core Coprocessor for DIFT

The goal of our design is to minimize the cost and complex-

ity of DIFT support by migrating its functionality to a dedi-

cated coprocessor. The main core operates only on data, and

has no idea that tags exist. The main core passes information

about control flow to the coprocessor. The coprocessor in turn,

performs all tag operations and maintains all tag state (con-

figuration registers, register and memory tags). This section

describes the design of the DIFT coprocessor and its interface

with the main core.

3.1 Security Model

The full decoupling of DIFT functionality from the proces-

sor is possible by synchronizing the regular computation and

DIFT operations at the granularity of system calls [13, 16, 21].

Synchronization at the system call granularity operates as fol-

lows. The main core can commit all instructions other than

system calls and traps before it passes them to the coproces-

sor for DIFT propagation and checks through a coprocessor

interface. At a system call or trap, the main core waits for the

coprocessor to complete the DIFT operations for the system

call and all preceding instructions, before the main core can

commit the system call. External interrupts (e.g., time inter-

rupts) are treated similarly by associating them with a pending

instruction which becomes equivalent to a trap. When the co-

processor discovers that a DIFT check has failed, it notifies

the core about the security attack using an asynchronous ex-

ception.

The advantage of this approach is that the main core does

not stall for the DIFT core even if the latter is temporarily

stalled due to accessing tags from main memory. It essen-

tially eliminates most performance overheads of DIFT pro-

cessing without requiring OOO execution capabilities in the

main core. While there is a small overhead for synchroniza-

tion at system calls, system calls are not frequent and their

overheads are typically in the hundreds or thousands of cy-

cles. Thus, the few tens of cycles needed in the worst case to

synchronize the main core and the DIFT coprocessor are not a

significant issue.

Synchronizing at system calls implies that a number of ad-

ditional instructions will be able to commit in the processor

behind an instruction that causes a DIFT check to fail in the

coprocessor. This, however, is acceptable and does not change

the strength of the DIFT security model [13, 16, 21]. While the

additional instructions can further corrupt the address space of

the application, an attacker cannot affect the rest of the system

(other applications, files, or the OS) without a system call or

trap to invoke the OS. The state of the affected application will

be discarded on a security exception that terminates the appli-

cation prior to taking a system call trap. Other applications

that share read-only data or read-only code are not affected by

the termination of the application under attack. Only applica-

tions (or threads) that share read-write data or code with the

affected application (or thread), and access the corrupted state

need to be terminated, as is the case with integrated DIFT ar-

chitectures. Thus, DIFT systems that synchronize on system

calls provide the same security guarantees as DIFT systems

that synchronize on every instruction [13].

DRAM Tags

Main
Core Security

Decode

Tag
Reg
File Tag

ALU

Tag Cache

Tag
Check
Logic

Writeback

Decoupling
Queue

Instruction
Tuple

Security
Exception

DIFT Coprocessor

L2 Cache
Instruction Tuple

PC
Instruction

Memory Address
Valid

Queue Stall

Figure 2: The pipeline diagram for the DIFT coprocessor. Structures are not

drawn to scale.

For the program under attack or any other programs that

share read-write data with it, DIFT-based techniques do not

provide recovery guarantees to begin with. DIFT detects an

attack at the time the vulnerability is exploited via an illegal

operation, such as dereferencing a tainted pointer. Even with a

precise security exception at that point, it is difficult to recover

as there is no way to know when the tainted information en-

tered the system, how many pointers, code segments, or data-

structures have been affected, or what code must be executed

to revert the system back to a safe state. Thus, DIFT does

not provide reliable recovery. Consequently, delaying the se-

curity exception by a further number of instructions does not

weaken the robustness of the system. If DIFT is combined

with a checkpointing scheme that allows the system to roll

back in time for recovery purposes, we can synchronize the

main processor and the DIFT coprocessor every time a check-

point is initiated.

3.2 Coprocessor Microarchitecture

Figure 2 presents the pipeline of the DIFT coprocessor. Its

microarchitecture is quite simple, as it only needs to handle tag

propagation and checks. All other instruction execution capa-

bilities are retained by the main core. Similar to Raksha [8],

our coprocessor supports up to four concurrent security poli-

cies using 4-bit tags per word.

