
Appears in the 38th International Symposium on Computer Architecture (ISCA ’11)

Sampling + DMR: Practical and Low-overhead Permanent
Fault Detection

Shuou Nomura Matthew D. Sinclair Chen-Han Ho Venkatraman Govindaraju Marc de Kruijf
Karthikeyan Sankaralingam

Vertical Research Group
University of Wisconsin – Madison

{nomura,sinclair,chen-han,venkatra,dekruijf,karu}@cs.wisc.edu

ABSTRACT
With technology scaling, manufacture-time and in-field permanent
faults are becoming a fundamental problem. Multi-core architec-
tures with spares can tolerate them by detecting and isolating faulty
cores, but the required fault detection coverage becomes effectively
100% as the number of permanent faults increases. Dual-modular
redundancy(DMR) can provide 100% coverage without assuming
device-level fault models, but its overhead is excessive.

In this paper, we explore a simple and low-overhead mechanism
we call Sampling-DMR: run in DMR mode for a small percent-
age (1% of the time for example) of each periodic execution win-
dow (5 million cycles for example). Although Sampling-DMR can
leave some errors undetected, we argue the permanent fault cover-
age is 100% because it can detect all faults eventually. Sampling-
DMR thus introduces a system paradigm of restricting all perma-
nent faults’ effects to small finite windows of error occurrence.

We prove an ultimate upper bound exists on total missed errors
and develop a probabilistic model to analyze the distribution of the
number of undetected errors and detection latency. The model is
validated using full gate-level fault injection experiments for an ac-
tual processor running full application software. Sampling-DMR
outperforms conventional techniques in terms of fault coverage,
sustains similar detection latency guarantees, and limits energy and
performance overheads to less than 2%.

Categories and Subject Descriptors: C.4 [Computer Systems Or-
ganization] Performance of Systems — Fault Tolerance; C.0 [Com-
puter Systems Organization] General — System architectures

General Terms: Design, Reliability, Performance

Keywords: Fault tolerance, Permanent Fault, Dual-modular redun-
dancy, Sampling, Reliability

1. INTRODUCTION
Device physics, manufacturing, and process scaling engineering

are providing significant challenges in producing reliable transis-
tors for future technologies. Many academic experts, industry con-
sortia, and research panels have warned that future generations of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’11, June 4–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0472-6/11/06 ...$10.00.

silicon technology are likely to be much less reliable with devices
likely failing in the field due to permanent faults in silicon [8, 2, 17,
36, 21, 1, 9]. These include manufacturing faults that escape test-
ing [25] and faults that appear during the chip’s lifetime [42, 15]. A
fault is an anomalous physical condition caused by a manufacturing
problem, fatigue, etc.

The ITRS Roadmap 2009 edition [2] predicts: “the ultimate
nanoscale device will have high degree of variation and high per-
centage of non-functional devices right from the start.” and “Ul-
timately, circuits that can dynamically reconfigure themselves to
avoid failing (or to improve functionality)...will be needed.” To
address this problem, a paradigm of logic redundancy with spare
cores (or finer-granularity units) on a chip is being embraced. Fig-
ures 1(a) and 1(b) contrast this paradigm with the conventional ap-
proach where a single fault in a chip renders it defective. In the
future, since permanent faults will be numerous, a defective chip
is one with an undetected fault with detected permanent faults “re-
paired” by swapping in spare units. Architecture research in this
paradigm can be classified along three directions: detection [21,
10, 23, 35, 26, 5], repair [4, 14, 43, 18, 36, 17, 44], and recov-
ery [31, 39].

Efficient and accurate permanent fault detection is required and
is the focus of this paper. We address this looming fault detection
crisis, identify inefficiencies in the state-of-art detection, and ad-
vance the field by significantly improving detection accuracy with
little performance overheads (≤ 5%).
What is currently lacking? A fundamental drawback of almost
all prior detection approaches is they trade off fault coverage (what
percentage of faults can be detected) for overhead (area, energy,
performance, detection latency etc.). While scan-test or built-in self
test (BIST) do provide 100% coverage, they are restricted to stuck-
at-faults and thus not a general solution. Using other low-overhead
techniques, coverage in the 99% range is common for stuck-at-
faults [10, 26, 21] and in the range of 95% for timing faults [30].
Unfortunately, product quality in terms of defective chips increases
exponentially with the number of faults. In Section 2, we develop a
simple and general model for detemining effective defect rates. As
a hypothetical example, consider a 100-core chip, with 10 perma-
nent faults on average budgeted per chip. We show that, we require
99.999% coverage for practical defect rates and 99% coverage re-
sults in 10% defective chips. For finer-granularity architectures like
GPUs with many spares, defect-rate problems due to low coverage
are exacerbated. As shown in Figure 1(d), these techniques cannot
break the coverage wall i.e. regardless of how long the detection
mechanisms runs some faults remain uncovered and undetectable.
Thus, we argue that < 100% fault-coverage is unsuitable for fault-
dominated future technology nodes.

Complete dual-modular redundancy (DMR) detects architectural

defective chip
(unbounded errors,
customer claims)

failing core
(not detected)

repaired core
(swapped w/ spare)undetected

fault
detected
fault

good chip
(successfully
detected)

good chip
(no fault)

discarded chip
(screened,
not shipped)

defective chip
(shipped,
customer claims)

perfect chip
(no fault,
very rare)

(a) conventional chip classification

Time (Latency)

1 – Coverage

1 Conventional techniques
(cannot break coverage wall)

Practical
range

Sampling-DMR

10-2

10-5

(c) technique characteristics comparison (d) technique behavior comparison
UnboundedBounded0# missed errors

InfiniteSmallNoError occurrence window

< 100%100%100%Fault coverage

Conventional coverage-based
low-overhead techniques

Sampling-
DMRDMR

UnboundedBounded0# missed errors

InfiniteSmallNoError occurrence window

< 100%100%100%Fault coverage

Conventional coverage-based
low-overhead techniques

Sampling-
DMRDMR

(b) future chip classification

Figure 1: Comparison of chip classification and fault detection techniques

errors using a redundant module and provides 100% fault cover-
age1. An error is the effect on the architectural state of a processor
due to activation of a fault. However, DMR can sometimes suffer
from design complexity [13, 28, 35], and more importantly area
and energy overheads that exceed 100%.
Sampling-DMR: In this paper, we propose a simple idea we call
Sampling-DMR. Instead of running in DMR mode all the time,
with sampling, DMR mode is active only a fraction of the time.
Our mechanism is driven by two related observations.

1. When a permanent fault generates errors frequently, sam-
pling can detect the fault immediately.

2. When a fault generates errors infrequently, the number of
missed (undetected) errors before Sampling-DMR detects them
is low.

Sampling-DMR provides four key benefits:

1. 100% Fault-detection: Although the error detection is proba-
bilistic, Sampling-DMR can eventually detect all permanent
faults, and hence the coverage is 100%.

2. Small energy overhead: By reducing the DMR period to a
small fraction, the energy overheads are drastically reduced.

3. Small area overhead: Conventional DMR techniques effec-
tively have at least 100% area overhead, because half the re-
sources are for checking. With sampling, these resources are
used for checking only a small fraction of the time.

4. Low design complexity: Sampling relaxes performance re-
quirements of the implementation. Prior DMR implementa-
tions suffer from design complexity resulting from the signif-
icant processor pipeline modifications and design optimiza-
tions to minimize DMR slowdowns ([13] provides a good
overview). With sampling on the other hand, massive slow-
downs in DMR mode can be tolerated. For 1%-DMR (sam-
pling 1% of the time), even massive slowdowns of 4X in the
DMR period result in only 3% overall slowdown. Hence,
even a slow but simple FIFO-based implementation is suffi-
cient as we show in Section 4.

1DMR’s fault coverage is 100%, under the assumption that the
probability of the same fault occurring on the two modules at the
same time is negligible.

