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Abstract 

The advent of deep sub-micron technology has exacerbated 
reliability issues in on-chip interconnects. In particular, single 
event upsets, such as soft errors, and hard faults are rapidly 
becoming a force to be reckoned with. This spiraling trend 
highlights the importance of detailed analysis of these 
reliability hazards and the incorporation of comprehensive 
protection measures into all Network-on-Chip (NoC) designs. 
In this paper, we examine the impact of transient failures on 
the reliability of on-chip interconnects and develop 
comprehensive counter-measures to either prevent or recover 
from them. In this regard, we propose several novel schemes 
to remedy various kinds of soft error symptoms, while keeping 
area and power overhead at a minimum. Our proposed 
solutions are architected to fully exploit the available 
infrastructures in an NoC and enable versatile reuse of 
valuable resources. The effectiveness of the proposed 
techniques has been validated using a cycle-accurate 
simulator.  

1. Introduction 

Packet-based interconnection networks, known as Network-
on-Chip (NoC) architectures, are increasingly adopted in 
System-on-Chip (SoC) designs, which support numerous 
homogeneous and heterogeneous functional modules. 
Reduced feature sizes into the nanoscale regime, along with 
increasing transistor densities, have transformed the on-chip 
interconnect into a deciding factor in meeting the performance 
and power consumption budgets of the design. A variety of 
interconnection schemes are currently in use, including 
crossbars, rings, buses, and NoC’s [2]. Of these, the latter two 
have been dominant in the research community [3, 4]. 
However, buses suffer from poor scalability; as the number of 
processing elements increases, performance degrades 
dramatically. Hence, they are not considered appropriate for 
systems of more than about 10 nodes [3, 5]. To overcome this 
limitation, attention has shifted toward NoCs. On-chip 
networks are scalable, much like traditional macro networks, 
and are seen as the prime candidate to form the network 
infrastructure of future SoCs. NoCs, however, pose several 
design challenges emanating from their inherently stringent 
resource constraints; namely, area and power limitations. 
These limitations dictate the choice of routing algorithms and 
protocols, as well as the architectural implementation. 

Aggressive technology scaling has accentuated the issue of 
reliability due to rapid increase in the prominence of 
permanent faults; these are mostly caused from accelerated 
aging effects such as electromigration, and manufacturing and 
testing challenges. Furthermore, soft upsets caused by cross-
talks, coupling noise and transient faults are also a concern to 
overall reliability. The growing concern about reliability has 
prompted extensive research in this area. Many researchers [6-
13] have proposed solutions for various individual aspects of 
on-chip reliability, such as soft faults and handling of hard 
failures within a network. Nevertheless, a comprehensive 
approach encompassing all issues pertaining to NoC reliability 
has yet to evolve. In this paper, we propose a comprehensive 
set of techniques to protect against the most common sources 
of failures in on-chip interconnects (including link errors, and 
single-event upsets within the router). The proposed 
mechanisms incur minimal overhead, while providing fool-
proof protection. Moreover, our schemes cleverly employ 
resource sharing techniques to minimize the overhead 
imposed by the additional hardware. 

To ensure protection from link errors due to crosstalk and 
capacitive loading, we present a flit-based hop-by-hop (HBH) 
retransmission scheme, and the corresponding retransmission 
architecture. With a minimal latency overhead of three clock 
cycles in the event of an error, this scheme successfully 
addresses the problems afflicting one of the most vulnerable 
components of an on-chip network, the inter-router link. In 
addition to providing link protection, the same architectural 
framework is also employed in a newly proposed deadlock-
recovery scheme. While prior work in deadlock recovery has 
assumed additional dedicated resources, our technique uses 
existing retransmission buffers instead. This helps in 
maximizing resource utilization without incurring additional 
overhead. 

While combinational logic circuits have traditionally been 
considered less prone to soft errors than memory elements, 
rapidly diminishing feature sizes and increasing clock 
frequencies are exacerbating their prominence. In fact, recent 
studies predict that the soft error rate (SER) per chip of logic 
circuits will become comparable to the SER per chip of 
unprotected memory elements by 2011 [14]. This observation 
would have a profound impact on the reliability of on-chip 
routers. The lack of protection from logic errors implies that 
soft errors afflicting a router's logic would escape the error 
detecting/correcting measures because they do not actually 
corrupt the data, but, instead, cause erroneous behavior in the 
functionality of the routing process. Therefore, it is imperative 
to provide robust protection against such upsets. A recent 
study [1] has addressed the issues of single-event upsets in the 
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logic of individual hardware components. However, the 
proposed techniques were applicable to a specific type of 
router architecture. In this work, we analyze the intricacies of 
intra-router logic errors, and provide comprehensive solutions 
relevant to all router architectures. We analyze the possible 
symptoms of logic errors in each module in the router pipeline 
and provide detailed recovery mechanisms for each case. In 
the sequel, we propose a novel Allocation Comparator (AC) 
unit, which provides full error protection to the virtual 
channels and switch allocation units at minimal cost. 

All the mechanisms proposed in this paper are architected in 
such a way as to avoid negative impacts on the router's critical 
path. The mechanisms work in parallel with other vital stages 
in the router pipeline, without increasing the pipe depth. 