The coprocessor’s state includes three components. First,

there is a set of configuration registers that specify the propa-

gation and check rules for the four security policies. We dis-

cuss these registers further in Section 3.3. Second, there is

a register file that maintains the tags for the associated archi-

tectural registers in the main processor. Third, the coprocessor

uses a cache to buffer the tags for frequently accessed memory

addresses (data and instructions).

The coprocessor uses a four-stage pipeline. Given an ex-

ecuted instruction by the main core, the first stage decodes it

into primitive operations and determines the propagation and

check rules that should be applied based on the active secu-

rity policies. In parallel, the 4-bit tags for input registers are

read from the tag register file. This stage also accesses the tag

cache to obtain the 4-bit tag for the instruction word. The sec-

ond stage implements tag propagation using a tag ALU. This

4-bit ALU is simple and small in area. It supports logical OR,

AND, and XOR operations to combine source tags. The sec-

ond stage will also access the tag cache to retrieve the tag for

the memory address specified by load instructions, or to up-

date the tag on store instructions (if the tag of the instruction

is zero). The third stage performs tag checks in accordance

with the configured security policies. If the check fails (non-

zero tag value), a security exception is raised. The final stage

does a write-back of the destination register’s tag to the tag

register file.

The coprocessor’s pipeline supports forwarding between

dependent instructions to minimize stalls. The main source of

stalls are misses in the tag cache. If frequent, such misses will

eventually stall the main core and lead to performance degra-

dation, as we discuss in Section 3.3. We should point out,

however, that even a small tag cache can provide high cover-

age. Since we maintain a 4-bit tag per 32-bit word, a tag cache

size of T provides the same coverage as an ordinary cache of

size 8 × T .

3.3 DIFT Coprocessor Interface

The interface between the main core and the DIFT copro-

cessor is a critical aspect of the architecture. There are four

issues to consider: coprocessor setup, instruction flow infor-
mation, decoupling, and security exceptions.

DIFT Coprocessor Setup: To allow software to control

the security policies, the coprocessor includes four pairs of

registers that control the propagation and check rules for the

four tag bits. These policy registers specify the propagation

and check modes for each class of primitive operations. Their

operation and encoding are modeled on the corresponding reg-

isters in Raksha [8]. The configuration registers can be manip-

ulated by the main core either as memory-mapped registers or

as registers accessible through coprocessor instructions. In ei-

ther case, the registers should be accessible only from within

a trusted security monitor. Our prototype system uses the co-

processor instructions approach. The coprocessor instructions

are treated as nops in the main processor pipeline. These

instructions are used to manipulate tag values, and read and

write the coprocessor’s tag register file. This functionality is

necessary for context switches. Note that coprocessor setup

typically happens once per application or context switch.

Instruction Flow Information: The coprocessor needs in-

formation from the main core about the committed instruc-

tions in order to apply the corresponding DIFT propagation

and checks. This information is communicated through a co-

processor interface.

The simplest option is to pass a stream of committed pro-

gram counters (PCs) and load/store memory addresses from

the main core to the coprocessor. The PCs are necessary

to identify instruction flow, while the memory addresses are

needed because the coprocessor only tracks tags and does not

know the data values of the registers in the main core. In this

scenario, the coprocessor must obtain the instruction encod-

ing prior to performing DIFT operations, either by accessing

the main core’s I-cache or by accessing the L2 cache and po-

tentially caching instructions locally as well. Both options

have disadvantages. The former would require the DIFT en-

gine to have a port into the I-cache, creating complexity and

clock frequency challenges. The latter increases the power

and area overhead of the coprocessor and may also constrain

the bandwidth available at the L2 cache. There is also a se-

curity problem with this simple interface. In the presence of

self-modifying or dynamically generated code, the code in the

main core’s I-cache could differ from the code in the DIFT

engine’s I-cache (or the L2 cache) depending on eviction and

coherence policies. This inconsistency can compromise the

security guarantees of DIFT by allowing an attacker to inject

instructions that are not tracked on the DIFT core.