Is this really better than conventional fault detection? Figures
1(c) and 1(d) compare fault detection schemes to Sampling-DMR.
Recall that Sampling-DMR works by detecting errors. Fault detec-
tion approaches (with typically <100% coverage) allow undetected
and unbounded errors. When an uncovered fault occurs, the errors
it causes will keep occurring in the hardware, thus making them
unbounded and the error occurrence window is infinite. Sampling-
DMR, on the other hand, provides 100% fault coverage. While it
has some probability of missing errors, which are thus undetected
errors, the number of these undetected errors is bounded, and they
are restricted to a finite window of occurrence (which is typically
milliseconds). Below, we elaborate on other subtle details on fault
detection approaches.

For systems using periodic scan-test with test vectors [10], 100%
coverage is feasible, but only for single stuck-at-faults. Even so,
undetected errors occur between a fault’s excitation to detection
and the occurrence window can be tens of seconds, as described
in detail in Section 5.4. In addition, there are many types of per-
manent faults that are not covered by this model (such as bridg-
ing, transition, path-delay, and cross-talk faults). The occurrence of
such faults is increasing as technology scales, and achieving 100%
fault coverage is much harder for these models. For example, in the
path-delay fault model, each gate can have additional delay inde-
pendently. The problem is the number of paths is exponential in the
size of circuit (in our experiment, a 16-bit multiplier has 160 bil-
lion paths). Achieving high coverage is difficult because one test
vector can test only few paths at once. Hence, we can test only
some critical paths, but the increase of process variations and small
delay defects due to technology scaling significantly increases the
number of critical path candidates.

Furthermore, the fixed-test-vector approach based on a specific
fault model suffers from unmodeled faults. In addition to 100%
fault coverage, it must be proven that the model covers 100% of
the actual possible faults. While historically challenging and dif-
ficult, the use of non-matured new materials and device structures
exacerbates the problem because collecting sufficient data on man-
ufacture defects and wear-out faults takes a long time.

Sampling-DMR on the other hand makes no assumptions about
a device-level fault model. Its only assumption is faults are per-
manent. It operates by detecting architectural errors thus achieving
100% fault coverage, and restricts any errors to a finite window.

Regardless of the detection mechanism, undetected errors and a
non-zero error occurrence window is a reality all future systems

DMR
Period

Singular
Period time

checkpoint checkpointEpoch
first
error detection

undetected errors

fault
occurs

roll-back

latency
E0/E1 E0/E1 E0/E1 E2

fault
occurs

(a) basic concept (b) probabilistic detection (c) mathematical model

E0: No error occurs
E1: At least one error occurs but not detected.
E2: Error occurs in DMR-period and detected.

Figure 2: Sampling-DMR

must address. Sampling-DMR improves upon the state-of-art by
providing 100% coverage and provides formal analysis for the num-
ber of undetected errors and detection latency window.

Contributions: This paper makes the following four contributions.

1. Motivation and Concept: First, we show 100% coverage for
permanent fault detection will become necessary in future
technologies. We then introduce the idea of sampling-based
error-detection and show it can provide 100% coverage and
is a practical low-overhead solution. (Section 2)

2. Mathematical model of Sampling-DMR: We develop mathe-
matical models, which are validated, to understand the prob-
abilistic behavior of Sampling-DMR. For a given product
quality requirement, the models provide estimations on the
number of missed errors and detection latency. (Section 3)

3. Implementation: We show an example FIFO-based DMR
implementation which leaves the processor’s pipeline prac-
tically unmodified. It highlights sampling’s benefits: low de-
sign complexity and tolerance to DMR slowdowns. (Section
4)

4. Evaluation and effectiveness: We performed full gate-level
fault injection experiments for the OpenRISC processor and
the OpenSPARC FPU. Our results show that 1%-DMR and
5%-DMR with simple checkpointing result in correct execu-
tion for 96% and 99% of faults. Based on the empirical er-
ror sequence data applied to our model, we show 1%-DMR
has comparable performance to conventional periodic scan-
test in terms of detection latency while providing 100% fault
coverage. (Section 5)

2. OVERVIEW OF SAMPLING-DMR
In this section, we first present a simple model to motivate 100%

permanent fault coverage. We then present an overview of the
Sampling-DMR concept and discuss its system-wide implications.

2.1 Why is 100% fault coverage necessary?
The paradigm of logic-redundancy and repair removes the need

for increasing margins in processes, devices, or circuits to accom-
modate scaling challenges. It allows some number of permanent
faults but requires architectural support for reliability and accurate
fault detection. As shown in Figure 1(b), in future multicore pro-
cessors, a defective chip is one with an undetected permanent fault.
Intuitively, since permanent faults will produce errors through a
chip’s lifetime, detecting all of them (i.e. 100% fault coverage)
is desirable. We now formulate the fault coverage requirements
using a simple mathematical analysis. We assume random fault
distribution. Consider a multi-core chip, designed to allow certain
number of permanent faults (num_of_faults), for which the de-
signer provisions that many spares. If we use a conventional fault
detection technique with per-core fault-coverage of coverage, the

number of defective chips in terms of defective rate (or probability)
is given by:

chip_defect_rate = (1− coveragenum_of_faults)
As an example, consider a chip designed with 10 spares to allow

10 in-field failures. Even 99% fault coverage results in a defect-
rate of 0.0956. This means, out of a million chips, 95,618 will
have faults that cannot be detected and although the spares are
available, the detection mechanism fails. To achieve 100 defec-
tive parts-per-million (10−4 defect-rate), which is a typical indus-
try goal, the necessary fault coverage is 99.999%. As the number
of faults increases, required coverage increases further. Thus, prac-
tically 100% fault coverage is required for future technologies.

2.2 Sampling-DMR
Redundant execution in different components with result com-

parison is one approach for error detection, referred to as dual-
modular redundancy (DMR). It can provide 100% fault coverage,
but the overhead is excessive. Our approach stems from the follow-
ing question:

“Since, permanent fault occurrence is a rare event, do we need
to run the redundant execution all the time?”

Sampled redundant execution also can provide 100% fault cov-
erage because it can eventually detect all faults, since permanent
faults continue generating errors. This idea can be implemented in
several ways. For example, MapReduce and GPU/CUDA-like pro-
gramming models allow a software-only implementation by only
replicating sampled threads and comparing results. In this paper,
we provide a general approach – hardware-based redundant execu-
tion for multicore processors.

Figure 2(a) shows how Sampling-DMR works. Within an epoch
of a group of instructions, a small fraction (N%) at the end executes
in DMR mode - we refer to this as N%-DMR (N = 100 is equiva-
lent to conventional DMR). The architectural state of the checked
core is first transferred to the checker core at the beginning of every
DMR period, and then DMR execution starts. We take checkpoints
at the beginning of every non-DMR period. When a fault occurs, it
will start producing errors. When an error occurs during a DMR pe-
riod, it is detected and the system rolls back to the previous check-
point. We assume a previously proposed efficient checkpointing
mechanism like Revive [31] or SafetyNet [39] is used. Since the
checkpointing requires buffering of I/O transactions, the length of
checkpoint is practically limited to around 5 million cycles.

To determine which core is faulty, detailed diagnosis such as full-
DMR execution with another core from the last checkpoint is initi-
ated, and the process is migrated elsewhere.

Sampling-DMR’s effectiveness must be considered for two sce-
narios.

1. If the first error occurrence epoch has an error during DMR-
period, the checkpoint recovers the system to a clean state.

2. If errors occur during a non-DMR period of an epoch but do
not occur during the DMR-period of the epoch, we have “un-

Sampling-
DMR
model

Error-
occurrence

model

undetected
errors, latency
for a given
defect rate

t, T
error sequence
parameters
p, q, r, s, Ds

epoch
parameters
p0, p1, p2, NUE1

Section 3.4 Section 3.3

E2 epoch
(detected)

E0/E1 epochs
(contains missed error-samples)

No error sample Error-sample Checked sample

(a) upperbound analysis (b) model overview (input and output)
Figure 3: Theoretical analysis overview

detected errors” as shown in Figure 2(b). Since the check-
point is corrupted, we cannot perfectly recover.