This paper is organized as follows. First, a preliminary 
description of a generic NoC router architecture is given in 
Section 2. Link error handling techniques and a novel 
deadlock recovery scheme utilizing retransmission buffers are 
presented in Section 3. Then, logic soft-error handling 
techniques are described in Section 4, followed by the 
concluding remarks in Section 5. 

2. Preliminaries 

2.1. NoC Router Architecture 

A generic virtual-channel-based wormhole router is shown 
in Figure 1. The router consists of six major components: a 
Routing Unit (RT), a Virtual Channel Allocator (VA), a 
Switch Allocator (SA), a crossbar, a retransmission buffer 
(necessary for fault-tolerance) and handshaking signals (used 
between neighboring routers; not shown in Figure 1). 

Pipelining the router architecture can significantly improve 
performance by increasing throughput much like the pipeline 
of a microprocessor, thereby reducing the average latency. As 
described in [15], there are certain critical components that are 
best kept intact within a pipeline stage. These atomic modules 
[15] represent the finest granularity at which efficient 
pipelining can occur. The RT, VA, SA and crossbar represent 
the fundamental modules within an NoC router. The 

interdependencies of these modules in a pipelined architecture 
are illustrated in Figure 2. A simple architecture consists of a 
4-stage pipeline router, one stage for each module. However, 
by employing clever techniques such as Speculative Switch 
Allocation [15] and Look-ahead Routing [16], researchers 
have been able to break some of these interdependencies by 
parallelizing operations, thus shortening the router's critical 
path. This has led to 3-stage and 2-stage router 
implementations [17]. Recently, [18] proposed a single-stage 
router, which fully parallelizes the router operation to 
minimize average latency. 

2.2 Simulation Platform 

A cycle-accurate network simulator was developed to 
conduct detailed evaluation of the proposed schemes. The 
simulator operates at the granularity of individual architectural 
components, accurately emulating their functionalities. The 
simulation test-bench models the pipelined routers and their 
interconnection links. All simulations were performed in a 64-
node (8x8) MESH network with 3-stage pipelined routers. 
Each router has 5 physical channels (PCs) including the PE-
to-router channel, and each PC has a set of 3 associated virtual 
channels (VCs). One message (or packet) consists of four flits. 
The simulator keeps injecting messages into the network until 
300,000 messages (including 100,000 warm-up messages) are 
ejected. A uniform message injection traffic pattern was used, 
where a node injects messages into the network at regular 
intervals specified by the injection rate. For a destination node 
selection, three distributions are used: normal random (NR), 
bit-complement (BC), and tornado (TN) [19]. Single link 
traversal is assumed to complete within one clock cycle, thus 
eliminating the need for pipelined links (which would incur 
further power and area penalties).  

To evaluate fault-tolerance in the network, various soft 
faults were randomly generated both within the routers and on 
the inter-router links. The simulator was also used to calculate 
the area and power overhead of the proposed architectures. A 
generic 5-port router architecture along with all proposed 
modifications were implemented in structural Register-
Transfer Level (RTL) Verilog and then synthesized in 
Synopsys Design Compiler using a TSMC 90 nm standard 
cell library. The resulting design operates at a supply voltage 
of 1 V and a clock speed of 500 MHz. Both dynamic and 
leakage power estimates were extracted from the synthesized 
router implementation. These power numbers were then 
imported into the cycle-accurate network simulator and used 
to trace the power profile of the entire on-chip network. We 
measured average message latency and energy per packet as 
the performance and energy parameters. 

3. Handling Link Soft Faults 

Primarily two types of soft faults could upset the on-chip 
network infrastructure: link errors occurring during flit 
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traversal from router to router, and intra-router errors 
occurring within individual router components. The latter will 
be discussed in Section 4. This section focuses on link errors, 
which are mostly caused by channel disturbances such as 
cross-talk, coupling noise and transient faults [20]. Link errors 
have been studied extensively by researchers, since they have 
so far been considered the dominant source of errors in on-
chip network fabrics. They have been tackled within the 
context of two central themes – correction and retransmission. 
Some degree of error correction can be achieved through the 
use of Error Correcting Codes (ECC), as in [21, 22]. These 
codes achieve what is known as Forward Error Correction 
(FEC). Similarly, retransmission schemes can also be used to 
compensate for link errors. 

Hybrid techniques [6], which provide both error correction 
and retransmission, allow for more robust protection of data. 
Hybrid solutions compensate for the limitations of error 
correcting codes. For example, Single Error Correction and 
Double Error Detection (SEC/DED) codes can correct at most 
one error, but can detect double-bit errors. Therefore, upon 
detection of a double-bit error, the SEC/DED unit may invoke 
a retransmission mechanism. Retransmission can occur in two 
different forms: End-to-End (E2E) or Hop-by-Hop (HBH). In 
an E2E scheme, the original data is checked only at the 
destination node, while in an HBH scheme, data is checked in 
all routers along the path from a source to a destination. Both 
flavors require dedicated buffers, as opposed to FEC 
techniques, but they can handle multiple-bit errors, since a 
clean copy of the data is always maintained. 

