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We have developed Argus, a novel approach for pro-
viding low-cost, comprehensive error detection for
simple cores. The key to Argus is that the operation of a
von Neumann core consists of four fundamental
tasks—control flow, dataflow, computation, and mem-
ory access—that can be checked separately. We prove
that Argus can detect any error by observing whether
any of these tasks are performed incorrectly. We
describe a prototype implementation, Argus-1, based
on a single-issue, 4-stage, in-order processor to illus-
trate the potential of our approach. Experiments show
that Argus-1 detects transient and permanent errors in
simple cores with much lower impact on performance
(<4% average overhead) and chip area (<17% over-
head) than previous techniques.

1.  Introduction

Technological trends are leading to more hardware
errors, due to both transient and permanent physical
phenomena [28, 7]. The first and most important step
in tolerating these errors is detecting them. Once an
error is detected, the system can avoid silent data cor-
ruption and potentially recover to a pre-error state and
resume execution. In this work, we focus on relatively
simple cores, rather than speculative out-of-order
cores. Simple cores are becoming more attractive due
to their low power consumption, particularly for multi-
core chips, embedded applications, and applications
for which throughput is more important than latency.
For example, the UltraSPARC T1 (Niagara) chip [10]
contains 8 simple cores, the Cray MTA [3] consists of
simple multithreaded cores, and the Silicon Packet Pro-
cessor in CISCO’s CRS-1 router [4] has 188 Tensilica
Xtensa single-issue, in-order cores. For many applica-
tions of simple cores, reliability is important but it must
not cost much in terms of hardware and power.

Core error detection can be achieved by simply rep-
licating each core (dual modular redundancy), but this
option is extremely expensive. Even if providing the
required number of transistors is technologically feasi-

mately doubles core power consumption. Other
detection schemes, such as DIVA [1, 31] and redundant
multithreading [23, 21, 16], exist, but all of them are
either incomplete or expensive, in terms of area or per-
formance, for simple cores.

Our goal is to provide a low-cost, low-power
mechanism for comprehensively detecting transient
and permanent errors in a simple microprocessor core.
After detecting an error, the core can recover to a pre-
fault state using a checkpoint recovery mechanism
[27]. Instead of low-level checking of each core com-
ponent, our scheme, Argus, uses run-time checking
(dynamic verification) of the following four invariants
that guarantee the core is operating correctly:
•Control Flow: An error-free core must continue

to make forward progress through the control
flow graph specified in the program binary.

•Computation: An error-free core must correctly
perform computations (additions, shifts, etc.).

•Dataflow: An error-free core must preserve the
dataflow graph specified in the program binary.

•Memory: An error-free core must interact cor-
rectly with the memory system, and the memory
system must not be corrupted.

Argus checks these four invariants by integrating
existing mechanisms for runtime control flow checking
[5, 9, 30], computation checking [24, 19, 20, 17], data-
flow checking [15], and memory checking. We have
proven that checking these four invariants is sufficient
for detecting all possible single errors in an idealized
core that has no I/O, exceptions, or interrupt handling.

To evaluate its hardware cost and error coverage, we
have incorporated Argus error detection into the Open-
RISC 1200 (OR1200) core [11], synthesized the Ver-
ilog, and laid out the design. Our results show that this
implementation, called Argus-1, adds less than 17% to
the core area (and less than 11% to the total chip area,
including caches) and increases runtime by 3.2-3.9%
on average. The implementations of Argus-1’s four
checkers do not detect all possible errors, due to cost
constraints, but they still detect over 98% of all
unmasked injected errors.
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In the remainder of the paper, we first present an
overview of Argus (Section 2) and the Argus-1 imple-
mentation (Section 3). In Section 4, we provide an
experimental evaluation of Argus-1. In Section 5, we
compare Argus to related work, and we conclude in
Section 6. The appendices contain a proof of Argus’s
completeness and a proof of the equivalence of Argus-
1’s checkers and ideal checkers.

2.  Argus Overview

The key insight exploited by Argus is that, at a high
level, von Neumann processor cores perform only four
basic activities: choosing the sequence of instructions
to execute, performing the computation specified by
each instruction, passing the result of each instruction
to its data-dependent instructions, and interacting with
memory. We prove in Appendix A that by checking
that these activities are performed correctly, Argus can
detect all possible core errors, except errors in the parts
of the core that handle I/O, exceptions, and interrupts.
This set of activities is quite similar to the set of activi-
ties checked by DIVA [2], but Argus’s approach to
checking them is fundamentally different.

We consider Argus to be a high-level error detection
scheme, because these four activities are not specific to
any particular micro-architecture, design, or implemen-
tation; they are present in any von Neumann processor.
Strictly speaking, memory access is not a fundamental
task but a form of dataflow. We chose to consider mem-
ory separately, because it differs significantly from
dataflow between registers in ways that would make it
difficult to implement a combined checker for register
and memory dataflow.

In the rest of this section, we discuss the require-
ments of the four invariant checkers. Formal definitions
of the invariants are given in Appendix A.

Control Flow Checking. A control flow checker [5, 9,
30] periodically verifies that the runtime execution path
is valid with respect to the static control flow graph
(CFG) of the program binary. If the static and dynamic
CFGs conflict, an error has been detected. Unlike many
control flow checkers, we also consider liveness to be a
part of control flow correctness.

When used in isolation, a control flow checker
detects errors in fetch logic, branch destination compu-
tation, and PC update logic. However, without dataflow
and computation checking, a control flow checker can-
not detect when an error causes the core to choose the
wrong one of two possible data-dependent branch des-
tinations. Argus’s control flow checker interacts with
the other checkers to detect these error scenarios.