At first glance, it seems this probability of case (1) is small and the
approach sounds impractical for real systems. An investigation of
the mathematical probabilities, coupled with actual error sequences
of real processors and applications, show that even 1%-DMR is
practically sufficient. When error-rates are high, faults are detected
immediately. When error-rates are low, the number of undetected
errors is also very small and we observe a bound on this number
and the latency to eventually detect it. Our key contributions are the
Sampling-DMR principle, its theoretical model, and experimental
results showing its practical effectiveness.

And what about...
1. Seg-faults and timeouts? Certain faults can cause the application
to cause a segmentation fault or result in endless loops. For early
detection, extensions can be done to the operating system.
2. But errors occur in phases, how can this work? Intuitively, we
expect errors due to a fault to occur in clusters and not regularly
spaced in time. Any such burst behavior and burst length has to be
exactly correlated to the sampling frequency and epoch length to
hinder detection. This is unlikely and our detailed empirical results
validate this.
3. What about transient faults like soft-errors? Soft errors are an
orthogonal problem to manufacturing defects or wear-out faults.
Circuit-level techniques like the BISER latch [27] provide a good
low-overhead solution. So, like other related work [10, 23], we
restrict our scope to permanent faults.
4. How can sampling with application code match test vector cov-
erage? Periodic testing with test vectors may detect faults more
efficiently than Sampling-DMR, since vectors are designed to con-
sume minimum testing time. However, 100% coverage for all fault-
models is unlikely and hard as described earlier. Intuitively, the
Sampling principle works because of the following. If faults are
not excited, they don’t produce errors, and hence do not matter.
When faults get excited, they will eventually be detected. Testing,
on other hand, must provide 100% coverage at test-generation time.

2.3 Can applications accept undetected errors?
While Sampling-DMR provides 100% fault coverage which is

good from a defect-rate perspective, it has some probability of miss-
ing errors. An additional guarantee is that these missed or unde-
tected errors are restricted to occur in a finite window. We discuss
the system-wide implications of this phenomena.

First, undetected error phases are rare events. The number of
times such undetected error phases occur is small. For a system
with 10 spares for example, these undetected error windows occur
10 times in the chip’s lifetime, since the manufacturer will likely
budget number of spares accounting for expected failures.

Second, eventual detection latency is typically short. Further-
more, our quantitative results show that, with 1%-DMR, these un-
detected errors will appear only for a short time before being de-

tected: <1 second for 97% of faults and <78 seconds for 99.999%
of faults as shown in Figure 10(b).

Third, the zero undetected errors requirement may be unneces-
sary. Quantitative evidence exists for undetected errors in several
systems. Schroeder have shown that uncorrectable errors occur in
DRAMs in deployed systems [33]. Bairavasundaram et al. have
shown 2.45% of disks have latent errors [6]. Google has demon-
strated that 1.3% of memories have unrecoverable bit errors [34].
Reacting to this fact, higher-level lightweight application-level as-
sertions are common. In environments like game consoles and
desktops, emerging RMS applications can mask errors using re-
dundancy in algorithms [22]. In mobile devices, users are likely
to accept few seconds of downtime (due to errors) in exchange for
more battery life. Some have claimed the scenarios where errors
are acceptable are increasing and proposed systems with explicitly
relaxed reliability [45, 11] or budgeting for a controlled amount of
errors [12]. Sridharan et al. present a comprehensive taxonomy and
a framework for software recovery that allows hardware errors [40].

So overall, we believe undetected errors can be and must be han-
dled with a full-system view in a paradigm of fault-dominated tech-
nologies. Sampling-DMR can achieve zero defective chips and pro-
vide bounded detection latency guarantees while state-of-art detec-
tion techniques hit a coverage wall and allow unbounded errors.

3. THEORETICAL ANALYSIS
In this Section, we present a mathematical analysis on the be-

havior and effectiveness of Sampling-DMR. After defining terms
in Section 3.1, in Section 3.2 we analyze the upper bound on un-
detected errors as depicted in Figure 3(a). In Sections 3.3 and 3.4,
we develop a model, whose output is a distribution of how many
chips are perfectly detected i.e. for all faults on these chip, there
are no undetected errors. And in the remaining how many unde-
tected errors exist and the latency to detect. Figure 3(b) shows an
overview. The inputs to the model are error sequence parameters
which consider empirical error occurrence patterns to account for
user and application behavior.

3.1 Definition of terms
The model uses four inputs: i) required product quality defined

as a defect-rate (DR), ii) non-DMR period length (T), iii) DMR
period length (t), and iv) error sequence parameters.

Since Sampling-DMR’s behavior is probabilistic, we define a
defect rate DR as the probability that a metric (e.g. latency, the
number of undetected errors) is worse than the required value. We
explain this for undetected errors (UEs). From the stand point of
worst-case estimation, for a given DR, we obtain ne such that the
probability that the number of UEs exceeds ne is DR. Here, ne is
the maximum value (i.e. worst-case) for the defect rate of DR. For
chip-level projection, the number of chips that will face a worse sit-
uation than this “worst-case” (i.e. the number of UEs >ne) is less
than DR× total number of chips. Hence, the defect rate DR corre-
sponds to the conventional product quality in terms of specification
guarantee.

We classify epochs under the three categories described below
and shown in Figure 2(c):

E0: No error occurred,
E1: At least one error occurred but not detected,
E2: Error occurred and detected.

3.2 Upper bound on undetected errors
First, we present an upper bound analysis on the number of un-

detected errors, regardless of error occurrence patterns. Figure 3(a)
shows the model for analysis. Each epoch has a fixed number of
samples (L) and some samples are error-samples. For each epoch,
the sampling scheme picks up one sample and checks if it is an
error-sample or not. If it is not an error-sample, sampling contin-
ues and does this for the next epoch. This scheme detects an error-
sample at some point eventually. Here, the question is how many
error-samples can be missed when considering a given defect rate
DR. The upper bound is: −L loge DR. The proof is as follows.

For Sampling-DMR, one sample is the continuous execution pe-
riod t cycles in duration, and the number of samples L is T+t

t
. The

assumption here is error occurrence is independent of when DMR-
period starts.
Statement: For any distribution of error-samples across any num-
ber of epochs, if the total number of error-samples (U) is−L loge DR,
the probability that sampling cannot detect error-samples (i.e. mis-
detection) across the epochs(S) is always less than DR.

PROOF. Let n be the number of epochs, and let ek be the num-
ber of error-samples for epoch k (k = 1..n), and let sk be the
probability of mis-detection for epoch k. This can we written as
(1− detection probability). Therefore, sk = 1− ek/L, and ek =
L(1 − sk). The mis-detection probability across epochs is then,
S = s1s2s3...sn =

Qn
k=1 sk.

U =

nX
k=1

ek =

nX
k=1

L(1− sk) = L(n−
nX

k=1

(sk))

Since arithmetic mean ≥ geometrical mean,

U ≤ L(n− n(

nY
k=1

sk)
1
n) ≤ Ln(1− S

1
n).

By applying the lemma described below to the right term of above
equation, U ≤ Ln(1−S

1
n) < −L loge S. Since U = −L loge DR

as assumed in the statement, −L loge DR < −L loge S. There-
fore, S < DR.

Why does the statement provide an upper bound? The prob-
ability that sampling cannot detect −L loge DR error-samples is
equivalent to the probability that the number of undetected error-
samples exceeds −L loge DR, and this corresponds to the defini-
tion of defect rate. The statement claims such probability is always
less than DR. Since the worst-case number of undetected error-
samples for DR increases as DR decreases, the worst-case num-
ber of undetected error-samples for the defect rate DR is less than
−L loge DR. It is the upper bound and is one of key findings: there
is a mathematical upper bound on the missed errors which is only
dependent on the DMR ratio and the required defect rate.

Lemma: n(1− p
1
n) < − loge p (if p < 1)

PROOF. We consider the sequence an = n(1 − p
1
n) (n =

1, 2, ...), and this sequence is strictly increasing. We claim limn→∞ an =
− loge p. Let x be 1

n
. To show this claim, it suffices to show that

limx→0
1−px

x
= − loge p. We use l’Hopital’s rule: limx→0

g(x)
h(x)

=
limx→0 g′(x)
limx→0 h′(x)

. The derivative of the numerator is −px loge p and

the derivative of the denominator is 1. Therefore, limx→0
1−px

x
=

limx→0−px loge p = − loge p.