To address these challenges, we propose a coprocessor in-

terface that includes the instruction encoding in addition to

the PC and memory address. As instructions become ready to

commit in the main core, the interface passes a tuple with the

necessary information for DIFT processing (PC, instruction

encoding, and memory address). Instruction tuples are passed

to the coprocessor in program order. Note that the information

in the tuple is available in the re-order buffer of OOO cores or

the last pipeline register of in-order cores to facilitate excep-

tion reporting. The processor modifications are thus restricted

to the interface required to communicate this information to

the coprocessor. This interface is similar to the lightweight

profiling and monitoring extensions recently proposed by pro-

cessor vendors for performance tracking purposes [1]. The in-

struction encoding passed to the coprocessor may be the orig-

inal one used at the ISA level or a predecoded form available

in the main processor. For x86 processors, one can also de-

sign an interface that communicates information between the

processor and the coprocessor at the granularity of micro-ops.

This approach eliminates the need for x86 decoding logic in

the coprocessor.

Decoupling: The physical implementation of the interface

also includes a stall signal that indicates the coprocessor’s in-

ability to accept any further instructions. This is likely to

happen if the coprocessor is experiencing a large number of

misses in the tag cache. Since the locality of tag accesses is

usually greater than the locality of data accesses (see Section

3.4), the main core will likely be experiencing misses in its

data accesses at the same time. Hence, the coprocessor will

rarely be a major performance bottleneck for the main core.

Since the processor and the coprocessor must only synchro-

nize on system calls, an extra queue can be used between

the two in order to buffer instruction tuples. The queue can

be sized to account for temporary mismatches in processing

rates between the processor and the coprocessor. The proces-

sor stalls only when the decoupling queue is full or when a

system call instruction is executed.

To avoid frequent stalls due to a full queue, the coproces-

sor must achieve an instruction processing rate equal to, or

greater than, that of the main core. Since the coprocessor has

a very shallow pipeline, handles only committed instructions

from the main core, and does not have to deal with mispre-

dicted instructions or instruction cache misses, a single-issue

coprocessor is sufficient for most superscalar processors that

achieve IPCs close to one. For wide-issue superscalar pro-

cessors that routinely achieve IPCs higher than one, a wide-

issue coprocessor pipeline would be necessary. Since the co-

processor contains 4-bit registers and 4-bit ALUs and does

not include branch prediction logic, a wide-issue coprocessor

pipeline would not be particularly expensive. In Section 5.2.2,

we provide an estimate of the IPC attainable by a single-issue

coprocessor, by showing the performance of the coprocessor

when paired with higher IPC main cores.

Security Exceptions: As the coprocessor applies tag

checks using the instruction tuples, certain checks may fail,

indicating potential security threats. On a tag check failure,

the coprocessor interrupts the main core in an asynchronous

manner. To make DIFT checks applicable to the operating

system code as well, the interrupt should switch the core to the

trusted security monitor which runs in either a special trusted

mode [8, 9], or in the hypervisor mode in systems with hard-

ware support for virtualization [12]. This allows us to catch

bugs in both userspace and in the kernel [9]. The security mon-

itor uses the protection mechanisms available in these modes

to protect its code and data from a compromised operating sys-

tem. Once invoked, the monitor can initiate the termination

of the application or guest OS under attack. We protect the

security monitor itself using a sandboxing policy on one of

the tag bits. For an in-depth discussion of exception handling

and security monitors, we refer the reader to related work [8].

Note, however, that the proposed system differs from inte-

grated DIFT architectures only in the synchronization between

the main core and the coprocessor. Security checks and the

consequent exception processing (if necessary) have the same

semantics and operation in the coprocessor-based and the in-

tegrated designs.

3.4 Tag Cache

The main core passes the memory addresses for load/store

instructions to the coprocessor. Since the instruction is com-

municated to the coprocessor after the main processor com-

pletes execution, the address passed can be a physical one.

Hence, the coprocessor does not need a separate TLB. Con-

sequently, the tag cache is physically indexed and tagged, and

does not need to be flushed on page table updates and context

switches.

To detect code injection attacks, the DIFT core must also

check the tag associated with the instruction’s memory loca-

tion. As a result, tag checks for load and store instructions re-

quire two accesses to the tag cache. This problem can be elim-

inated by providing separate instruction and data tag caches,

similar to the separate instruction and data caches in the main

core. A cheaper alternative that performs equally well is us-

ing a unified tag cache with an L0 buffer for instruction tag

accesses. The L0 buffer can store a cache line. Since tags

are narrow (4 bits), a 32-byte tag cache line can pack tags for

64 memory words providing good spatial locality. We access

the L0 and the tag cache in parallel. For non memory instruc-

tions, we access both components with the same address (the

instruction’s PC). For loads and stores, we access the L0 with

the PC and the unified tag cache with the address for the mem-

ory tags. This design causes a pipeline stall only when the L0

cache misses on an instruction tag access, and the instruction

is a load or a store that occupies the port of the tag cache. This

combination of events is rare.