Both FEC techniques and E2E retransmission schemes 
suffer severely from errors in the header flit. For example, if 
the destination node address of a packet is corrupted during 
the transfer, the packet might be routed to a wrong destination. 
Even if FEC can correct the error at the (wrong) destination 
node, the packet should be sent to the correct destination 
creating additional network traffic. Similarly, E2E schemes 
need to send a retransmission request from the wrong 
destination to the source node. Moreover, if the source node 
address is corrupted, E2E techniques cannot send the 
retransmission request to the correct source. Thus, it is very 
important to keep the header information from being 
contaminated even if the probability of header error is small. 

[1] addressed this problem by adopting HBH header error 
checking in both FEC and E2E schemes. Figure 5 shows that 
E2E schemes suffer from prohibitive latency penalties as error 
rates increase. E2E schemes also require larger retransmission 
buffers to account for worst case round-trip delay between a 
source and destination [1]. 

Considering all these aspects, HBH retransmission together 
with FEC seems to be the best choice to handle link faults. To 
that extend, we propose a minimal-overhead flit-based HBH 
retransmission scheme. The impact of the additional buffer 
overhead is mitigated by utilizing these same buffers for a 
newly-proposed deadlock recovery mechanism, discussed in 
Section 3.2. 

3.1. A Flit-based HBH retransmission scheme 

Our proposed minimal overhead HBH retransmission 
scheme requires a 3-flit-deep retransmission buffer per virtual 
channel, since a flit should be kept for 3 cycles after it leaves 
the current node. This 3 cycle delay corresponds to the sum of 
the link traversal delay (1 cycle), error checking delay at the 
adjacent receiving node (1 cycle), and the Negative 
Acknowledgement (NACK) propagation delay (1 cycle). The 
retransmission buffer is implemented as a barrel-shift register. 
This way, a flit is stored at the back of the buffer upon 
transmission on the link, and it moves to the front by the time 
a possible NACK signal arrives from the receiving node. The 
simplest type of transmission buffer is a First-In-First-Out 
(FIFO) buffer. Such an implementation has one input port and 
one output port, and involves simple control logic. The 
proposed architecture is shown in Figure 3. 

Conceptually, our proposed scheme works similar to the 
simple retransmission schemes described in [23-25]. However, 
in terms of implementation, [23, 24] use a single transmission 
buffer that contains both sent and unsent flits together, and use 
pointers to track their positions. This requires that every buffer 
slot has an exit port so that flits can be transmitted from the 
middle of the buffer. This complicates the logic and incurs 
wiring overhead. Further, they use both acknowledgement 
(ACK), as well as NACK signals, whereas our proposed 
scheme only sends NACK signals when an error is detected. 
[25] uses link-level retransmission together with the Unique-
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Token Protocol (UTP) to ensure reliability. However, it 
requires at least two copies of a packet at all times in the 
network, increasing buffer occupancy and flow control 
complexity. 

In case of a flit error in the proposed scheme, two 
subsequently arriving flits must be dropped until the correct 
flit arrives from the previous node upon retransmission. Once 
the correct flit is received, all previously dropped flits must 
then be retransmitted. This scenario is illustrated with a flit-
flow example in Figure 4. The example traces the operation of 
the HBH retransmission mechanism when the header flit H1 is 
corrupted during link traversal. A clean copy of H1 is stored 
in the retransmission buffer when H1 is sent to the link. The 
error check logic detects errors in H1 in the receiving node 
and sends a NACK signal to the transmitting node in the next 
clock cycle. As seen in Figure 4, the receiving router drops the 
subsequent two flits (D2 and D3).  

While this may seem an inefficient recovery method, it 
should be noted that a retransmission event will be highly 
unlikely under normal operation, since the architecture already 
employs a single-error correction scheme. While the 
probability of a double (or higher) error within a single flit 
may not be insignificant due to crosstalk, it is still low in on-
chip networks. Furthermore, the corrected flit (H1 in the 
example of Figure 4) arrives within 3 clock cycles. This 
implies that only two flits need to be dropped during a 
retransmission event. Retransmission of these two flits incurs 
a latency penalty of two clock cycles. Therefore, a possible 
latency improvement of two clock cycles does not warrant the 
implementation of a more complex architecture, which would 
be able to handle in-situ re-arrangement of flits within each 
router. While such implementations are very common in 
macro networks, they are prohibitive in on-chip environments, 
because the latter have a much stricter area and power budget. 
The excessive area and power penalty imposed by these 
modifications, compounded by the increased wiring 
complexity, clearly overshadow the small improvement in 
latency during a low-probability retransmission event.  

Cycle-accurate simulation of the proposed scheme with the 
three traffic patterns (NR, BC, TN) in an 8x8 network 
validates these assertions, as shown in Figure 6. The 
retransmission scheme is so efficient that average latency 
remains almost constant even up to 10 % error rate. This 
behavior is a direct consequence of the minimal latency 
incurred during a retransmission, as shown in Figure 4. 
Furthermore, retransmission occurs only between two 
adjacent hops; this restricts movement of retransmitted flits to 
a single inter-router link, which, in turn, has minimal impact 

on overall network traffic. Similarly, Figure 7 illustrates the 
negligible effect of the proposed scheme on the energy-per-
packet metric. Since retransmission is done on a hop-by-hop 
basis for individual flits, the power overhead of a single-hop 
flit transmission is insignificant compared to the total power 
budget for complete packet traversal from a source to a 
destination. 