3.3 Sampling-DMR model
The previous section provides only an upper bound. In this sec-

tion, we develop the probability distribution function for the num-
ber of undetected errors and latency. Let p0, p1, p2 be the respec-
tive occurrence probability of E0, E1, E2 epochs when any fault
is excited. Recall definitions of epochs from Section 3.1 and Fig-
ure 2(c). Let NUE1 be the expected number of undetected errors in
E1 epoch. In the next section, we model error occurrence behavior
to determine p0, p1, p2, and NUE1 .

The number of undetected errors is controlled by “How many E1

epochs before E2 epoch?”, which we establish first. “The probabil-
ity that the number of E1 epochs is exactly n” is the same as “the
probability that an E2 epoch occurs after n E1 epochs; with any
number of interspersed E0 epochs”. By using conditional prob-
ability, the probability that a non-E0 epoch is E1 epoch is p1

1−p0
.

The probability that a non-E0 epoch is E2 epoch is p2
1−p0

. Hence,

Probability of exactly n E1 epochs = (
p1

1− p0
)n × (

p2

1− p0
)

We want to determine the probability that the number of E1

epochs (errors) exceeds n; we define a function cp(n) for this. It
gives the probability that E1 occurs n + 1 times continuously in
non-E0 epochs. Hence,

Probability of greater than n E1 epochs: cp(n) = (
p1

1− p0
)n+1

The probability of greater than ne undetected errors is approxi-
mated as:

Probability of greater than ne errors: cp(
ne

NUE1

) (1)

Latency is represented by the number of non-E2 epochs from the
first E1 epoch. Similarly to above, for n > 0,

Probability of exactly n latency:
p1

1− p0
(1− p2)

n−1p2

Probability of greater than n latency:
p1

1− p0
(1− p2)

n (2)

3.4 Error occurrence model
To put the model to use for real systems, we must answer the

question: “what is p0, p1, p2, and NUE1 ?” This strongly de-
pends on the epoch length, the DMR period length, and the error
sequence. The purpose of the error-occurrence model is to simplify
the error sequence for analysis by representing it with few parame-
ters. We developed four models with increasing sophistication.
Constant-rate model: This is the simplest model with one param-
eter. We assume that faults generate errors at a constant per-cycle
probability of p. The corresponding probabilities are as follows:

p0 = (1− p)T+t, p2 = 1− (1− p)t, p1 = 1− p0 − p2

The expected number of undetected errors in E1 epochs is:

NUE1 =

PT
j=1 j ·

`
T
j

´
· pj(1− p)T−j

1− (1− p)T
=

pT

1− (1− p)T

In this equation, the numerator of the fraction represents the av-
erage number of errors in a non-DMR period. The denominator
represents the probability that a non-DMR period contains at least
one error.
Discretization: The limitation of constant-rate model is that it can-
not represent bursts. Using coarse time-unit allows to mask the ef-
fect of short burst. For example, if an error occurs at a constant rate
but continues during 10 cycles once it occurs, considering only the
average per-cycle probability makes the detection probability op-
timistic. In this case, a time-unit of 1000 cycles masks this short-
burst effect. The model has the per time-unit error probability p and

S0 S1

p

q

1-p 1-q

S0 S0 S0

S1 S1 S0 S1 S2

p

q

r

s

1-p 1-s

1-q-r

S0 S0 S0

S1S1S1

S2S2

S1S1 S1 S1

S2 S2 S2

(a) 2-state HMM (b) 3-state HMM
Figure 4: Burst error-occurrence model using HMM

Undetected Error Samples

Defect Rate

16%-DMR

4%-DMR

1%-DMR

Undetected Errors

p (error rate) [cycle-1]

16%-DMR

4%-DMR

1%-DMR

Undetected Errors

p (burst rate) [cycle-1]

q-1(average burst size)=1

q-1=100

q-1=10k

q-1=1M
q-1=100M

(a) upperbound analysis (b) constant-rate model (c) 2-state HMM
(worst-case 3-state HMM)

2500

2000

1500

1000

500

0

2500

2000

1500

1000

500

0
10-9 10-7 10-5 10-3 10-1 10-10 10-8 10-6 10-4 10-2 1 10-10 10-8 10-6 10-4 10-2 1

10

103

105

107

109

1
0

1%-DMR, D
s
=1

Figure 5: Analysis results on worst-case undetected errors (epoch size: 5 million cycles)

the average number of errors in a time-unit Ds. The parameters are
p0 = (1− p)T+t, p2 = 1− (1− p)t,

p1 = 1− p0 − p2, NUE1 = Ds
pT

1− (1− p)T

Burst model using 2-state HMM: The limitation of discretiza-
tion is that it cannot represent bursts longer than the time unit. We
introduce a 2-state Hidden-Markov-Model (HMM) to represent the
hysteresis of error occurrences. Figure 4(a) shows the model. It has
two states, namely S0 and S1. Errors occur when the state is S1,
and no error occurs when the state is S0. The transition probability
of S0 to S1 is p, and that of S1 to S0 is q.

Here, let s0 and s1, respectively, be the limit probability that a
state is S0 and S1 after infinite time passed. The state transition
probability equation is„

s0

s1

«
=

„
1− p q

p 1− q

« „
s0

s1

«
Since s0 + s1 = 1,

s0 =
q

p + q
, s1 =

p

p + q
The probability that an epoch is E0 is that the state is S0 at the
first cycle and does not change during the epoch. The probabil-
ity that a DMR-period does not contain any errors is the proba-
bility that a state is S0 at the fist cycle and does not change dur-
ing the DMR-period. The probability that an epoch is E2 is 1 −
this previous probability, and NUE1 is calculated by using s0 and
s1 as before. Hence,

p0 = s0(1− p)(T+t−1), p2 = 1− s0(1− p)(t−1),

p1 = 1− p0 − p2, NUE1 = Ds
s1T

1− s0(1− p)(T−1)

Burst model using 3-state HMM: The limitation of the 2-state
HMM is that it cannot represent short glitches in burst period. Fig-
ure 4(b) shows the 3-state HMM model, in which we introduce
the third state S2 as the short-glitch state. Similar to the two-state
model, we define the state transition probability p, q, r, s as shown
in the figure. Here, let s0, s1, and s2, respectively, be the limit
probability that a state is S0, S1, and S2 after infinite time. The
state transition probability equation is0@s0

s1

s2

1A =

0@1− p q 0
p 1− q − r s
0 r 1− s

1A 0@s0

s1

s2

1A

Since s0 + s1 + s2 = 1,
s0 =

qs

ps + pr + qs
, s1 =

ps

ps + pr + qs
, s2 =

pr

ps + pr + qs
Similar to the 2-state model, but considering S2 state as the same

as S0 state, the parameters are
p0 = s0(1− p)(T+t−1) + s2(1− s)(T+t−1),

p2 = 1− s0(1− p)(t−1) − s2(1− s)(t−1),

p1 = 1− p0 − p2,

NUE1 = Ds
s1T

1− s0(1− p)(T−1) − s2(1− s)(T−1)

3.5 Model results
Based on these models, we show the upper bound on undetected

errors (UE). We consider the defect-rate of DR = 10−9 (1 defec-
tive chips in a billion), which is practically a zero defects guarantee.

Regardless of error occurrence patterns, there is an upper bound
on the number of undetected error samples, which is determined
only by the DMR ratio. It is 2072 for 1%-DMR as shown in Fig-
ure 5(a).

When errors occur at a constant rate, the maximum number of
UEs is 2062 for 1%-DMR as shown in Figure 5(b). If the error-
rate p is high, the number of UEs is zero because the first DMR
period always detects them. For 1%-DMR and 5 million epoch, the
threshold error-rate for zero UEs is 0.0004 as the figure shows.

When error occurrence shows burst behavior, the maximum num-
ber of UEs increases as the epoch size and the burst size increases.
Figure 5(c) shows the result of 2-state HMM. The maximum num-
ber of UEs is about 100 million when the burst size is 1 million
cycles occurring at a low-rate. This matches the upper bound with
worst-case number of errors in samples (i.e. 50K errors/sample ×
2072 samples = 104 million errors), and this can be considered as
an unrealistic worst-case.