Dataflow Checking. A dataflow checker [15] ensures
that the static dataflow graph (DFG) of the program
binary matches the dataflow graph reconstructed at
runtime and that the values traversing the DFG are not
corrupted. In isolation, a dataflow checker detects
errors in many activities, including: fetch, decode, reg-
ister rename, register read/write, and instruction sched-
uling (ROB, reservation stations, etc.).

Computation Checking. A computation checker
detects errors in functional units. Checker implementa-
tions vary between units. Some checkers require a fully
replicated functional unit, but many utilize knowledge
about the initial result to simplify the redundant com-
putation. Sellers et al.’s book [24] provides an excellent
survey of existing checkers for adders, multipliers,
dividers, bit-wise logic units, etc.

Memory Checking. A minimal memory checker must
be able to detect data corruption in the memory system
as well as errors that cause the wrong data word to be
accessed. In more complex memory systems that sup-
port multiple outstanding requests and potentially mul-
tiple cores, faults can also manifest themselves as
incorrect orderings of memory accesses. We do not
consider this type of error, because there are only a few
unlikely scenarios for ordering errors in simple cores.
An example of a complex memory checker that could
be used with Argus can be found in prior work [14].

3.  Argus-1 Implementation

In this section, we describe an implementation of
Argus, called Argus-1, that illustrates the engineering
tradeoffs between checker costs and error coverage.
Although perfect checkers can be designed, their costs
are not always worth their additional error coverage, as
compared to near-perfect checkers. In Appendix B, we
prove that Argus-1 detects the same errors as an ideal
Argus implementation, except for false negatives due
to finite-sized checksums and memory ordering errors.

To obtain realistic information about the costs and
complexity associated with implementing Argus-1, we
have built Argus-1 in Verilog and incorporated it into
the OR1200 processor core [11].

3.1. Baseline OpenRISC processor

The OR1200 processor core is a 32-bit scalar (1-
wide), in-order RISC core with a 4-stage pipeline and
32 general purpose registers. It has an instruction cache
and data cache, which we assume in this paper to both
be 8KB. We study both direct-mapped and 2-way asso-
ciative caches, with LRU replacement for the 2-way.
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The data cache is write-back, write-allocate, and it
blocks on misses. The OR1200 core has an integer
ALU, a non-pipelined integer multiplier/divider, and a
load/store unit, but no floating point hardware. There is
a single branch delay slot and no branch penalty, so no
branch prediction is necessary. This core represents the
low-end of the simple cores that are expected to be
used, perhaps in conjunction with a small number of
superscalar cores, in multicore chips.

We illustrate in Figure 1 how Argus-1 is integrated
into the OR1200 core, and we will discuss each of the
Argus-1 additions in the rest of this section. Note that
the sizes of the structures in the figure are not to scale;
Argus-1 hardware comprises less than 17% of the core
area (and less than 11% of the total chip area), as we
show in Section 4.3.

3.2. Control Flow and Dataflow Checkers

Argus-1’s control flow and data flow checkers are
based on our earlier work on Dynamic Dataflow Verifi-
cation (DDFV) [15]. DDFV was developed for dynam-
ically scheduled superscalar cores and does not
exercise its full potential when used with OR1200’s
simpler dataflow, but it is still necessary to check that
the simple dataflow is error-free.

DDFV detects errors in the core’s dataflow by com-
paring the static DFG specified in the program to the

dynamic DFG within the processor during execution.
Both DFGs are represented using constant-size signa-
tures. The static signatures are computed at compile
time and embedded in the program such that they can
be read by the processor and compared to the dynamic
signatures computed at runtime. To avoid problems
with data-dependent branches, which dynamically alter
the DFG, DDFV performs checks at the granularity of
basic blocks for which the correct DFG is known at
compile time. An incorrect DFG can go undetected if it
maps to the same signature as the correct DFG (alias-
ing). The chance of aliasing can be arbitrarily reduced
by increasing signature sizes.

DDFV implicitly checks the control flow within
each basic block, but it cannot detect errors in control
flow between basic blocks. To provide full control flow
checking, Argus-1 adds a mechanism on top of DDFV
that checks whether transitions between blocks are per-
formed correctly.

3.2.1  Unifying Control Flow & Dataflow Checking
Argus-1 uses a basic block’s dataflow signature as

both (a) a representation of the block’s internal data-
flow, needed by the dataflow checker and (b) a unique,
address-independent block identifier necessary for full
control flow checking. We refer to this single signature
as the Dataflow and Control Signature (DCS).

What enables Argus-1 to use the DCS for both data-
flow and control flow checking is the way DCSs are
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embedded and used. Unlike DDFV [15], which
embeds a single signature into each block, Argus-1
embeds into each basic block the DCS of each of its
legal successor blocks. At runtime, the control flow
checker decides, based on information received from
the computation checker, which of the legal successors
will be executed next and passes the corresponding
DCS to the dataflow checker. If, due to an error, the
wrong successor or any other illegal block is executed
next, the DCS computed by the dataflow checker will
not match the DCS anticipated by the control flow
checker and, barring aliasing, an error will be detected.

Figure 2 illustrates how Argus-1 embeds the DCS
(in a Signature instruction, which is a NOP) for basic
blocks with one or two successors. A basic block that
ends with a conditional branch (e.g., BB1) contains the
DCS of both its branch target (BB3) and its fall-
through block (BB2). At runtime, during execution of
BB1, the control flow checker will choose one of the
two DCSs based on the direction the branch takes. For
a block with a single successor (e.g., BB2 or BB3),
only a single DCS is embedded.