It should be noted that the retransmission buffer also 
constitutes an essential component of our proposed deadlock 
recovery scheme, which is analyzed in detail in Section 3.2. 
Utilizing the same hardware for both schemes further 
subsidizes the area and power overhead incurred by the 
additional circuitry. 

3.2. Deadlock Recovery 

The concept of deadlock has been extensively researched in 
the literature. Some researchers use preventive schemes [26, 
27], while others propose recovery schemes [28, 29]. 
However, these methods typically place constraints on 
resource use, preventing the system to work at full throttle. 
For example, an adaptive routing algorithm can use escape 
Virtual Channels (VCs) to recover from deadlocks, as 
described in [28]. The flits in these escape VCs, however, are 
managed by a deadlock-free deterministic routing algorithm, 
thereby limiting adaptivity.

Moreover, many of these techniques cannot guarantee 
deadlock freedom in a network with hard faults (router or link 
faults). They all assume a fault-free environment. This 
assumption, however, no longer seems reasonable in NoC 
environments where the probability of failure is relatively 
high. Several techniques have been proposed to address this 
issue in macro networks [23, 30], but most of them adopt 
complex algorithms which are not suitable in resource-
constrained environments like on-chip interconnects. Thus, it 
is imperative to provide simple, yet effective solutions to 
minimize performance degradation. 

3.2.1 Proposed Deadlock Recovery Scheme 

To address these issues, we propose a scheme, which (1), 
instead of using additional dedicated resources, utilizes the 
existing retransmission buffers to break deadlocks, and (2) 
provides deadlock recovery in both fault-free and faulty 
environments using a very simple retransmission-buffer 
management policy. Hence, through efficient resource sharing, 
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we can transform the retransmission buffers into a 
multifaceted reliability component in our system. 

The retransmission buffers can serve a dual purpose, mainly 
because they are used only when packets are being transferred 
from one node to another. As network traffic increases, packet 
blocking increases and, as a result, the utilization of the HBH 
retransmission buffers will decrease due to decreased flit 
transmissions. Figure 8 and Figure 9 show the utilization of 
both transmission and retransmission buffers, respectively, for 
the adaptive (AD) and deterministic (DT) routing algorithms. 
In most cases, the utilization of the retransmission buffer does 
not follow that of the transmission buffer; instead, 
retransmission buffers are mostly underutilized. Furthermore, 
if a packet is permanently blocked due to a deadlock, the 
associated retransmission buffer will be empty, since there has 
been no data transmission for an extended period of time. 
Based on these observations, we propose a smart HBH-
retransmission-buffer management scheme that exploits these 
idle buffers for deadlock recovery. 

When a deadlock occurs, if any of the packets involved in 
the deadlock configuration can proceed by one buffer slot, all 
the other packets also involved in the deadlock can proceed as 
well. This can be achieved with the presence of a single empty 
buffer slot; if all packets continue to proceed in this fashion, 
the deadlock will eventually be broken, since some packets 
will ultimately move out of the deadlock configuration. In 
other words, instead of providing a dedicated escape channel 
to the destination node, as proposed in [28, 29], our scheme 
gradually shifts flits without breaking the cyclic dependency, 
until the deadlock is broken. 

For example, assuming that four nodes are involved in a 
deadlock configuration, we have (4x3) retransmission buffers 
(12 in total) that are empty. Therefore, if each node 
temporarily moves 3 flits from the normal transmission 
buffers to the retransmission buffers, it will create an 
additional available buffer space for the preceding node in the 
deadlock configuration. As soon as the buffer space becomes 
available, the flits in the retransmission buffer can be sent to 
the next router. Thus, flits will be able to advance, and after 
several iterations, some flits will move out of the deadlock 
configuration, thereby breaking the deadlock situation. 

Figure 10 shows an example of this scenario in detail, where 
a packet consists of 4 flits and the normal transmission buffer 
can store up to 4 flits. In step 1, a deadlock is detected and 
flits are moved to the retransmission buffer, as shown in step 2. 
The additional buffer space created by this move allows flits 
in the retransmission buffers to be transmitted to the next 
nodes. Since the retransmission buffers in our proposed 
architecture are barrel shifters, transmitted flits also move to 
the back of the retransmission buffer (flits enclosed by a thick 
square), as shown in steps 3 to 5. Three clock cycles later, the 
retransmission buffer will be empty again, as shown in step 7. 
At this point, the buffer state is exactly the same as in step 1, 
except that every flit has advanced by 3 buffer slots. This 
procedure will be repeated until at least one of the packets 
breaks the deadlock by going out to a direction away from the 
deadlock configuration. Once the deadlock configuration is 
broken, each node resumes its normal operation. In the 
example of Figure 10, we assume that all three nodes involved 

in the deadlock initiate deadlock recovery action 
simultaneously for the sake of clarity. However, deadlock 
recovery need not be synchronized, as long as all nodes 
eventually start deadlock recovery. The proposed probing 
technique described below will handle this asynchronous 
behavior. 

The proposed scheme places a lower limit on buffer size to 
ensure correct functionality. The technique must account for 
the worst-case scenario, where partially transferred messages 
prevent other messages from entering the transmission buffers, 
and thus, absorption of these partially transferred messages is 
necessary during the deadlock recovery process, as illustrated 
in Figure 11. Note that no new packets are allowed to enter 
the transmission buffers that are involved in the deadlock 
recovery.  