In summary, the burst effect determines the number of UEs. In
Section 5, we analyze empirical relationship between latency and
undetected errors to confirm the actual impact of this burst effect.

4. IMPLEMENTATION
We now present one example to show a simple Sampling-DMR

implementation. Normal DMR techniques have high area over-

Signature
Generator

comparator

Trace

To Router From Router

Stall

Core

Reliability
Manager

Router

Error

Controlfull

cache
refill

Figure 6: FIFO-based DMR Implementation

heads and sometimes complex core modifications to minimize per-
formance degradation due to synchronization and result compari-
son of two redundant modules. Complex core modifications are es-
pecially problematic because these introduce uncovered faults. For
example, CRT [13] utilizes a load-data transfer mechanism from
checked core to checker core, rendering the entire data cache con-
troller uncovered. To detect permanent faults, sampling can be
applied on top of these conventional DMR implementations like
CRT, Fingerprinting [38], DCC [19], thus reducing their effective
energy and overheads. A second benefit is that sampling effectively
provides more cores for useful computation, because with conven-
tional DMR, implicitly half the cores simply act as checkers and do
not perform useful computation. While these techniques with full
DMR provide permanent and transient fault coverage, with sam-
pling, a technique like the BISER latch [27] is necessary to provide
good transient fault coverage.

Sampling-DMR’s basic property that performance degradation
in DMR mode (even 2X) is not a concern, because DMR execution
period is limited to a small fraction, provides an opportunity to in-
vestigate simple, yet efficient designs. We can focus on addressing
design complexity, area overhead, and keeping core modifications
to a minimum.

4.1 FIFO-based implementation
Figure 6 shows our FIFO-based implementation. We assume a

many-core processor with shared L2 caches interconnected with
a mesh network. For each core, we add a DMR control module
named reliability manager (RM), which consists of small control
circuits and two shallow FIFO buffers, and we use the existing on-
chip networks for trace data transfer. The area of RMs is negligibly
small compared to cores/networks, and the core modifications are
limited to the following mechanisms: i) generating per-instruction
output trace, ii) cache refill trigger signal, iii) stall inputs signal,
and iv) transferring of the architectural state between cores.

In the checked core, the RM receives architectural state updates
(at commit-time) from the core and writes it into the sender FIFO.
Typically the state update information is register name/value pairs
and store address/value pairs. The RM interfaces with the L2-cache
network and encodes the ID of the checker core (Section 4.3) with
the FIFO data to send messages to the checker core. To reduce this
inter-core communication we use fingerprinting [38].

In the checker core, RM receives messages from the coupled
checked core into a receiver FIFO. The checker core’s RM writes
its architectural state updates (redundant execution) into its sender
FIFO. A comparator compares elements in the two FIFOs. Any
time they differ, the RM raises a DMR error exception. To deter-
mine which core is faulty, detailed diagnosis such as full-DMR ex-
ecution with another core from the last checkpoint is initiated, and
the application process is migrated elsewhere. The checker core
should monitor dirty eviction signals in the cache and synchronize

the checker core with the checked core to avoid memory incoher-
ence between cores as described in Section 4.2.

We assume the network enforces in-order delivery of messages
and we use the interconnection network’s flow control mechanism
to automatically throttle the checker’s FIFO if it is executing at
a faster rate than the checked core. The control-path in the RM
includes a simple state-machine that must stall the processor when
the FIFOs become full and interface the flow-control signals from
the router with the FIFOs.

4.2 Common challenges for DMR implemen-
tations

In contrast to full-DMR and redundant multi-threading [28] so-
lutions, Sampling-DMR tolerates radical performance degradations
because DMR is active only for a small fraction of time. We ex-
ploit this tolerance to slowdowns to provide simple solutions for
the following common problems.
Memory incoherence: Stores to memory and load/store order-
ing have been the main challenges for previous redundancy-based
techniques. Like Reunion [37], we allow either core to get ahead
and allow both to read/write memory. Stores pose a small prob-
lem. If both cores are allowed to write back dirty cache-lines asyn-
chronously, there is potential for an earlier load-miss from the trail-
ing core getting this “new” data. To avoid this problem, the cores
are synchronized on any dirty-evictions, which is simple to imple-
ment: the checker core is stalled until the store is received from
the checked core. This occurs only infrequently and even if done
frequently, Sampling-DMR can tolerate large slowdowns.

For shared-memory programs, there are load-store ordering is-
sues between different real threads. A store to an address can
execute in a different thread in the time gap between when loads
to that address execute on the checker and checked core. This
can lead to input incoherence. It can be solved by executing Re-
union’s re-execution protocol which introduces complications in
single-stepping the processor. LaFrieda et al. suggest this overhead
can become untenable for some types of core coupling consider-
ing the fingerprint comparison overheads [19]. Their age table can
be incorporated into the RM. Because we can tolerate large slow-
downs, a simpler implementation is sufficient: synchronize both
cores on all cache refills.
Microarchitectural state difference: In this design the checker
core is not a microarchitectural mirror because its branch-prediction
tables, dependence predictor tables and other speculative states are
not copied over. Thus faults in these structures are not covered.
However, by design these structures cannot affect architectural state
and hence do not affect correctness, only performance: the branch
predictor stuck-at taken for example. Such microarchitecture state
can be included in the initialization of the checker and these signals
can be included in the trace sent to the RM. It may introduce fur-

Full-gate-level fault injection simulations
for OpenRISC, OpenSPARC FPU netlist

with actual software

Sampling-DMR
OFF / 1% / 5%

Detection Efficiency
(Fig.8)

Empirical Error
Sequences

Undetected Errors
/ Latency (measured)

Model Validation
(Fig.9)

Realistic Worst-case
Estimation (Fig.10(b))

A1. Many faults are detected immediately.

A3. If latency is high,
undetected errors is low.

A2. 3-state HMM is valid.

A4. Sampling-DMR can
outperform periodic scan-test.

Undetected Errors
/ Latency (Fig.10(a))

Q1. Does Sampling-DMR detect faults in the first epoch (thus zero undetected errors)?
Q2. Is the model valid?
Q3. When undetected errors occur, how many occur and how long do they last?
Q4. How does Sampling-DMR quantitatively compare to other approaches?

Model
Estimation

Parameter
Fitting

Figure 7: Evaluation overview (questions and answers)

ther slowdowns or increase energy, but sampling is more forgiving
of any slowdowns which is a key difference from prior proposals.

4.3 Mode transition management
The specific challenge for Sampling-DMR is how to manage

the difference of required cores between DMR period (requires 2
cores) and non-DMR period (requires 1 core). While, this can be
handled by adding extensions to the OS and its scheduler, we de-
scribe one design below which avoids system software modifica-
tions. We assume the chip exposes a fixed number of virtual CPUs
(VCPUs) to the OS as proposed in Mixed-Mode Multicore (MMM)
system [45].

A thin firmware VM layer manages Sampling-DMR operation
as follows. Every VCPU is mapped to two physical cores (VCPU
pair) by the firmware. Each physical core has four modes, namely,
checker mode, checked mode, non-DMR mode, and free mode.
The firmware starts a process by marking one core to be in non-
DMR mode and the other is marked available (free mode). When
entering DMR mode, the firmware activates the checker core (by
finding a core in free mode) and changes its mode to the checker
mode. It then copies the entire architecture state (registers and
cache-lines) from the checked core to checker core (using some
microcode). It executes in DMR mode for the DMR period length.
If an error occurs in DMR mode, the RM triggers a DMR error ex-
ception. If no error occurs, the checked core’s mode is changed to
non-DMR, and the checker core is marked free. The key benefit of
the firmware VM layer is that it allows the VCPUs to be arbitrarily
paused and allows quick transition in and out of DMR mode.