3.5 Coprocessor for In-Order Cores

There is no particular change in terms of functionality in

the design of the coprocessor or the coprocessor interface if

the main core is in-order or out-of-order. Since the two syn-

chronize on system calls, the only requirement for the main

processor is that it must stall if the decoupling queue is full

or a system call is encountered. Using the DIFT coprocessor

with a different main core may display different performance

issues. For example, we may need to re-size the decoupling

queue to hide temporary mismatches in performance between

the two. Our full-system prototype (see Section 4) makes use

of an in-order main core.

3.6 Multiprocessor Consistency Issues

For multiprocessors where each core has a dedicated DIFT

coprocessor, there are potential consistency issues due to the

lack of atomicity of updates for data and tags. The same prob-

lem occurs in multi-core DIFT systems and FlexiTaint, since

metadata propagation and checks occur after the processing of

the corresponding instruction completes.

The atomicity problem is easy to address in architectures

with weak consistency models by synchronizing the main core

and the DIFT coprocessor on memory fences, acquires, and

releases in addition to system calls and traps. This approach

guarantees that tag check and propagation for all instructions

prior to the memory fence are completed by the coprocessor

before the fence instructions commit in the processor. The

atomicity problem is harder to solve in systems with stricter

consistency models such as sequential consistency. One ap-

proach is to use transactional memory as detailed in [6]. A dy-

namic binary translator (DBT) is used to instrument the code

with transactions that encapsulate the data and metadata ac-

cesses for one or more basic blocks in the application. A more

complex approach is to actually provide atomicity of individ-

ual loads and stores in hardware. This entails keeping track of

coherence requests issued by different cores in the system in

order to detect when another access is ordered in between the

data and metadata accesses for an instruction.

Parameter Specification
Leon pipeline depth 7 stages

Leon instruction cache 8 KB, 2-way set-associative

Leon data cache 16 KB, 2-way set-associative

Leon instruction TLB 8 entries, fully associative

Leon data TLB 8 entries, fully associative

Coprocessor pipeline depth 4 stages

Coprocessor tag cache 512 Bytes, 2-way set-associative

Decoupling queue size 6 entries

Table 1: The prototype system specification.

4 Prototype System

To evaluate the coprocessor-based approach for DIFT, we

developed a full-system FPGA prototype based on the SPARC

architecture and the Linux operating system. Our proto-

type is based on the framework for the Raksha integrated

DIFT architecture [8]. This allows us to make direct per-

formance and complexity comparisons between the integrated

and coprocessor-based approaches for DIFT hardware.

4.1 System Architecture

The main core in our prototype is the Leon SPARC V8 pro-

cessor, a 32-bit synthesizable core [14]. Leon uses a single-

issue, in-order, 7-stage pipeline that does not perform specu-

lative execution. Leon supports SPARC coprocessor instruc-

tions, which we use to configure the DIFT coprocessor and

provide security exception information. We introduced a de-

coupling queue that buffers information passed from the main

core to the DIFT coprocessor. If the queue fills up, the main

core is stalled until the coprocessor makes forward progress.

As the main core commits instructions before the DIFT core,

security exceptions are imprecise.

The DIFT coprocessor follows the description in Section

3. It uses a single-issue, 4-stage pipeline for tag propagation

and checks. Similar to Raksha, we support four security poli-

cies, each controlling one of the four tag bits. The tag cache

is a 512-byte, 2-way set-associative cache with 32-byte cache

lines. Since we use 4-bit tags per word, the cache can effec-

tively store the tags for 4 Kbytes of data.

Our prototype provides a full-fledged Linux workstation

environment. We use Gentoo Linux 2.6.20 as our kernel and

run unmodified SPARC binaries for enterprise applications

such as Apache, PostgreSQL, and OpenSSH. We have mod-

ified a small portion of the Linux kernel to provide support

for our DIFT hardware [8, 9]. The security monitor is imple-

mented as a shared library preloaded by the dynamic linker

with each application.