To handle the worst-case scenario, the total buffer size (i.e. 
transmission and retransmission buffers) must be large enough 
to accommodate the remaining flits of a partial packet and still 
have at least one empty slot. 

Theorem: The proposed scheme ensures deadlock freedom if 
the buffer size is larger than the lower limit specified in 
Equation (1). 
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Proof: When a deadlock is detected, the transmission buffers 
cannot accommodate any more flits, and therefore, 

n
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=
= ≤ ×∑ . At this point, the nodes switch to the 

deadlock recovery mode and if n

i 1
2 iB B M N

=
= ×> ∑ , then all 

the messages involved in the deadlock can be absorbed into 
the buffers (trans. + retrans.) with at least one empty slot still 
available. Since only packets involved in the deadlock can use 
this empty buffer slot(s), they can now proceed, and 
eventually, the network can recover from the deadlock. �

Examples of the lower limit condition in deadlock recovery 
mode are shown below for the configurations of Figure 10 and 
Figure 11. Both examples show that they meet the minimum 
buffer requirement, and therefore, the deadlock can be broken. 
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If the retransmission buffers are not to be used for deadlock 
recovery, then this lower limit for the total buffer size is no 
longer necessary. Therefore, if we forego deadlock recovery 
support, only three retransmission buffers will be needed per 
VC for link error correction (see Section 3.1), regardless of 
the regular transmission buffer size. 

3.2.2 Probing for Deadlock Detection and Recovery 

To detect possible deadlocks, most of the previous 
approaches adopted a threshold value of blocked cycles, after 
which the router assumed that the blocked flit was involved in 
a deadlock. This approach is guaranteed to detect all possible 
deadlocks [28]. However, it can also give false positives, 
where a node assumes a deadlock even though the flit is 
simply experiencing long blocking delay. Increasing the 
triggering threshold value will decrease the number of false 
positives, but increasing the threshold value arbitrarily will 
cause the number of blocked flits in the network to increase. 
In order to predict the most appropriate threshold value, one 
needs to consider a multitude of parameters, such as the 
network traffic among nodes, the traffic load, the routing 
algorithm and the deadlock recovery scheme. This can be a 
daunting feat, since the exploration space is huge. 

To overcome this limitation, we aim to formulate a different 
methodology, which will detect only actual deadlocks without 
any false positives; this optimizes network performance, while 

eliminating the need to precisely identify an optimal threshold 
value. 

We propose a probing technique, whereby a compact 
probing signal is sent along the suspected deadlock path after 
a flit has experienced more than a predefined number of 
cycles (Cthres) of blocking. The probe will check whether the 
flit is involved in a real deadlock or not. While the selection of 
Cthres will also affect network performance (as the threshold 
value described above), its impact is less pronounced because 
the probing technique will ensure that no action is prematurely 
taken. In other words, the threshold itself does not initiate 
deadlock recovery. The probing technique will first assess the 
situation to prevent the occurrence of any false positives. 
Therefore, the value of Cthres need not be precisely calculated; 
its effect on overall network performance will be minimal as 
long as the value chosen is not excessively high. 

The proposed probing technique detects a deadlock based 
on the following two rules: 

Rule 1: After a flit experiences more than Cthres cycles of 
blocking, the router sends a probing signal to the next node 
specifying the VC buffer of the suspected flit. 

Rule 2: When a node receives a probing signal, it checks the 
status of the buffer specified in the probing signal. If the VC 
buffer is also blocked in the current node or the node is in 
deadlock recovery mode, it forwards the probing signal to the 
next node, modifying the VC identifier accordingly. Otherwise, 
it discards the probing signal. 

If the probing signal returns to the original sender node, then 
the latter can safely assume that the flit under investigation is 
involved in a deadlock configuration; this is because the 
probing signal can return to the sender only if there is a cyclic 
path dependency and all intermediate nodes also experience 
blocking (by Rule 2). If increased blocking delay due to a hard 
failure causes a node to suspect deadlock, the subsequent 
probing signal will be discarded by the router adjacent to the 
faulty node, which will redirect blocked flits to another 
direction using an adaptive routing scheme, breaking the 
deadlock if any. 
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After the probe returns, the sender sends an activation signal 
that triggers the nodes involved in the deadlock to switch to 
the deadlock recovery mode. The sender node switches to the 
deadlock recovery mode after the activation signal returns. To 
handle the case where multiple nodes in the same deadlock 
configuration send probing signals at the same time, we need 
two more rules: 

Rule 3: A node will discard an activation signal unless it has 
received a probing signal from the same sender node before. 

Rule 4: If a node receives a valid activation signal (as per 
Rule 3), while it is waiting for its own probe to return, it 
switches to the deadlock recovery mode and discards its own 
probe when it finally returns, since the deadlock recovery 
mode has already been activated by another node involved in 
the same deadlock configuration. 

To avoid incurring any additional overhead in supporting 
dedicated probing lines, we propose using a regular flit 
transmission for the probing signal, which can use the 
retransmission buffers in each suspected node to propagate. 
Note that the retransmission buffers are empty in nodes 
experiencing long blocking. This will ensure that the probing 
signal itself will not be blocked in an intermediate router. 
Figure 3 shows how an incoming link can feed the 
retransmission buffer directly. Since the probing signal is a 
regular flit, it will also be protected by the error correcting 
blanket, thus ensuring its safe traversal through the network.