3.2.2  Implementation Details

DCS Computation. We compute the DCS similar to
the dataflow signature in DDFV [15]. A state history
signature (SHS) is maintained for each architectural
location; thus, we have an SHS for each register
(SHSreg), the program counter (SHSpc), and memory
(SHSmem). An SHS for a given location represents the
creation history of that location’s current state. This
history depends on the histories of the data and opera-
tions that were involved in creating the current state,
but not on the data operand values themselves. For
example, when add r1, r2, r3 gets executed, then the
new value of SHSr1 depends on the values of SHSr2
and SHSr3 and the fact that the operation was an addi-
tion, but not on any of the register values. Each SHS is
reset to a location-specific initial value at the beginning
of each basic block. The DCS of a basic block is a
function of all of the SHSs after the last instruction in
the block commits.

The two non-register SHSs (SHSpc and SHSmem),
which are also located at the register file, are necessary
to track the output of instructions that do not have reg-
ister outputs. Jumps and branches write their result
SHSs to SHSpc. A store, however, cannot simply write
its output SHS to SHSmem, because it would overwrite
the histories of all prior stores in the same basic block.
Instead, SHSmem is updated by computing a hash of the
prior SHSmem and the store’s output SHS. SHSmem
does not track dataflow through memory1, but ensures
that operands are delivered correctly to the memory

system. Memory updates and reads themselves are
checked by the memory checker (Section 3.4).

SHSs accompany their corresponding data through-
out the processor. Each register has an attached SHSreg,
and SHS wires or latches are attached to every part of
the datapath that carries operands, including the oper-
and bypass network. Each functional unit contains an
SHS computation unit that computes the new output
SHS as a function of the instruction’s operands’ SHSs
and an ID of the operation type. The instruction’s result
SHS is then written back to the register file or SHSmem
or SHSpc, depending on the type of instruction.

In Argus-1, all signatures (SHSs and DCS) are 5
bits wide. The 5-bit signature size is the smallest that
allows a unique initial value for each of the OR1200’s
32 registers, and it is also a convenient size for pur-
poses of embedding the DCS in the binary (discussed
later). History updates are computed using CRC5 as a
hash function. Unlike our original dataflow checker
[15], Argus-1 does not compute the DCS incremen-
tally; instead, the SHSregs (160 bits total) are organized
as one wide register, such that all SHSregs can be read
or reset to initial values in parallel. The DCS computa-
tion is performed by first running the SHSs through a
hard-wired bit permutation and then sending them
through an XOR tree that computes the final 5-bit
DCS. The SHS bits are permuted to make the DCS not
only dependent on the set of SHSs in the register file,
but also on the assignment of SHSs to registers.

Signature Embedding. Signature instructions embed-
ded into the program cause performance degradation
because they increase cache pressure and consume pro-
cessor cycles. To reduce these effects, we minimized
the number of embedded Signature instructions by
storing DCS bits in unused instruction bits, which are
common in fixed-size RISC instruction formats. Actual

1. Tracking dataflow through memory with signatures would likely
require an SHS for every memory location.

BB1: add r1, r2, r3
sub r4, r1, r2
Signature {BB2,BB3}
beq BB3

BB2: load r6, 0(r4)
mul r7, r6, r6
Signature {BB4}
jmp BB4

BB3: or r8, r6, r9
Signature {BB4}

BB4: and r10, r8, r6
...

Figure 2. DCS Embedding
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Signature instructions (NOPs) are embedded only in
basic blocks with insufficient unused bits.

The DCSs are added to basic blocks in three distinct
phases as part of program compilation and linking. In
the first phase, empty Signature instructions are added
to basic blocks with insufficient unused bits to embed
the DCSs. In the second phase, the DCSs of all blocks
are computed. In the third phase, the legal successor
blocks are determined and the DCSs are embedded into
the binary. In Argus-1 this process is part of the com-
piler tool-chain. Instead, it could also be performed by
a static binary rewriter or dynamic compilation. Argus-
1 does not support execution of unprotected code, but
necessary modifications would be minor.

Indirect Branches. Indirect branches complicate con-
trol flow checking, because of the difficulty in deter-
mining the legal successor blocks. Indirect branches
are usually the result of switch statements, function
pointers, or function returns. To minimize cost, Argus-
1 expects the DCS to be stored in the 5 most significant
bits of the register containing the branch target address.
This solution is sub-optimal in that it reduces the range
of addressable targets, but it is necessary to minimize
Argus-1’s cost. For switch statements and function
pointers, the target DCSs are embedded into all entries
in the jump table and function address constants in the
binary. The DCS for a function return is provided by
writing it into the link register when the function is
called. To facilitate this, basic blocks that end in a func-
tion call contain two DCSs, although they have only
one legal successor: one for the first block in the called
function and one for the block specified in the link reg-
ister (link DCS). Because the DCS is tied to the link
register, it is automatically saved and restored during
nested function calls along with the link address.

Data Value Correctness. Beyond checking the shape
of the dataflow graph, the dataflow checker also has to
ensure that data values are transmitted correctly. To
detect errors in data values, Argus-1 adds a parity bit to
each register and each part of the datapath that carries
an operand or instruction result.

Checking Liveness. There are many techniques for
checking liveness, including simple watchdog units
[13]. Our watchdog has a 6-bit counter. At every clock
cycle, the counter is reset if the pipeline is not stalled,
and it is incremented when the pipeline is stalled.
When the counter saturates (i.e., after 63 consecutive
stall cycles), the watchdog indicates an error. To bound
the time between control flow checks, Argus-1 also
requires a fixed limit on the size of basic blocks.

3.3. Computation Checker

The computation checker consists of several func-
tional unit (FU) sub-checkers. We illustrate in Figure 3
how Argus-1 is integrated into a FU. For each FU, we
have a sub-checker and a SHS computation unit. The
opcode, from which the operation ID is derived, is dis-
tributed in a way that makes it impossible for a single
fault to cause the same incorrect opcode to be delivered
to both the FU and sub-checker while the correct
opcode is delivered to the SHS computation unit (see
Figure 3). In the remainder of the section, we describe
the sub-checker for each FU in Argus-1.