4.2 Design Statistics

We synthesized our hardware (main core, DIFT coproces-

sor, and memory system) onto a Xilinx XUP board with an

XC2VP30 FPGA. Table 1 presents the default parameters for

the prototype. Table 2 provides the basic design statistics

for our coprocessor-based design. We quantify the additional

Component BRAMs 4-input LUTs
Base Leon core (integer) 46 13,858

FPU control & datapath Leon 4 14,000

Core changes for Raksha 4 1,352

% Raksha increase over Leon 8% 4.85%
Core changes for coprocessor IF 0 22

Decoupling queue 3 26

DIFT coprocessor 5 2,105

Total DIFT coprocessor 8 2,131

% coprocessor increase over Leon 16% 7.64%
Table 2: Complexity of the prototype FPGA implementation of the DIFT co-

processor in terms of FPGA block RAMs and 4-input LUTs.

resources necessary in terms of 4-input LUTs (lookup tables

for logic) and block RAMs, for the changes to the core for

the coprocessor interface, DIFT coprocessor (including the tag

cache), and the decoupling queue. For comparison purposes,

we also provide the additional hardware resources necessary

for the Raksha integrated DIFT architecture. Note that the

same coprocessor can be used with a range of other main pro-

cessors: processors with larger caches, speculative execution

etc. In these cases, the overhead of the coprocessor as a per-

centage of the main processor would be even lower in terms

of both logic and memory resources.

5 Evaluation

This section evaluates the security capabilities and perfor-

mance overheads of the DIFT coprocessor.

5.1 Security Evaluation

To evaluate the security capabilities of our design, we at-

tempted a wide range of attacks on real-world applications,

and even one in kernelspace using unmodified SPARC bina-

ries. We configured the coprocessor to implement the same

DIFT policies (check and propagate rules) used for the secu-

rity evaluation of the Raksha design [8, 9]. For the low-level

memory corruption attacks such as buffer overflows, hardware

performs taint propagation and checks for use of tainted values

as instruction pointers, data pointers, or instructions. Synchro-

nization between the main core and the coprocessor happens

on system calls, to ensure that any pending security exceptions

are taken. For high-level semantic attacks such as directory

traversals, the hardware performs taint propagation, while the

software monitor performs security checks for tainted com-

mands on sensitive function and system call boundaries sim-

ilar to Raksha [8]. For protecting against Web vulnerabili-

ties like cross-site scripting, we apply this tainting policy to

Apache, and any associated modules like PHP.

Table 3 summarizes our security experiments. The appli-

cations were written in multiple programming languages and

represent workloads ranging from common utilities (gzip, tar,

polymorph, sendmail, sus) to server and web systems (scry,

htdig, wu-ftpd) to kernel code (quotactl). All experiments

were performed on unmodified SPARC binaries with no de-

bugging or relocation information. The coprocessor success-

fully detected both high-level attacks (directory traversals and

cross-site scripting) and low-level memory corruptions (buffer

overflows and format string bugs), even in the OS (user/kernel

pointer). We can concurrently run all the analyses in Table 3

using 4 tag bits: one for tainting untrusted data, one for identi-

fying legitimate pointers, one for function/system call interpo-

sition, and one for protecting the security handler. The security

handler is protected by sandboxing its code and data.

We used the pointer injection policy used in [9] for catch-

ing low-level attacks. This policy uses two tag bits, one for

identifying all the legitimate pointers in the system, and an-

other for identifying tainted data. The invariant enforced is

that tainted data cannot be dereferenced, unless it has been

deemed to be a legitimate pointer. This analysis is very pow-

erful, and has been shown to reliably catch low-level attacks

such as buffer overflows, and user/kernel pointer dereferences,

in both userspace and kernelspace, without any false posi-

tives [9]. Due to space constraints, we refer the reader to re-

lated work for an in-depth discussion of security policies [9].

Note that the security policies used to evaluate our copro-

cessor are stronger than those used to evaluate other DIFT ar-

chitectures, including FlexiTaint [5, 7, 24, 26]. For instance,

FlexiTaint does not detect code injection attacks and suffers

from false positives and negatives on memory corruption at-

tacks. Overall, the coprocessor provides software with exactly

the same security features and guarantees as the Raksha de-

sign [8, 9], proving that our delayed synchronization model

does not compromise on security.