4. Handling Soft Errors in Intra-Router Logic 

Until recently, soft errors were tackled within the context of 
memory cells or registers. This has led to the widespread use 
of error detection and correction circuits to protect memory 
arrays. Combinational logic circuits, on the other hand, have 
been found to be less susceptible to soft errors in equivalent 
device technologies due to the naturally occurring logical, 
electrical and latching-window masking effects [31]. However, 
decreasing feature sizes and higher operating frequencies are 
rapidly thinning the protective effect of these masking 
phenomena. As mentioned before, research has indicated an 
exponential increase in the soft error rate (SER) per chip of 
logic circuits in the future [14]. Hence, it is crucial that 
modern router designs account for these events to ensure 
reliable and uninterrupted operation of the on-chip network. 
The notion of logic errors resulting from soft error upsets is 
directly related to the number of pipeline stages within the 
router. While the proposed measures are the same for all 
implementations, the recovery process differs depending on 
the number of pipeline stages present (and, thus, the amount 
of speculation employed by the architecture). The following 
sub-sections discuss the effects of soft errors on each router 
component along with proposed counter-measures. The 
recovery process for the different pipeline implementations is 
also analyzed. The latency overhead in the cases of 2-stage 
and 1-stage routers assumes successful speculative allocation 
in the recovery phase. Mis-speculation will increase the 

overhead, but mis-speculation occurs during normal operation 
as well and is unpredictable. 

4.1. Virtual Channel Allocator Errors 

The VA, like the routing unit, operates only on header flits. 
All new packets request access to any one of the valid output 
VCs, returned by the routing function. The VA arbitrates 
between all those packets requesting the same output VC. The 
VA maintains states of all successful allocations through a 
pairing between input VCs and allocated output VCs. It is this 
state that effectively opens up the "wormhole" for all 
subsequent flits of the same packet. Soft errors within the VA 
may give rise to four different scenarios: 

(1) One input VC is assigned an invalid output VC: For 
example, suppose a PC has 3 VCs – designated by 00, 01, 
and 10. A soft error might cause the assignment of invalid 
VC 11. Such an assignment will block further traversal of 
the packet through the network. 

(2) An unreserved output VC is assigned to two different 
input VCs: This will lead to packet mixing, and, 
eventually packet/flit loss. Flits from both packets will 
follow the same wormhole, since they are seen as one 
packet by the routers. As soon as the tail flit of one of the 
two packets releases the wormhole, any subsequent flits of 
the other packet will essentially be stranded in the network. 
For example, incoming packets from the North and West 
both can be assigned the same output VC in the South. 

(3) A reserved output VC is assigned to a requesting input 
VC: This case is very similar to case (2) above. The new 
packet will erroneously follow the existing wormhole, 
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following a path to a wrong destination. The same 
consequences will result as above. 

(4) An erroneous, yet unreserved, output VC is assigned to 
a requesting input VC: In this scenario, there are two 
different types of erroneous output VC assignments: 
(a) The wrong output VC belongs to the intended PC.
This is a benign case, since the packet will still be 
forwarded to the same physical direction as originally 
intended. 
(b) The wrong output VC belongs to a PC other than the 
intended one. This case is similar to the misdirection 
situation to be analyzed in Section 4.2. It may lead to 
deadlock in deterministic routing algorithms. The solution 
described in Section 4.2 will also protect against this type 
of error. 

The proposed safeguard for VA logic errors is the addition 
of a compact hardware unit, called the Allocation Comparator 
(AC). The proposed AC unit is shown in Figure 12. The unit 
employs purely combinational logic, in the form of XOR gates, 
to compare the RT state entries, SA state entries, and the VA 
state entries. The AC unit performs three types of comparisons 
in parallel, within one clock cycle. It first checks to see if the 
output VCs assigned by the VA unit are in accordance with 
the output of the routing function (i.e. RT unit). For instance, 
if a soft error causes the VA to erroneously assign an output 
VC in the North PC, while the RT unit had indicated the 
assignment of a VC in the South PC, the AC unit will trigger 
an error flag, thus invalidating the VA allocation of the 
previous clock cycle. This comparison protects against 
scenario (4b) above. Secondly, the AC unit checks the VA 
state info to detect both invalid and duplicate output VC 
assignments. Should any of these cases appear, an error flag is 
raised. This comparison safeguards against scenarios (1) 
through (3) above. Finally, the AC unit checks for Switch 
Allocation errors as discussed in the following sub-section. 

The duration of the recovery phase is independent of the 
pipeline architecture. In all cases except the 4-stage router, 
parallelization implies that the AC unit will operate in the 
same stage as the crossbar traversal (i.e. after the VA 
operation concludes in Figure 2). This means that if an error is 
detected by the AC unit, a NACK should be sent to all 
neighboring routers to ignore the previous transmission. Then 
the previous VA allocations are repeated in the current router, 
thus incurring single-clock latency overhead. In a 4-stage 
router, the AC unit will detect the error by the end of stage 3 
(i.e. before crossbar traversal); therefore, no erroneous 
transmission will occur. The latency delay is still one clock 
cycle. 