3.3.1  ALU Sub-Checker
The primary component in an ALU is the carry

look-ahead adder, and there have been many prior
schemes for detecting errors in these adders. We previ-
ously developed a low-cost adder sub-checker [33],
which has about the same delay as a carry-lookahead
adder and roughly the same area as a ripple-carry
adder. In Argus-1, we slightly enhance the adder sub-
checker such that it can also check the bitwise logical
operations. The enhanced sub-checker emulates the
logical operations by multiplexing the appropriate
inputs. For example, a full adder acts as an XOR if we
tie its carry-in to 0.

We check the ALU’s shift and sign-extension units
using a single unit that performs a right-shift followed
by a sign-extension (RSSE). This RSSE organization
also enables us to check the alignment and sign-exten-
sion of sub-word loads and stores. To check a right-
shift of A, the RSSE replays the shift (and sign-exten-
sion, if it was an arithmetic shift) and compares to the
ALU’s result. To check a left-shift of A, the RSSE
shifts the ALU’s result back to the right and then com-
pares to A (while masking out those bits that had been
left-shifted off the end of the word). The RSSE checks
sign-extension instructions by shifting them zero bits
to the right and replaying them with the sign extender.

3.3.2  Multiplier/Divider Sub-Checker
Multiplication is checked using a well-known mod-

ulo arithmetic approach [24]. Assume the two inputs
are A and B, and the modulus is M. The sub-checker

functional
unit
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Computation
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opcode

operand1
operand2
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SHSop2
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SHSresult
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Figure 3. Functional Unit with Error Detection.
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verifies that [(A mod M)*(B mod M)] mod M = Product
mod M. For small M, the sub-checker multiplier is
much smaller than the original multiplier. To facilitate
efficient modulo computation in hardware, we choose
M to be a Mersenne number (25-1=31).

Argus-1 checks division with the same hardware. If
A/B=Quotient+Remainder/B, then B*Quotient=A-
Remainder. We use the same modulo arithmetic to
check that [(B mod M)*(Quotient mod M)] mod M=
[(A mod M)-(Remainder mod M)] mod M. To check
division and multiplication with the same logic
requires muxes for choosing the inputs to the modulo
units and logic to negate the remainder. We illustrate
this combined sub-checker in Figure 4.

Modulo checkers have a small probability of alias-
ing, in which a faulty computation is undetected. This
probability can be made arbitrarily small by increasing
M, at the cost of a larger multiplier in the sub-checker.

3.4. Memory Checker

The memory hierarchy is composed of the core’s
load-store unit, caches, and main memory. Argus-1
detects address computation errors using an adder
checker like the one described in Section 3.3. Argus-1
also detects errors in data re-alignment in byte and
half-word (16-bit) loads and stores using the RSSE
sub-checker. In the OR1200 core, the ALU and the
load-store unit are not used simultaneously, so there is
no contention for the ALU checker.

To detect data corruption, Argus-1 adds parity to
each word in the data cache and memory (assuming
ECC is not already present). Argus-1 does not add par-
ity to the instruction cache, because errors in instruc-
tions will cause incorrect control flow and/or dataflow,
which will be detected during the DCS comparison.

Argus-1 also protects against errors that cause a
load or store to access the wrong word despite provid-
ing a correct address. To detect these errors, Argus-1
embeds the physical address along with the data in the
caches and memory. If the core wants to store value D
to address A, it actually stores the value DA = D XOR A
(into address A). Parity is computed over D and stored
along with the data. When the core loads from address
A, it takes the value obtained from memory, DA’, and
XORs it with A to obtain D’. In the error-free case, D’
will equal D (the value that the core wanted to store to
address A). If a single-bit error occurs in either the
address or data, then D’ will not equal D and their pari-
ties will differ, indicating an error.2

Argus-1 cannot detect errors that cause cache
accesses to be silently not performed. These errors are
equivalent to memory ordering violations, in that they
cause loads to get values from the wrong stores. In the
OR1200 core, there are two concrete scenarios for such
errors: an access that misses in a cache even though it
should have hit and a store issued to the cache that does
not perform the actual write. The former error scenario
can be addressed using redundant tag comparisons and
parity on the tags. The latter error scenario could be
detected by following each store with a load to the
same address. We decided against this option due to
power consumption and performance considerations.

4.  Experimental Evaluation

The goals of our evaluation are to confirm Argus-1’s
error detection coverage (Section 4.1) and error detec-
tion latency (Section 4.2), and to determine its area and
performance overheads (Sections 4.3-4.4).

4.1. Error Detection Coverage

An Argus implementation with perfect checkers can
detect all possible single-error scenarios (and many
multiple-error scenarios) in the non-exceptional part of
the core. However, due to physical constraints, the
Argus-1 implementation has sacrificed some small
amount of error coverage. Argus-1 cannot detect the
following errors:
• Some memory access errors (see Section 3.4)
•Errors that are hidden by DCS aliasing
•Errors that are hidden by aliasing in the modulo-
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2. The I/O controller removes the embedded address from the data
sent to I/O devices. Partial stores can use the same techniques used in
other systems with per-word EDC, usually read-modify-write.
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•Errors in unprotected areas: Argus-1 only covers
the portion of the core associated with user-level
sequential program execution.

• Some multiple-error scenarios: Argus-1 cannot
detect when one error causes the core to execute
incorrectly and another error in the correspond-
ing checker logic prevents detection.