5.2 Performance Evaluation

5.2.1 Performance Comparison

We measured the performance overhead due to the DIFT co-

processor using the SPECint2000 benchmarks. We ran each

program twice, once with the coprocessor disabled and once

with the coprocessor performing DIFT analysis (checks and

propagates using taint bits). Since we do not launch a secu-

rity attack on these benchmarks, we never transition to the

security monitor (no security exceptions). The overhead of

any additional analysis performed by the monitor is not af-

fected when we switch from an integrated DIFT approach to

the coprocessor-based one.

Figure 3 presents the performance overhead of the copro-

cessor configured with a 512-byte tag cache and a 6-entry

queue (the default configuration), over an unmodified Leon.

The integrated DIFT approach of Raksha has the same per-

formance as the base design since there are no additional

stalls [8]. The average performance overhead due to the DIFT

coprocessor for the SPEC benchmarks is 0.79%. The negli-

gible overheads are almost exclusively due to memory con-

tention between cache misses from the tag cache and memory

traffic from the main processor.

Program (Lang) Attack Analysis Detected Vulnerability
gzip (C) Directory traversal String tainting Open file with tainted absolute path

+ System call interposition

tar (C) Directory traversal String tainting Open file with tainted absolute path

+ System call interposition

Scry (PHP) Cross-site scripting String tainting Tainted HTML output includes < script >
+ System call interposition

htdig (C++) Cross-site scripting String tainting Tainted HTML output includes < script >
+ System call interposition

polymorph (C) Buffer (stack) overflow Pointer injection Tainted code pointer dereference (return address)

sendmail (C) Buffer (BSS) overflow Pointer injection Tainted data pointer dereference (application data)

quotactl syscall (C) User/kernel pointer dereference Pointer injection Tainted pointer to kernelspace
¯SUS (C) Format string bug String tainting Tainted format string specifier in syslog

+ Function call interposition

WU-FTPD (C) Format string bug String tainting Tainted format string specifier in vfprintf
+ Function call interposition

Table 3: The security experiments performed with the DIFT coprocessor.

0.60%

0.80%

1.00%

O
ve
rh
ea
d�
(%

)

0.00%

0.20%

0.40%

Ru
nt
im

e�
O

Figure 3: Execution time normalized to an unmodified Leon.

6%

8%

10%

12%

O
ve
rh
ea
d�
(%

) Queue�fill�Stalls

Memory�contention�Stalls

0%

2%

4%

0 2 4 6

Ru
nt
im

e�
O

Size�of�the�Queue�(no.�of�entries)
Figure 4: The effect of scaling the size of the decoupling queue on a worst-

case tag initialization microbenchmark.

We performed an indirect comparison between the copro-

cessor and multi-core approaches for DIFT, by evaluating the

impact of communicating traces between application and anal-

ysis cores, on application performance. To minimize con-

tention, the multi-core architecture [3] uses a 32-Kbyte table

for value prediction, that compresses 16 bytes of data per ex-

ecuted instruction, to a 0.8 byte trace. We found the overhead

of exchanging these compressed traces between cores in bulk

64-byte transfers to be 5%. The actual multi-core system may

have additional overheads due to the synchronization of the

application and analysis cores.

Since we synchronize the processor and the coprocessor

at system calls, and the coprocessor has good locality with

a small tag cache, we did not observe a significant num-

1.2 gzip

1 1

1.15

rh
ea
d gcc

twolf

1.05

1.1

e�
O
ve
r twolf

1

el
at
iv
e

0.9

0.95Re
0.9

1 1.5 2

Ratio�of�main�core's�clock�to�coprocessor's�clock
Figure 5: Performance overhead when the coprocessor is paired with higher-

IPC main cores. Overheads are relative to the case when the main core and

coprocessor have the same clock frequency.

ber of memory contention or queue related stalls for the

SPECint2000 benchmarks. We evaluated the worst-case sce-

nario for the tag cache, by performing a series of continuous

memory operations designed to miss in the tag cache, without

any intervening operations. This was aimed at increasing con-

tention for the shared memory bus, causing the main processor

to stall. We found that tag cache misses were rare with a cache

of 512 bytes or more, and the overhead dropped to 2% even

for this worst-case scenario. We also wrote a microbench-

mark to stress test the performance of the decoupling queue.