While adding additional hardware increases the overall area 
and power consumption of the router, the proposed unit was 
deliberately architected to be as small and efficient as possible. 
First, the number of state entries to be compared is equal to 
PV, where P is the number of input/output ports and V is the 
number of VCs per port. For a typical 5-port mesh NoC router 
(North, East, South, West, PE) with 4 VCs per PC, the number 
of entries is 5x4=20. The size of the entries is minimal, since 
the VC IDs are only a few bits long (e.g. 2 bits for 4 VCs per 

PC). Thus, the data to be compared is very small. To validate 
the architecture's compactness and efficiency, we synthesized 
the comparator unit in 90nm technology. The area and power 
budgets of the unit, as compared to the total budget for a 
generic NoC router (see Figure 1), are shown in Table 1. It is 
evident that the AC unit imposes a minimal area and power 
penalty on the overall design, while providing full protection 
from logic errors. Moreover, the AC unit is also used to 
protect against Switch Allocator errors, described in Section 
4.3, further subsidizing its small additional overhead.

It should be noted that almost all the overhead in the 
proposed protective scheme comes from the AC unit alone; 
the VA and SA are only slightly modified to accept 
invalidation signals from the AC. It is the AC unit which 
monitors the results of the VA and SA. 

Additional hardware components to combat faults bring in 
the possibility of a fault within the new component. In this 
work, we assume single event upsets, i.e., only one fault could 
happen at any given time. This implies that there might be a 
fault in the VA, or SA, or the AC unit at a given time, but not 
in more than one of them. Hence, if there is a soft error in the 
VA or SA unit, it will definitely be caught by the AC unit. If, 
on the other hand, there is a false positive due to a fault in the 
AC unit, then the consequence is benign; all that the AC unit 
does is invalidate the allocations in the previous clock cycle. 
Therefore, a false positive will simply waste one clock cycle 
in arbitrations. 

4.2. Routing Unit Errors 

A transient fault in the routing unit logic could cause a 
packet to be misdirected. Since the subsequent virtual channel 
allocation and switch allocation would be performed based on 
the misdirection, no data corruption will occur. The erroneous 
direction, however, may be blocked, either because of a link 
outage (hard fault), or a network edge in various topologies 
(e.g. mesh). This will be caught by the VA, which maintains 
the state information for its adjacent routers. The VA is able to 
detect such erroneous behavior, because the allocator is aware 
of blocked links or links which are not permitted due to 
physical constraints (e.g. a network edge); they are either pre-
programmed in the allocator's state table or they are 
dynamically specified through incoming state information 
from adjacent routers. The recovery, however, depends on 
whether look-ahead routing is used or not. If such a routing is 
employed, then the error will be caught by the VA of the 
following router and reported to the previous router through 
an appropriate NACK message. This will invalidate the 
erroneous decision and force the routing unit to repeat the 
routing process on the specific packet.  

Note that the header flit is still in the previous router's 
retransmission buffer (as described in Section 3). The whole 
recovery process will take 3 clock cycles (one for the NACK 

Table 1. Power and Area Overhead of the AC Unit
Component Power Area 

Generic NoC Router 
(5 PCs, 4 VCs per PC) 119.55 mW 0.374862 mm2 

Allocation  
Comparator (AC) 

2.02 mW 
(+1.69% overhead) 

0.004474 mm2 
(+1.19% overhead) 
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propagation to the previous router, one for the new routing 
process, and one for the retransmission) in a 2-stage router. It 
would take 2 clock cycles in a single-stage router (one for the 
NACK and one for the new routing process and 
retransmission). To increase the efficiency in non-minimal, 
adaptive routing schemes, the current router may reset the 
invalid direction and assign a new direction without informing 
the previous router. If current-node routing is used (i.e. 4-
stage and 3-stage routers), then the recovery phase is simpler, 
since the error is caught by the VA in the same router, which 
will inform the routing unit before the transmission occurs. 
This will incur a single-cycle delay for re-routing.  

Misdirection to a non-blocked, functional path, however, 
will not be caught by the VA, since its state information will 
not raise an error flag (i.e. an error signal, as shown in Figure 
12). It could potentially cause deadlock in deterministic 
routing algorithms. In such algorithms, however, the error will 
be detected in the router that receives the misdirected flit. A 
NACK to the sending router would then fix the problem. The 
latency overhead is dependent on the number of pipeline 
stages (n) within the router. The delay penalty is equal to 1 + n, 
(NACK + re-routing and retransmission). In adaptive routing 
schemes, the error cannot be detected. However, in such 
schemes, a misdirection fault is not catastrophic; it simply 
delays the flit traversal.

4.3. Switch Allocator Errors 

A switch allocator error could give rise to the following four 
different problems, some of which would lead to packet/flit 
loss: (a) A soft error in the control signals of the switch 
allocator could prevent flits from traversing the crossbar. This 
case is the least problematic, since the flits will keep 
requesting access to the crossbar until they succeed. (b) If a 
data flit is mistakenly sent to a direction different from the 
header flit, it would cause flit/packet loss, because it would 
deviate from the wormhole created by its header flit. (c) A soft 
error could cause the allocator to direct two flits to the same 
output. This will lead to a corrupt flit, which will be detected 
by the error detection code in the next router. A NACK will 
be sent and the correct flits retransmitted from the 
retransmission buffer. Regardless of the number of pipeline 
stages, this error recovery process will incur two cycles 
(NACK + retransmission) latency overhead. (d) An error 
could cause the allocator to send a flit to multiple outputs 
(multicasting). If the flit is a data flit, the same error will occur 
as case (b) above. If the flit is a header flit, then multiple 
virtual channels will mistakenly be reserved in all the 

receiving routers (essentially opening multiple wormholes for 
the same message). Those wormholes will stay permanently 
reserved, thus reducing the effective buffer space in those 
routers.  