We performed error injection experiments to empir-
ically test Argus-1’s error detection coverage. The
experiments were performed while the core was run-
ning a “stress-test” microbenchmark that involves a
broad range of registers and instruction types. It would
have been difficult to test Argus-1 using benchmark
code, because many benchmarks have frequently exe-
cuted inner loops that use only a handful of registers
and a small subset of the instruction set. We injected
single transient and permanent bit-inversion errors in
all portions of the microprocessor core, including the
features added for Argus-1. From among the roughly
40,000 total gates, we randomly sampled 5,000 gate
outputs on which to inject bit flips. We did not inject
errors in the caches, but we did inject errors in the
core’s interface to memory. Because most transients
are normally masked, when we activate a transient
error, we wait until either it affects the OR1200’s archi-
tectural state or until a fixed amount of time has
elapsed (in which case we consider the error to be
masked). For a permanent error, we consider it to be
masked if it has no impact before the fixed amount of
time elapses.

For each error injection experiment, we classified its
result along two axes. First, was the error detected?
Second, was the error masked? The errors that we want
most to avoid are unmasked, undetected errors, which
represent silent data corruptions. In Table 1, we show
the results of these experiments.

4.1.1  Unmasked Errors
Most importantly, we observe that silent data cor-

ruptions are extremely rare, compared to detected
errors. Of the unmasked transient and permanent
errors, Argus-1 detects 98.0% and 98.8%, respectively.
Examining these few undetected errors in detail, we

noticed that the majority of them are in gates that affect
multiple bits in the datapath; these errors flip an even
number of bits and are thus undetectable using parity.
Some other undetected errors are due to aliasing in the
multiplier modulo checker and DCS.

We examined which parts of Argus-1 were responsi-
ble for detecting each error. The computation checkers
were responsible for 45% of detected errors. The next
largest contributor to error coverage was parity (on
operands, registers, and load values), which caught
36% of detected errors. The DCS comparison caught
16%, and the watchdog caught 3%. These results con-
firm that a composition of all checkers is necessary in
order to achieve good coverage.

4.1.2  Masked Errors
Before we discuss the results, we first note that the

results are identical for transient and permanent errors,
because of the way that we inject them (i.e., we activate
a transient until it shows up or until the experiment
ends, in which case it is equivalent to a masked perma-
nent error). We observe that a large fraction of injected
errors are masked, which is not surprising [32]. All
errors in Argus-1 hardware are masked, because they
have no impact on the OR1200 core’s execution. One
other class of masked errors is the set of errors that
impact only the most significant 32 bits of the multi-
plier’s 64-bit result. These bits are accessed only by the
multiply-accumulate instruction, which is not used by
any of our benchmarks. Therefore, we did not include
it in our “stress-test” microbenchmark.

Of the masked errors, Argus-1 detects 38.3%. A
detected masked error (DME) leads to a recovery and,
for a transient error, is not necessary; however, detect-
ing permanent errors is important, so that we can
potentially take action to address them. Many of these
DMEs are in Argus-1 hardware itself. DMEs only
affect performance, and we would rather incur some
DMEs than silent data corruptions. To confirm that
Argus-1 never incurs “false positives” (i.e., detects
errors that did not occur), we also performed experi-
ments in which we injected no errors. Argus-1 never
reported an error in these experiments.

4.2. Error Detection Latency

Argus-1 detects most errors soon after they occur.
Errors that affect control flow are either detected at the
end of the current or subsequent basic block, depend-
ing on whether the error affects intra-block or inter-
block control flow, respectively. Errors in computation
(ALU, multiplier/divider) are detected in the cycle
after the erroneous computation. Errors in dataflow are

TABLE 1. Error Injection Results
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permanent 0.46% 37.6% 38.2% 23.7%
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detected at the end of the current basic block. Errors in
interactions with memory are detected either the cycle
after the error (for incorrect address computation in the
load-store unit) or when a load accesses a cache block
whose parity signifies an error. The latter case has an
arbitrary long error detection latency, which is com-
mon to all EDC based schemes. Detection latency can
be bounded by using cache and DRAM scrubbing, but
will still be much higher than Argus-1’s detection
latencies for other errors. Long latencies can be cir-
cumvented by using error correcting codes (ECC)
instead of simple error detecting codes (EDC).

4.3. Area Overhead

A primary motivation for Argus is to use less area
than existing schemes, such as core replication and
DIVA. In particular, we wanted to devise a scheme that
used a small fraction of the area of even a simple core.

Most of Argus-1’s area is used for dataflow and con-
trol flow checking. This area overhead consists of: wid-
ening all datapaths and registers to accommodate one
parity bit and 5 SHS bits per datum; CRC logic and an
XOR tree to compute updated SHSs and the final DCS;
and logic to extract the static DCS from the code. The
various computation checkers are the second major
area contributor. The remainder of Argus-1’s area is for
control logic, the watchdog timer, etc.

We used our CAD tools, Synopsys Design Compiler
and Cadence Silicon Ensemble, to floorplan and layout
the core, both with and without Argus-1. We did not
include the debugging hardware or the TLB. Our CAD
tools use the publicly available VTVT 0.25µm stan-
dard cell library [29]. We present our results in Table 2.
We first observe that the unmodified OR1200 core uses
6.59mm2 of area (2.565mm by 2.565mm), and the core
with Argus-1 uses 16.6% more area.

To determine total chip area overhead, not just core
area overhead, we used Cacti 3.0 [8] to calculate the
area of the caches. Both the instruction and data caches
are 8KB. Argus-1’s data cache adds area for parity, but

recall from Section 3.4 that Argus-1 does not need to
add parity to the instruction cache. If we compare
Argus-1 to an unmodified OR1200 chip (with no error
detection on the core or caches), then Argus-1 con-
sumes only 10-11% more area.

The low area overhead of Argus-1 suggests that it
has a fairly low power overhead, but we do not have
reliable power analysis at this time. We plan to quan-
tify Argus-1’s power overhead in the future.