5. EVALUATION
While our formal model provides analysis based on some error

sequence parameters, we examine empirical behavior in this Sec-
tion. Figure 7 shows the overview of our evaluation framework and
the key questions we investigate. We use detailed gate-level sim-
ulation and full-system performance simulators to provide a com-
prehensive evaluation. Readers may skip ahead to the final key
result in Section 5.4 which compares Sampling-DMR to conven-
tional techniques as shown in Figure 10(b).

5.1 Q1: Does Sampling-DMR work in real set-
tings?

Method: The epoch size is set to 5 million cycles, and we examine
DMR-ratio of 1% and 5%. Programs start with DMR period. We
consider the following two simulations.
1) OpenRISC: We synthesize the OpenRISC [29] RTL code and
inject faults on every logic gate output. This framework provides
the most detailed results, but can execute only simple programs
because of library and operating system limitations. The applica-
tions we evaluate are: H.264 decoder (33 Mcycles), G.721 decoder

(6 Mcycles), and JPEG decoder (6 Mcycles). We use the Synop-
sys 90nm library for synthesis and use emulation with the Virtex-5
FPGA for acceleration. The fault model is stuck-at 0/1 and slow-
to-rise/fall faults. The number of experiments is 21,372 (fault sites)
* 4 (fault types) * 3 (applications) = 256,564.
2) OpenSPARC FPU: We also consider gate-level fault injection
for large complex applications. We consider the PARSEC [7] and
SPECCPU [41] suites. We built a hybrid framework which simu-
lates and does fault injection for the functional units alone at the
gate-level and the rest of program executes a native x86 instruc-
tion stream. We use a synthesized gate-net of the OpenSPARC
FPU (which consists of three pipelines and supports 21 instruc-
tions) and use binary instrumentation to invoke gate-level simula-
tion for FP instructions. Since this co-simulation is 100,000-times
slower, we must limit the duration of fault injections. This dura-
tion was determined manually such that, fault injection’s result did
not change when the fault injection duration was increased further.
The fault model is stuck-at 0/1 faults. The number of experiments is
23,128(fault sites) * 2(fault types) * 23(applications) = 1,063,888.
We assume 1GHz operation and instruction per cycle of 1. This ex-
periment is chosen as a stress-test of Sampling-DMR because FPU
errors provide low error rates and various types of burst and phase
behavior.
Q1: Does it work? Yes, Sampling-DMR detects all faults even-
tually. In addition, many faults are immediately detected. With
5%-DMR, 99% of faults result in error-free execution when con-
sidering the full processor. Stress test of FPU shows 95% faults
result in correct execution (no error in application results).
Details: Figure 8 shows the effectiveness of Sampling-DMR, which
we study using established fault classification terminology. We
compare every fault’s effect with and without Sampling-DMR de-
tection. The first row shows results with No-DMR, and the second
and third rows show 1%-DMR and 5%-DMR respectively. The re-
sult of faults on applications is classified into the following five cat-
egories: i) Architecture-masked: faults that do not cause any archi-
tectural errors, ii) Application-masked: architectural errors occur,
but are masked because of natural error-correction or redundancy in
application and its output is unmodified, iii) Timeout: faults caus-
ing endless loops, iv) Segmentation fault: faults causing segmenta-
tion faults, and v) SDC: all other faults result in silent data corrup-
tion.

Our results show that, for the OpenRISC processor, 96% and
99% of faults result in error-free (Architecture-masked) execution
for 1%-DMR and 5%-DMR, respectively. Note this is not to be
interpreted as a fault-coverage number. They are the percentage
of faults resulting in error-free execution when considering recov-
ery with 5ms checkpoint interval. This shows detection latency is
typically low. All permanent faults are eventually detected, thus
delivering 100% coverage.

No DMR

1%-DMR

5%-DMR

OpenRISC OpenSPARC FPU

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

H
.2

64
S

tu
ck

-a
t

G
.7

21
S

tu
ck

-a
t

JP
E

G
S

tu
ck

-a
t

H
.2

64
Tr

an
si

tio
n

G
.7

21
Tr

an
si

tio
n

JP
E

G
Tr

an
si

tio
n

fault ratio

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

17
7.

m
es

a

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

43
3.

m
ilc

44
4.

na
m

d

44
7.

de
al

II

45
0.

so
pl

ex

45
3.

po
vr

ay

47
0.

lb
m

48
2.

sp
hi

nx
3

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

fa
ce

si
m

fe
rre

t

flu
id

an
im

at
e

fre
qm

in
e

ra
yt

ra
ce

sw
ap

tio
ns vi
ps

x2
64

ca
nn

ea
l

st
re

am
cl

us
te

r

Architecture masked Application masked Silent data corruption(SDC) Segmentation fault Timeout

fault ratio

fault ratio

Figure 8: Application behavior when considering recovery with 5ms checkpoint interval (not final coverage)

For the OpenSPARC FPU also Sampling-DMR sustains a high
percentage of architecture-masked faults i.e. no undetected errors.
Overall, the OpenSPARC FPU results are worse than the Open-
RISC results. This is because faults in OpenRISC are more likely
excited than that in the FPU. Hence, for the rest of the evaluation,
we use these FPU results to stress Sampling-DMR, thus making our
chip-level defect-rate projections conservative.

Examining the cases of faults which result in some undetected
errors, we can see that Sampling-DMR’s restricting of error oc-
currence to a small window, is something applications seem to
be able to tolerate. This is evidenced by the fact that, the ratio
of application-masked faults also increases for some applications
(450.soplex and 453.povray), when comparing No-DMR to 1%-
DMR and 5%-DMR.

5.2 Q2: Is the model valid?
Method: The model parameters are derived from the error se-
quences obtained in the OpenSPARC FPU experiment in Section
5.1. We consider error sequences from all experiments in which
Sampling-DMR detects fault but misses some errors. The obtained
error sequences are discretized into 1K cycles time-unit and dis-
cretization is applied to every model.

The parameter fitting is as follows.

• For the discretized constant-error-rate model, the error-rate
parameter p is obtained by simply dividing the number of
error-time-units (time-units with errors) by the number of to-
tal time-units. Error density Ds is the average number of
errors in error-time-units.

• For the 2-state HMM, p is obtained by counting the number
of transitions from no-error-time-unit to error-time-unit and
dividing by the total number of no-error-time-units. Simi-
larly, q is number of transitions from error-time-unit to no-

error-time-unit, divided by the total number of error-time-
units.

• For the 3-state HMM, it is necessary to distinguish if a non-
error time-unit is for state S0 or state S2 to obtain the param-
eters of p, q, r and s. Here, we use a heuristic to determine
this. The length of continuous non-error time-units deter-
mines it. If it is less than geometrical mean of the maximum
and the minimum length, it is for S2, else it is for S0. The
probability parameters are obtained similarly to the 2-state
HMM.

After parameter fitting, we obtain p0, p1, p2 and NUE1 . Then,
we derive the number of undetected errors and the latency cor-
responding to 10−5 defect-rate and compare to empirical results.
This is the lowest defect rate to meaningfully validate, since we
have 168,941 measurements (1

168,941
= 5.9 ∗ 10−6).

Q2: Is the model valid? Yes, the Sampling-DMR model using the
3-state HMM never under-predicts the number of undetected errors
and rarely under-predicts the latency. Figure 9 plots the relation-
ship between the actual measurement and the model worst-case es-
timation for 10−5 defect-rate. Points above the 45◦ line means the
model over-predicts. We use the 3-state HMM for the rest of eval-
uations because it never underestimates the number of undetected
errors and rarely underestimates the latency and is always within
50%.

5.3 Q3: How many undetected errors and how
long do they last?

Method: We use the model parameters for 3-state HMM based
on error sequences of all experiments (46,256 faults * 23 applica-
tions). For each error sequence, we derive the average number of
undetected errors and the average latency by the model.
Q3: How many undetected errors and how long do they last?