The most challenging cases are (b) and (d). To prevent such 
scenarios, we propose use of the Allocation Comparator (AC) 
Unit, which was introduced to protect against VA errors. As 
shown in Figure 12, the AC unit also checks for invalid SA 
allocations (such as multicasting) and duplicate SA 
allocations; upon detection of an erroneous behavior, the AC 
unit will invalidate the SA allocation in the previous clock 
cycle. In this case, the overhead involved does not depend on 
the number of pipeline stages of a router. In all cases, an SA 
error will be caught by the AC unit after the SA stage finishes. 
This implies that the AC unit will be operating in the same 
stage as crossbar traversal. Therefore, a NACK signal must be 
sent to all adjacent routers to ignore the previous transmission, 
and a new SA process will commence; this amounts for 
single-clock latency overhead. 

We examined the impact of our proposed solutions by 
simulating three types of error situations. These are routing 
logic errors (RT-Logic), switch allocator logic errors (SA-
Logic) and link errors (LINK-HBH). Each one of the cases 
was simulated independently by varying the error rate and 
measuring the number of errors corrected and energy 
consumption per message. Figure 13 (a) illustrates the number 
of errors corrected by the proposed measures. Errors in the 
routing unit are significantly less than errors in the SA, since 
routing errors occur only in header flits. The SA, however, 
operates on every flit, and many flits often undergo multiple 
arbitrations before winning access to the switch. Link 
traversal, on the other hand, only occurs once for each flit per 
hop, thus the link errors detected in this experiment were less 
than the SA errors. Figure 13 (b) depicts the energy consumed 
per packet under the different error schemes. As shown, link 
errors induce more energy overhead because of 
retransmissions. Nevertheless, even with retransmissions, the 
overhead is still minimal, thereby validating our previous 
assertions. 

4.4. Crossbar Errors 

A transient fault within the crossbar would produce single-
bit upsets, not entire flits being misdirected as in the switch 
allocator case. Single-bit upsets are taken care of by the error 
detection and correction unit employed within each router, 
thus eliminating the problem. 

4.5. Retransmission Buffer Errors 

A single soft error in the retransmission buffer would be 
corrected by the error-correcting unit in the receiving router. 
A double (or more) error, however, would yield an endless 
retransmission loop since the original data itself is now 
corrupt. Given that a double bit-flip is highly unlikely, such a 
scenario can be ignored. However, a fool-proof solution 
would be to use duplicate retransmission buffers. This will 
double the buffer area and power overhead.

Figure 13. Impact of soft-error correcting schemes 

Number of Corrected Errors

0

10

20

30

40

50

60

0.00001 0.0001 0.001 0.01
Error Rate

#
 E

rr
or

s 
(x

1,
00

0) LINK-HBH
RT-Logic
SA-Logic

Energy per Packet

0

0.05

0.1

0.15

0.2

0.25

0.3

0.00001 0.0001 0.001 0.01
Error Rate

En
er

gy
 (

nJ
)

LINK-HBH
RT-Logic
SA-Logic

(a) Number or corrected Errors (b) Energy Consumption 

Proceedings of the 2006 International Conference on Dependable Systems and Networks (DSN’06) 
0-7695-2607-1/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on January 24, 2009 at 05:43 from IEEE Xplore.  Restrictions apply.



4.6. Handshaking Signal Errors 

Every router has several handshaking signal lines with 
neighboring routers to facilitate proper functionality and 
synchronization. Transient faults on these lines would disrupt 
the operation of the network. Since the number of 
handshaking signal lines is small, Triple Module Redundancy 
(TMR) can be used, in which three lines and a voter are used 
to ensure protection against soft errors. There is a slight area 
and power overhead increase, but the area occupied by these 
lines is negligible compared to the area of the other router 
components. 

5. Conclusions 

In this paper we presented a comprehensive plan of attack 
on various types of reliability hindrances in on-chip networks. 
We have tackled most common failure types by proposing a 
series of architectural techniques, which work in tandem to 
protect the interconnect infrastructure. 

A new hop-by-hop retransmission scheme was presented to 
combat link errors. The scheme was shown to be very 
efficient in terms of both latency and power even under high 
error rates. The retransmission buffers required by this 
mechanism were also used in a newly proposed deadlock 
recovery technique, which utilizes existing resources to break 
deadlocks, thus minimizing the incurred overhead. Finally, a 
detailed analysis of possible symptoms resulting from intra-
router logic errors was also presented, along with an array of 
protective measures and their effectiveness in various router 
architectures. 

More importantly, all the mechanisms proposed in this work 
kept the critical path of the NoC router intact. For on-chip 
networks, ultra-low latencies are an absolute necessity; thus, 
any reliability solution which inflicts significant burden on 
latency is not well suited. Our schemes work in parallel with 
the critical components without deepening the router pipeline. 
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