4.4. Performance Overhead

Argus-1’s error detection hardware does not cause
any pipeline stalls or delay instruction retirement,
because Argus-1 is designed to invoke backward error
recovery [27] once an error is detected. Our CAD tools
also showed no increase in any critical paths due to
Argus-1 logic and thus we do not expect changes in
clock cycle time. Hence, Argus-1’s only potential
impact on core performance is due to having Signature
instructions embedded in the instruction stream when
insufficient unused bits are available to store the DCSs.
Signature instructions consume instruction cache space
as well as fetch and decode bandwidth. We use the
OR1200 simulator and the MediaBench benchmark
suite [12] to analyze how this impacts performance.
We assume a memory configuration typical for an
embedded system; the data and instruction cache are
each 8KB, hits take 1 cycle, and misses take 20 cycles.

In Figure 5, we plot the dynamic instruction count
overhead. On average, the overhead is 3.5%. Dynamic
instruction count overhead is generally lower than
static instruction count overhead (which is 7% on aver-
age), because the frequently executed inner loops of
the benchmarks contain mostly arithmetic and logic
operations with sufficient unused bits to embed DCSs.
Initialization code as well as function prologues and
epilogues—which consist mostly of loads, stores, and
operations involving immediates—have few unused
bits and therefore require the embedding of Signature

TABLE 2. Area Overhead. Areas in mm2.

OR1200 With Argus-1 Overhead

core 6.58 7.67 16.6%

I-cache: 1-way
2-way

2.14
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2.42
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instructions to store DCSs, but are executed less fre-
quently than the inner loop bodies.

In Figure 6 and Figure 7, we plot Argus-1’s perfor-
mance impact for a direct-mapped and 2-way instruc-
tion cache, respectively. On average, the runtime
overheads are 3.9% and 3.2%. Argus-1’s performance
impact has two components: the cost of processing
more dynamic instructions and an increased code foot-
print. The first component of the overhead depends lin-
early on the increase in the number of dynamic
instructions, but runtime overhead from executing
additional instructions is generally lower than the
dynamic instruction count overhead itself, because all
added Signature instructions (NOPs) execute in 1 cycle
whereas an average instruction takes 1.1-1.7 cycles.

Argus-1’s second performance component, due to
the increased code footprint, is far less predictable and
highly benchmark specific. The increased code foot-
print can increase instruction cache capacity misses,
but the relationship is not linear. As a secondary effect,
the insertion of Signature instructions also causes a re-
alignment of basic blocks, which can randomly reduce
or increase the number of conflict misses. The average
effect of this re-alignment will be zero, but it can have
tremendous impact on individual benchmarks, includ-
ing speed-ups on several benchmarks with Argus-1 and
a direct-mapped cache. The 2-way set-associative
cache is less sensitive to re-alignments than the direct-
mapped cache, which explains the lower variation in
runtime overhead in Figure 7.

5.  Related Work

There is a long history of research in error detection.
Because we have already discussed checkers for con-
trol flow, dataflow, and computation, we do not men-
tion them again in this section.

Redundant cores. Replicating a core provides a con-
ceptually simple mechanism for detecting errors. This
approach is, in terms of hardware and power, prohibi-
tively expensive for commodity hardware.

DIVA. DIVA [1, 31, 2] checks similar invariants as
Argus, but its approach is quite different. DIVA uses C
simple checker cores to detect errors in a C-wide
superscalar processor. DIVA is an excellent, low-cost
design option for protecting large cores with simple
decode logic. For example, a DIVA checker is only 6%
of an Alpha 21264 core [31]. However, for simple,
small cores, there is little opportunity to make the
checker cores smaller than the cores they are checking,
such that DIVA becomes almost indistinguishable from
using redundant cores.

Redundant multithreading (RMT). There are many
varieties of redundant multithreading schemes [23, 21,
16], but they all share the goal of using otherwise idle
thread contexts to provide redundancy in SMT cores.
RMT has three significant costs: the performance loss
due to thread contention (estimated at 30% [16]), the
opportunity cost of using threads for redundant compu-
tation instead of useful work, and the energy consumed
by the redundant threads. RMT also has the implicit
cost of requiring an SMT core and cannot detect per-
manent errors in non-replicated units.

BulletProof. The BulletProof pipeline [25] uses built-
in self-test to detect and diagnose (isolate) 89% of per-
manent faults, but it cannot detect transient errors. Bul-
letProof increases the area of a 4-wide VLIW core
(excluding caches) by 9.6%. This overhead is likely to
be greater for a single-wide core because BIST tables
and other checker hardware singletons cannot be amor-
tized over multiple instances of the units they check.
BulletProof has the advantage of lower performance
impact, no required software changes, fewer possibili-
ties for false negatives due to aliasing, and more pre-
cise diagnosis. Argus’s main advantages are its ability
to detect transient errors and lower detection latency.

Commercial Examples. There are fault-tolerant com-
mercial microprocessors that both detect and correct
core errors, and we discuss two representative exam-
ples. The LEON-FT microprocessor [6] and the IBM
S/390 G5 microprocessor [26] use error codes for large
storage structures. The LEON-FT uses triple modular
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redundancy (TMR) for each flip-flop, and has a total
area overhead of roughly 100% [6]. The S/390 G5
microprocessor completely replicates large portions of
the core, including the I-unit (fetch and decode) and E-
unit (execution and register file), which adds consider-
able overhead.

Software redundancy. Software replication of instruc-
tions can be used to detect transient hardware errors
[18, 22] at the cost of a 50% slowdown for an out-of-
order processor [22] and high energy consumption.
The performance loss for a simple in-order core would
be roughly 100%, due to the lack of idle slots in which
to execute redundant instructions.

Error detecting/correcting codes. Error codes are
excellent at detecting errors in storage and messages.
Certain codes can also check computations. However,
error codes are not applicable to general logic.