(b) 2-state HMM
(underestimate 94936 / total 168941) (underestimate 4405 / 168941)

model worst-case

measured # undetected errors measured # undetected errors

model worst-case

measured # undetected errors

model worst-case

measured latency [sec]

model worst-case

(underestimate 0 / 168941) (underestimate 13 / 168941)

(c) 3-state HMM (d) 3-state HMM (latency)(a) discretized constant-rate model

1

10

107

106

105

104

0.001 0.01 0.1 101
0.001

0.01

0.1

1

10

1 10 107106105104102 103 1 10 107106105104102 103 1 10 107106105104102 103

103

102

1

10

107

106

105

104

103

102

1

10

107

106

105

104

103

102

Figure 9: Model validation results (model worst-case estimation compared with measured data)

Detection Latency [sec]

Defect Rate

1%-DMR

5%-DMR

Periodic
scan-test[25]

99.5%
coverage wall

Practical range
(>99.999% coverage)

Undetected errors

Detection Latency [sec]

(a) latency and # undetected errors (b) latency and defect rate

10-2

10-4

10-6

10-8

1

0.01 0.1 1 10 100 10000.01 0.1 1 10 100
100

1000

10000

100000

1000000

Figure 10: Estimated behavior based on empirical data(FPU stress test) and 3-state HMM.

If latency is high, the number of undetected errors is small. Fig-
ure 10(a) plots the relationship between the detection latency and
the number of undetected errors. It takes the maximum at the la-
tency of 0.1sec and it decreases as the latency increases. This im-
plies that the impact of burst effect, which increases the number
of undetected errors, is limited when latency is high. This charac-
teristic is reasonable and can be tolerated by systems. If latency
is low, users can re-run the application, and hence the number of
undetected errors itself is not a concern. If latency is high, errors
occur sparsely in time domain like soft-errors. This is the case of
application masking and as discussed by Feng et al. systems and
users may naturally tolerate this [12].

5.4 Q4: Comparison to state-of-art
To compare to state-of-art, we determine the distribution of de-

tection latency from the model. Without the model, determining
the behavior of very low error-rate faults would be impossible be-
cause of simulation time slowdowns. Again, we consider the FPU
results which makes our projections conservative. It is a stress test,
since we consider low error-rate faults and assume the entire chip
will have such faults.
Method: First, we obtain the model parameters for all experi-
ments (46,256 faults * 23 applications). Then, for each experi-
ment, we derive the defect rate as a function of detection latency.
Next, we obtain the defect-rate across all experiments, assuming
all F experiments have the same occurrence probability: DRall =Pj=F

j=1 DRexperimentj
/F .

Q4: Comparison to conventional techniques: 1%-DMR can out-
perform periodic scan-test in terms of latency and defect rate.

Figure 10(b) shows the defect-rate that can be sustained for dif-
ferent ranges of the latency. Recall we are doing distributions across
chips (and hence different users) and this is FPU-based stress test
projections. It shows the worst-case latency for practically required
10−5 defect-rate is about 78 seconds and 16 seconds for 1%-DMR

and 5%-DMR, respectively. Over 99% of chips see a latency of less
than 3.6 seconds and 0.9 seconds respectively.

Figure 10(b) also plots the latency of periodic scan-test[23], con-
sidering their reported coverage of 99.5% and an optimistically
low test time of 200ms (ignoring the 34.2 second test data transfer
time). We assume 20 second test period to limit test-time overhead
to 1%, and assume that the first error occurs immediately when a
fault occurs. As the figure shows, 1%-DMR can outperform peri-
odic scan-test. Considering concurrent test like SWAT and Argus,
Sampling-DMR outperforms them in terms of defect rate because
they cannot break the coverage wall and cannot reach the practical
coverage region of >99.999%. To be clear Argus has detection la-
tency of a few cycles on the permanent faults it does cover (and it
covers transient fault), but we argue low detection latency without
100% coverage is of limited value when permanent fault rates are
high as expected in future technology nodes.

5.5 Implementation/performance overhead
With sampling, slowdown in DMR mode is not a significant

problem, as shown with our simple model considering: i) a slow-
down factor S in DMR mode because the master copy may slow
down due to synchronization overheads with the checker, and ii)
Ttrans: the delay incurred in transitioning in and out of DMR
mode. With Sampling-DMR, total slowdown is: Stot = (t ∗ S +
T + Ttrans)/(T + t). For 5 million-cycle epochs, 2X slowdowns
with 20,000 cycle transition costs, overall performance reduction is
only 1.4%.

Hence we only briefly report on our simulation-based perfor-
mance evaluation using the GEMS Multifacet infrastructure [24].
The primary goal is to quantify transition costs and the critical fac-
tor affecting DMR slowdown which is cache-refills. Others have
extensively studied and reported on this phenomenon [37, 45] and
so our discussion is brief. We consider dual-issue out-of-order
cores with 32KB data-caches and a shared 2MB L2-cache. For

transitioning to DMR, we simulate transfer delay of 10-cycles per
cache-line and a 20-cycle penalty in DMR-mode for all cache refills
to synchronize both cores. This models a conservative implemen-
tation to avoid incoherence for multi-threaded applications. Cache
refills occur at rates ranging from every 30 cycles to every 2000
cycles and our benchmarks showed DMR slowdowns ranging from
1.1X to 2X with overall slowdowns always less than 2%.

6. RELATED WORK
We discuss other low-overhead fault detection approaches. Al-

though some of them have lower overhead than Sampling-DMR,
their fault coverage is not always 100%, and they have some other
drawbacks as described earlier.

The first approach is on-line test using existing scan-chain cir-
cuits [10, 23]. Although they are simple and non-intrusive with
respect to the microarchitecture and provide greater than 99% cov-
erage for stuck-at fault model, sometimes even 100%, they have
low coverage for timing faults and cause false-positive or false-
negative detections because the operational environment and test
environment are different. On-line test also embraces a paradigm
of allowing undetected errors because faults/errors between test pe-
riods cannot be caught.

The second approach is software anomaly detection. SWAT [16,
21, 32] is a primarily software technique with some simple hard-
ware extensions, built on the thesis that software anomalies can
detect hardware faults and an absence of anomalies is inferred as
error-free execution. Although it has low overhead, the coverage
is low and SDCs may occur. For example, SDCs in floating-point
units, SIMD datapaths, and other specialized functional units can
be quite large because they don’t trigger the software anomalies as
extensively.

The third approach is asymmetrical hardware redundancy, which
uses simpler hardware for error detection than the hardware under
test. Examples include DIVA [5] and Argus [26]. Although these
cover transient faults also, their overheads become large when the
baseline processor itself is simple. Furthermore, re-implementing
all of the datapath units such as SIMD datapaths increases their
overheads.

The fourth approach is circuit level wear-out fault prediction
based on the insight that all wear-out faults initially cause timing
faults [3]. It may be effective for HCI/NBTI faults, since degrada-
tion is slow. However, it requires that the path excitation rate is high
for signals whose arrival time is in the detection window. However,
for TDDB, the transition from soft breakdown (slight delay degra-
dation) to hard breakdown (stuck-at fault) occurs rapidly [20]. Fur-
thermore, the approach is of limited value for gates that are not on
critical timing paths.

7. CONCLUSION
As technology scales, energy efficient ways to address hardware

lifetime reliability are becoming important. In this paper, we first
showed that practically 100% permanent fault detection is required
to sustain reasonable defect rates for future multicore chips. We
then propose a novel technique for permanent fault detection by ap-
plying fundamental sampling theory to dual-modular redundancy.
We use DMR for detecting errors, but restrict it to a small sampling
window. First, this provides 100% fault coverage with low over-
head. Second, simple designs, even if slow, become reasonable to
consider, which we demonstrate with our simple FIFO-based de-
sign that leaves the processor pipeline effectively unmodified.

We developed a detailed mathematical model and extensive em-
pirical evaluation and show that 1%-DMR and 5%-DMR with sim-

ple checkpointing result in error-free execution for 96% and 99%
of faults for the OpenRISC processor.