This worst-case scenario microbenchmark performed continu-

ous operations that set and retrieved memory tags, to simulate

tag initialization. Since the coprocessor instructions that ma-

nipulate memory tags are treated as nops by the main core,

they impact the performance of only the coprocessor, causing

the queue to stall. Figure 4 shows the performance overhead

of our coprocessor prototype as we run this microbenchmark

and vary the size of the decoupling queue from 0 to 6 entries.

For these runs we use a 16-byte tag cache in order to increase

the number of tag misses and put pressure on the decoupling

queue. Without decoupling, the coprocessor introduces a 10%

performance overhead. A 6-entry queue is sufficient to drop

the performance overhead to 3%. Note that the overhead of

a 0-entry queue is equivalent to the overhead of a DIVA-like

design which performs DIFT computations within the core, in

additional pipeline stages prior to instruction commit.

5.2.2 Processor/Coprocessor Performance Ratio

The decoupling queue and the coarse-grained synchronization

scheme allow the coprocessor to fall temporarily behind the

main core. The coprocessor should however, be able to match

the long-term IPC of the main core. While we use a single-

issue core and coprocessor in our prototype, it is reasonable

to expect that a significantly more capable main core will also

require the design of a wider-issue coprocessor. Nevertheless,

it is instructive to explore the right ratio of performance capa-

bilities of the two. While the main core may be dual or quad

issue, it is unlikely to frequently achieve its peak IPC due to

mispredicted instructions, and pipeline dependencies. On the

other hand, the coprocessor is mainly limited by the rate at

which it receives instructions from the main core. The nature

of its simple operations allows it to operate at high clock fre-

quencies without requiring a deeper pipeline that would suffer

from data dependency stalls. Moreover, the coprocessor only

handles committed instructions. Hence, we may be able to

serve a main core with peak IPC higher than 1 with the simple

coprocessor pipeline presented.

To explore this further, we constructed an experiment

where we clocked the coprocessor at a lower frequency than

the main core. Hence, we can evaluate coupling the coproces-

sor with a main core that has a peak instruction processing rate

1.5x, or 2x that of the coprocessor. As Figure 5 shows, the co-

processor introduces a modest performance overhead of 3.8%

at the 1.5x ratio and 11.7% at the 2x ratio, with a 16-entry de-

coupling queue. These overheads are likely to be even lower

on memory or I/O bound applications. This indicates that the

same DIFT coprocessor design can be (re)used with a wide va-

riety of main cores, even if their peak IPC characteristics vary

significantly.

6 Conclusions

We presented an architecture that provides hardware sup-

port for dynamic information flow tracking using an off-core,

decoupled coprocessor. The coprocessor encapsulates all state

and functionality needed for DIFT operations and synchro-

nizes with the main core only on system calls. This design

approach drastically reduces the cost of implementing DIFT:

it requires no changes to the design, pipeline and layout of

a general-purpose core, it simplifies design and verification,

it enables use with in-order cores, and it avoids taking over

an entire general-purpose CPU for DIFT checks. Moreover,

it provides the same guarantees as traditional hardware DIFT

implementations. Using a full-system prototype, we showed

that the coprocessor introduces a 7% resource overhead over

a simple RISC core. The performance overhead of the copro-

cessor is less than 1% even with a 512-byte cache for DIFT

tags. We also demonstrated in practice that the coprocessor

can protect unmodified software binaries from a wide range of

security attacks.

7 Acknowledgments

We would like to thank Jiri Gaisler, Richard Pender, and

Gaisler Research in general for their invaluable assistance with

the prototype development. We would also like to thank Shih-

Lien Lu and the anonymous reviewers for their feedback on

the paper. This work was supported by an Intel Foundation

Graduate Fellowship, a Stanford Graduate Fellowship funded

by Sequoia Capital, and NSF awards CCF-0701607 and CCF-

0546060.