6.  Conclusions

The goal of this research was to develop low-cost
error detection for simple processor cores. We expect
simple cores to remain popular for many embedded
applications as well as for multicore chips, and it is
important that we can detect errors in these cores. We
believe that Argus provides a viable, efficient solution
to this problem. The key to Argus’s efficiency is that it
checks invariants instead of components. Invariant
checking also makes it is easier for us to formally rea-
son about Argus’s error coverage capability.

The Argus-1 implementation shows the potential of
the Argus approach. Its area and performance costs are
quite low, particularly when compared to previous
schemes for detecting errors in simple cores. We also
believe that, with additional tuning of the implementa-
tion, we could further improve its error coverage and
reduce its costs.
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Appendix A: Proof of Argus Completeness

We consider program execution on an abstract von
Neumann machine with a finite set of registers R and
memory locations M, no I/O, and no interrupts or
exceptions. This machine executes a program, which is
a sequence of instructions. The machine’s ISA maps
each instruction to a specification that defines an n-
tuple of input addresses, an n-tuple of output addresses,

and one function f for each output. Immediate values
are part of the function definitions. The abstract
machine executes one instruction per timestep.

Note 1. For simplicity, we look at the program as the
linear sequence of instructions after all data-dependent
branches have been resolved. In reality this sequence is
not known a priori, but we can use it to construct the
equally abstract correct execution. Any physical
checker or processor must determine the correct
sequence using state information and the program code
before extracting instruction specifications from it.

We represent program execution with a graph that
describes the machine state and executed instruction at
each timestep. It has the following vertices:
• A state vertex st for each timestep t for each register

and memory location. Rt and Mt are the sets of reg-
ister and memory vertices at timestep t. The proces-
sor state Pt is the union of Rt and Mt.

• A subgraph per instruction that has vertices for each
input and each output of the instruction (It,n,Ot,n).
Each vertex vt in the graph is annotated with a value

V(vt) and an address A(vt). V(vt) represents the data
stored in the corresponding location or instruction
input or output at timestep t. The address of a storage
location is a constant that is unique to the location. The
addresses of instruction inputs and outputs are part of
the instruction specification. Register input and output
addresses are specified as constants. Addresses of
memory inputs and outputs are functions of register
input values.

Given an initial assignment of values to vertices at
t=0 (initial state) and a program, we can construct the
unique value assignments for a correct execution.
Because there is no I/O, interrupts or exceptions, all
values depend only on initial state and the program.
The value assignments for timesteps t>0 are derived by
iterating over timesteps using the following algorithm.

For every timestep t we first select the tth instruction
in the program sequence and determine its specifica-
tion. Based on the specification, we add the following
edges to represent data propagation (data propagation
edges) from timestep t to t+1:
• An edge to each instruction register input It,n from

the state vertex st with the same address in Pt
• An edge from each instruction register output Ot,n to

the state vertex with the same address in Pt+1
• An identity edge between each vertex in Pt and the

vertex with the same address in Pt+1if the vertex in
Pt+1 is not connected to an instruction output. These
edges represent unmodified state.
Values are then assigned based on the edges; each

instruction input is assigned the value of the vertex st to
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which it is connected, each instruction output Ot,n is
assigned ft,n(V(It)), and all vertices in Pt+1 are assigned
the value of the vertices to which they are connected.
Then memory addresses are computed using the input
and output address functions. Edges for memory inputs
and outputs are added in the same way as edges for
registers, and values are propagated to and from mem-
ory vertices.

This algorithm uniquely defines value assignments
for all vertices in the graph. Using the value assign-
ments and data propagation edges, we can now define
the conditions monitored by the checkers.

Control Flow Checker (CFC). The tth instruction is
executed (i.e., the machine is live) and its specification
is identical to the specification of the tth instruction in
the program sequence according to the ISA.

Data Flow Checker (DFC). Dataflow checking is split
into two separate conditions; one to ensure that the
edges are correct (i.e., dataflow graph has the correct
shape) and one to ensure that values are propagated
correctly across these edges.

Shape (DFCS). For all instructions, each register
input is connected to a vertex in Rt and each register
output is connected to a vertex in Rt+1. There is an edge
to each vertex in Rt+1 that is not connected to an
instruction output; this edge’s other end is a vertex in
Rt. For any data propagation edge, the addresses of the
two register vertices it connects are identical.

Value (DFCV). Any two vertices connected by a
data propagation edge are assigned the same value.

Memory Flow Checker (MFC). MFC checks all the
same conditions as DFC, except that they apply to
memory rather than registers. MFCS further checks
that memory address functions are evaluated correctly.

Computation Checker (CC). The value assigned to
the nth output of the tth instruction is equal to ft,n(V(It)).

Proof: Every execution that meets all checker con-
ditions assigns the same state values as the correct
execution.

We prove this by induction.
Base case ( ): For purpose of the proof, we

assume that the initial state (value assignments at t=0)
is checked using an external checksum mechanism
(e.g., a checksum over all the initialized program data
and register values that can be compared to the pro-
gram binary). In practice this requirement is satisfied
by having initial EDC values for each register and
memory location.

Induction step ( ): Assume that all values
at timestep t match the correct execution. CFC ensures
that the specification of the tth instruction matches the
instruction specification in the program and thus the

correct execution. DFCS ensures that the instruction
register inputs are connected to the vertices with the
same addresses in Pt and that the register outputs are
connected to the vertices with the same addresses in
Pt+1. As addresses are unique and specifications identi-
cal, the resulting edges must be the same as those in the
correct execution. Because the values at time t are iden-
tical to the correct execution and the instruction inputs
are connected to the same vertices in both executions,
DFCV ensures that the values of the input vertices are
also the same. MFCS ensures that, given identical reg-
ister input values, the memory input and output
addresses are also identical in both executions. Based
on these addresses, MFCS and MFCV ensure that
memory input values are identical in both executions in
the same way DFCS and DFCV do for register input
values. As a consequence of all input values being
identical, CC ensures that the values of all output verti-
ces are identical to the correct execution.