The ideas and evaluation in the paper result in three main im-
plications. First, our results showed that even 1%-DMR compares
favorably to conventional techniques in terms of defect rate and de-
tection latency. Second, we showed that conventional techniques
and Sampling-DMR introduce the issue of some number of unde-
tected errors in hardware and fault coverage alone as a metric for
system designers is of limited value. We contend that system de-
signers must embrace a paradigm of some hardware errors to pro-
vide low overhead and practical reliability support for permanent
faults. Providing latency bounds, guarantees on number of errors
etc., can then become practical aids for systems developers. Fi-
nally, the general principle of Sampling-DMR opens up possibility
for other implementations and uses.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers and the Vertical group for

comments and the Wisconsin Condor project and UW CSL for their
assistance. We thank Kazumasa Nomura for help in developing the
proof on Sampling-DMR’s upper-bound error analysis. We thank
José Martínez for detailed comments and feedback that immensely
helped improve the presentation of this paper. Many thanks to Guri
Sohi, Kewal K. Saluja, and Mark Hill for several discussions that
helped refine this work. Support for this research was provided
by NSF under the following grants: CCF-0845751, CCF-0917238,
and CNS-0917213 and Toshiba corporation. Any opinions, find-
ings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of NSF.

9. REFERENCES
[1] Ccc visioning study on cross-layer reliability,

http://www.relxlayer.org/.
[2] Semiconductor Industry Association (SIA), Design,

International Roadmap for Semiconductors, 2009 edition.
[3] M. Agarwal, B. C. Paul, M. Zhang, and S. Mitra. Circuit

failure prediction and its application to transistor aging. In
VLSI Test Symposium, 2007.

[4] A. Ansari, S. Feng, S. Gupta, and S. Mahlke. Necromancer:
enhancing system throughput by animating dead cores. pages
473–484, 2010.

[5] T. Austin. DIVA: A Reliable Substrate for Deep Submicron
MicroarchitectureDesign. In MICRO ’99.

[6] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler. An analysis of latent sector errors in disk drives.
In SIGMETRICS, pages 289–300, 2007.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec
benchmark suite: Characterization and architectural
implications. In PACT ’08.

[8] S. Borkar. Designing reliable systems from unreliable
components: the challenges of transistor variability and
degradation. IEEE Micro, 25:10–16, November 2005.

[9] M. A. Breuer, S. K. Gupta, and T. Mak. Defect and Error
Tolerance in the Presence of Massive Numbers of Defects.
IEEE Design and Test, 21(3):216–227, 2004.

[10] K. Constantinides, O. Mutlu, T. M. Austin, and V. Bertacco.
Software-based online detection of hardware defects
mechanisms, architectural support, and evaluation. In
MICRO ’07, pages 97–108.

[11] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: An

architectural framework for software recovery of hardware
faults. In ISCA, 2010.

[12] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring:
Probabilistic soft-error reliability on the cheap. In
ASPLOS-15, 2010.

[13] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and
I. Pomeranz. Transient-fault recovery for chip
multiprocessors. In ISCA ’03.

[14] S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke. The
stagenet fabric for constructing resilient multicore systems.
In MICRO 41, pages 141–151, 2008.

[15] A. Haggag, M. Moosa, N. Liu, D. Burnett, G. Abeln,
M. Kuffler, K. Forbes, P. Schani, M. Shroff, M. Hall,
C. Paquette, G. Anderson, D. Pan, K. Cox, J. Higman,
M. Mendicino, and S. Venkatesan. Realistic Projections of
Product Fails from NBTI and TDDB. In Reliability Physics
Symposium Proceedings, pages 541 –544, 2006.

[16] S. K. S. Hari, M.-L. Li, P. Ramachandran, B. Choi, and S. V.
Adve. mSWAT: Low-Cost Hardware Fault Detection and
Diagnosis for Multicore Systems. In MICRO ’09.

[17] L. Huang and Q. Xu. Test economics for homogeneous
manycore systems. In ITC, 2009.

[18] U. R. Karpuzcu, B. Greskamp, and J. Torrellas. The
BubbleWrap many-core: popping cores for sequential
acceleration. In MICRO ’09.

[19] C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar.
Utilizing dynamically coupled cores to form a resilient chip
multiprocessor. In DSN ’07, 2007.

[20] Y. Lee, N. Mielke, M. Agostinelli, S. Gupta, R. Lu, and
W. McMahon. Prediction of logic product failure due to
thin-gate oxide breakdown. In IRPS, 2006.

[21] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S.
Adve, and Y. Zhou. Understanding the propagation of hard
errors to software and implications for resilient system
design. In ASPLOS XIII, pages 265–276, 2008.

[22] X. Li and D. Yeung. Application-Level Correctness and its
Impact on Fault Tolerance. In HPCA ’07, 2007.

[23] Y. Li, S. Makar, and S. Mitra. Casp: concurrent autonomous
chip self-test using stored test patterns. In DATE ’08, pages
885–890.

[24] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, , and
D. A. Wood. Multifacet’s General Execution-driven
Multiprocessor Simulator (GEMS) Toolset. Computer
Architecture News (CAN), 2005.

[25] E. J. McCluskey, A. Al-Yamani, J. C.-M. Li, C.-W. Tseng,
E. Volkerink, F.-F. Ferhani, E. Li, and S. Mitra. Elf-murphy
data on defects and test sets. VLSI Test Symposium, IEEE,
2004.

[26] A. Meixner, M. E. Bauer, and D. Sorin. Argus: Low-cost,
comprehensive error detection in simple cores. In MICRO
’07.

[27] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim.
Robust system design with built-in soft-error resilience.
Computer, 38(2):43–52, 2005.

[28] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed
design and evaluation of redundant multithreading
alternatives. In ISCA ’02, pages 99–110.

[29] Openrisc project, http://opencores.org/project,or1k.
[30] I. Pomeranz and S. M. Reddy. An efficient non-enumerative

method to estimate path delay fault coverage. In ICCAD,
pages 560–567, 1992.

[31] M. Prvulovic, Z. Zhang, and J. Torrellas. Revive:
cost-effective architectural support for rollback recovery in
shared-memory multiprocessors. In ISCA ’02.

[32] S. K. Sahoo, M.-L. Li, P. Ramchandran, S. Adve, V. Adve, ,
and Y. Zhou. Using likely program invariants to detect
hardware errors. In DSN ’08.

[33] B. Schroeder, E. Pinheiro, and W.-D. Weber. Dram errors in
the wild: a large-scale field study. In SIGMETRICS ’09,
pages 193–204.

[34] B. Schroeder, E. Pinheiro, and W.-D. Weber. Dram errors in
the wild: a large-scale field study. In SIGMETRICS ’09,
pages 193–204, 2009.

[35] E. Schuchman and T. N. Vijaykumar. BlackJack: Hard Error
Detection with Redundant Threads on SMT. In DSN ’07,
pages 327–337.

[36] S. Shamshiri, P. Lisherness, S.-J. Pan, and K.-T. Cheng. A
cost analysis framework for multi-core systems with spares.
In Proceedings of International Test Conference, 2008.

[37] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe. Reunion:
Complexity-effective multicore redundancy. In MICRO 39,
2006.

[38] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe, and
A. G. Nowatzyk. Fingerprinting: bounding soft-error
detection latency and bandwidth. In ASPLOS-XI, pages
224–234, 2004.

[39] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood.
Safetynet: improving the availability of shared memory
multiprocessors with global checkpoint/recovery. In ISCA
’02.

[40] V. Sridharan, D. A. Liberty, and D. R. Kaeli. A taxonomy to
enable error recovery and correction in software. In
Workshop on Quality-Aware Design, 2008.

[41] Standard Performance Evaluation Corporation. SPEC
CPU2006, 2006.

[42] A. W. Strong, E. Y. Wu, R.-P. Vollertsen, J. Sune, G. L. Rosa,
T. D. Sullivan, S. E. Rauch, and III. Reliability Wearout
Mechanisms in Advanced CMOS Technologies. Wiley-IEEE
Press.

[43] D. Sylvester, D. Blaauw, and E. Karl. Elastic: An adaptive
self-healing architecture for unpredictable silicon. IEEE
Design and Test, 23(6):484–490, 2006.

[44] X. Tang and S. Wang. A low hardware overhead
self-diagnosis technique using reed-solomon codes for
self-repairing chips. Computers, IEEE Transactions on,
59(10):1309 –1319, oct. 2010.

[45] P. M. Wells, K. Chakraborty, and G. S. Sohi. Mixed-mode
multicore reliability. In ASPLOS -XIV, 2009.