References

[1] AMD. AMD Lightweight Profiling Proposal, 2007.
[2] T. Austin. DIVA: A Reliable Substrate for Deep Submicron Microarchitecture

Design. In the Proc. of the 32nd MICRO, Haifa, Israel, Nov. 1999.
[3] S. Chen, B. Falsafi, et al. Logs and Lifeguards: Accelerating Dynamic Program

Monitoring. Technical Report IRP-TR-06-05, Intel Research, Pittsburgh, PA, 2006.
[4] S. Chen, M. Kozuch, et al. Flexible Hardware Acceleration for Instruction-Grain

Program Monitoring. In the Proc. of the 35th ISCA, Beijing, China, June 2008.
[5] S. Chen, J. Xu, et al. Defeating Memory Corruption Attacks via Pointer Tainted-

ness Detection. In the Proc. of the 35th DSN, Yokohama, Japan, June 2005.
[6] J. Chung, M. Dalton, et al. Thread-Safe Dynamic Binary Translation using Trans-

actional Memory. In the Proc. of the 14th HPCA, Salt Lake City, UT, Feb. 2008.
[7] J. R. Crandall and F. T. Chong. MINOS: Control Data Attack Prevention Orthogo-

nal to Memory Model. In the Proc. of the 37th MICRO, Portland, OR, Dec. 2004.
[8] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A Flexible Information Flow

Architecture for Software Security. In the Proc. of the 34th ISCA, San Diego, CA,
June 2007.

[9] M. Dalton, H. Kannan, and C. Kozyrakis. Real-World Buffer Overflow Protection
for Userspace and Kernelspace. In the Proc. of the 17th Usenix Security Sympo-
sium, San Jose, CA, July 2008.

[10] D. E. Denning and P. J. Denning. Certification of programs for secure information
flow. ACM Communications, 20(7), 1977.

[11] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A Delegating Architecture for
Secure System Call Interposition. In the Proc. of the 11th NDSS, San Diego, CA,
Feb. 2004.

[12] Intel Virtualization Technology (Intel VTx). http://www.intel.com/
technology/virtualization.

[13] T. Jim, M. Rajagopalan, et al. System call monitoring using authenticated system
calls. IEEE Trans. on Dependable and Secure Computing, 3(3):216–229, 2006.

[14] LEON3 SPARC Processor. http://www.gaisler.com.
[15] A. Mahmood and E. J. McCluskey. Concurrent error detection using watchdog

processors – a survey. IEEE Trans. on Computers, 37(2), 1988.
[16] V. Nagarajan, H.Kim, et al. Dynamic Information Tracking on Multcores. In the

Proc. of the 12th INTERACT, Salt Lake City, UT, Feb. 2008.
[17] N. Nakka, Z. Kalbarczyk, et al. An Architectural Framework for Providing Relia-

bility and Security Support. In the Proc. of the 34th DSN, Florence, Italy, 2004.
[18] J. Newsome and D. X. Song. Dynamic Taint Analysis for Automatic Detection,

Analysis, and Signature Generation of Exploits on Commodity Software. In the
Proc. of the 12th NDSS, San Diego, CA, Feb. 2005.

[19] Perl taint mode. http://www.perl.com.
[20] F. Qin, C. Wang, et al. LIFT: A Low-Overhead Practical Information Flow Track-

ing System for Detecting Security Attacks. In the Proc. of the 39th MICRO, Or-
lando, FL, Dec. 2006.

[21] M. Rajagopalan, M. Hiltunen, et al. Authenticated System Calls. In the Proc. of
the 35th DSN, Yokohama, Japan, June 2005.

[22] W. Shi, J. Fryman, et al. InfoShield: A Security Architecture for Protecting Infor-
mation Usage in Memory. In the Proc. of the 12th HPCA, Austin, TX, 2006.

[23] Personal communication with Shih-Lien Lu, Senior Prinicipal Researcher, Intel
Microprocessor Technology Labs, Hillsboro, OR.

[24] G. E. Suh, J. W. Lee, et al. Secure Program Execution via Dynamic Information
Flow Tracking. In the Proc. of the 11th ASPLOS, Boston, MA, Oct. 2004.

[25] N. Vachharajani, M. J. Bridges, et al. RIFLE: An Architectural Framework for
User-Centric Information-Flow Security. In the Proc. of the 37th MICRO, Portland,
OR, Dec. 2004.

[26] G. Venkataramani, I. Doudalis, et al. FlexiTaint: A Programmable Accelerator for
Dynamic Taint Propagation. In the Proc. of the 14th HPCA, Salt Lake City, UT,
Feb. 2008.

[27] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: A practi-
cal approach to defeat a wide range of attacks. In the Proc. of the 15th USENIX
Security Symp., Vancouver, Canada, Aug. 2006.