We can now show that the value of each vertex in
the execution at t+1 is the same as the value in the cor-
rect execution. Each vertex is either connected to an
instruction output or not:

Case 1: Vertex connected to instruction output. We
showed above that both the value of each output and all
edges are the same in both executions. Thus, the vertex
must be connected to an output in both executions and,
because of DFCV and MFCV, its value must match the
output’s value. Because the output has the same value
in both executions, the vertices must also have the
same value.

Case 2: Vertex not connected to instruction output.
Because the vertex is not connected to an instruc-

tion, there is an implicit edge to the vertex with the
same address in Pt, and because edges are the same in
both executions, this is also the case in the correct exe-
cution. By the induction assumption, the vertex has the
same value in both executions at timestep t and there-
fore (by DFCV or MFCV) must also have the same
value in both executions at timestep t+1.

Thus, in both cases every vertex has the same value
in both executions at timestep t+1.
End of Proof

Note 2. In a real implementation of a processor, each
timestep corresponds to committing an instruction. Pt
is the architected state before committing the tth

instruction. As long as all checkers ensure the condi-
tions for updates of architected state described above, it
does not matter if they do not detect incorrect microar-
chitectural state (buffers, latches, etc.). Any non-
masked error in non-architectural state will appear as a
violation of these conditions for architected state.

t 0=

t t 1+→
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Definition: Block-based checking. In a block-based
execution, register and memory vertices exist only for
timesteps that mark the end of a block of instructions.
Block-based execution can trivially be derived from
regular execution by removing all intermediate register
and memory vertices and connecting their inputs tran-
sitively to the next instruction input or state vertex on a
block boundary. The major differences between these
block-based executions and regular executions are that
there are now multiple instructions between state verti-
ces and instruction inputs can be directly connected to
instruction outputs. For these edges, the requirements
for equal addresses and data of connected vertices still
apply, but we further require that an input can only be
connected to the output with the highest timestep t out
of all outputs with the same address and timesteps
smaller than the input’s timestep. This requirement
must be added to the conditions for DFCS and MFCS.

With these modifications, we use the same inductive
proof as before to show that the values assigned to all
state vertices at the end of each block are the same for
the correct execution and an execution that meets all
checker conditions. CFC, DFCS, and MFCS still ensure
that instruction specifications and input/output edges
for the block are correct. In case 1, we still argue that
the final instruction output must be correct because all
inputs must be correct by recursively applying the
argument to inputs connected to other instruction out-
puts. The argument in case 2 is unchanged.

Appendix B: Proof of Argus-1

Proof: Argus checkers, except MFCS, check all
conditions of ideal checkers in block-based execution
(under the assumption of error-free checking mecha-
nisms and aliasing-free checksums/signatures):

CFC. The watchdog component of CFC ensures that
only a finite amount of time passes between executed
instructions. CFC further enforces a finite bound on the
number of instructions in a block. Thus, each block is
reached and executed within finite time.

Within each block, CFC uses a signature (DCS) that
describes the sequence of instruction specifications in
that block. If any of the instruction specifications
within the block do not match the program, the com-
puted DCS will differ from the DCS that the program
specifies for that block. This discrepancy will cause an
error to be detected, if CFC selected the correct block
DCS from the program (recall Note 1).

Before executing each new block, CFC selects the
DCS based on the current processor state. The state
before executing the first instruction of a basic block is
known to be error-free (otherwise the error would have

been detected and the execution terminated). Thus, the
error-free checker uses error-free state to decide on the
next DCS to use, which must hence be the correct one.

DFCV. Value checking is performed by assigning a
checksum (EDC) to each vertex (i.e., storage location).
These checksums are part of the checker mechanism
and therefore presumed to be error-free. If a data prop-
agation edge exists between two vertices, their EDCs
must be identical (as EDC propagation is error-free).
Thus, if the values of the vertices do not match, an
error will be raised, because the (equal) EDCs cannot
match the (unequal) values.

DFCS. Dataflow checking assigns an SHS to each ver-
tex and a DCS, which contains the SHSs for all regis-
ters, to each block. Ideal SHSs uniquely describe the
subgraph derived from recursively following all incom-
ing data propagation edges to the register and state ver-
tices at the beginning of the block. The DCS therefore
describes all data propagation edges in the block. The
static DCS embedded in the program describes the sub-
graph in the correct execution. In the correct execution,
all conditions of DFCS are satisfied by construction.
All DFCS conditions describe edge properties or
address assignments. Addresses are static for state ver-
tices and checked by CFC for instructions and thus
known to be error-free. Thus, to violate any of the con-
ditions, at least one edge in the block must differ from
the correct execution. But if any one edge differs from
the corresponding edge in the correct execution, then
the computed DCS, which fully describes all edges,
must also differ from the DCS embedded in the binary
and an error will be detected.

Like CFC, DFCS is dependent on picking the cor-
rect signatures. In Argus-1, this is assured by CFC,
which chooses the signatures for both DFCS and itself.

MFCV. Same as DFCV.

MFCS. MFCS directly checks address computation
and annotates each vertex with its address (by embed-
ding it into the value/checksum) and will therefore
detect address errors in the same way as data errors.
However, it cannot detect absence of edges.

CC. Our computation checkers differ slightly from
each other, but in principle they all perform a redun-
dant (and presumed error-free) computation of each
output from the input values and compare it to the cor-
responding observed output. If the observed output
does not match the correct function value, it will also
differ from the redundantly computed output and an
error will be detected.
End of Proof
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