
*SPEARS Group
Intel Massachusetts
Hudson, MA 01749

 Architectural Core Salvaging in a Multi-Core Processor for
Hard-Error Tolerance

Michael D. Powell*, Arijit Biswas*, Shantanu Gupta†1, and Shubhendu S. Mukherjee*

†Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48105

ABSTRACT
The incidence of hard errors in CPUs is a challenge for future

multicore designs due to increasing total core area. Even if the
location and nature of hard errors are known a priori, either at
manufacture-time or in the field, cores with such errors must be
disabled in the absence of hard-error tolerance. While caches, with
their regular and repetitive structures, are easily covered against
hard errors by providing spare arrays or spare lines, structures
within a core are neither as regular nor as repetitive. Previous
work has proposed microarchitectural core salvaging to exploit
structural redundancy within a core and maintain functionality in
the presence of hard errors. Unfortunately microarchitectural sal-
vaging introduces complexity and may provide only limited cover-
age of core area against hard errors due to a lack of natural
redundancy in the core.

This paper makes a case for architectural core salvaging. We
observe that even if some individual cores cannot execute certain
operations, a CPU die can be instruction-set-architecture (ISA)
compliant, that is execute all of the instructions required by its ISA,
by exploiting natural cross-core redundancy. We propose using
hardware to migrate offending threads to another core that can
execute the operation. Architectural core salvaging can cover a
large core area against faults, and be implemented by leveraging
known techniques that minimize changes to the microarchitecture.
We show it is possible to optimize architectural core salvaging
such that the performance on a faulty die approaches that of a
fault-free die--assuring significantly better performance than core
disabling for many workloads and no worse performance than
core disabling for the remainder.

Categories and Subject Descriptors
B.8.1 Reliability, Testing, and Fault Tolerance, C.1.0 Processor
Architectures

General Terms
Reliability, Performance

Keywords
Reliability, Hard Errors, Redundancy, Core Salvaging

1 INTRODUCTION
Current and future multi-core CPUs achieve high core counts

by increasing the size of the processor die. As die size and transis-
tor density grow, the susceptibility of these processors to hard
faults grows as well. Hard faults result in a permanent defect, such
as a bit stuck at a single logical value, and threaten yield, perfor-
mance, and reliability of these multi-core CPUs. Hard faults, can
occur in manufacturing or manifest later as wear-out faults in the
field. Hard faults that result from manufacturing are generally uni-
formly distributed throughout the die (barring any especially sus-
ceptible structures), while hard faults caused by wear-out generally
manifest on devices along wear-out susceptible paths. Defects
detected at manufacturing time result in lost sales from either
reduced yield (throwing the die away) or reduced capacity (selling
the die with smaller caches or fewer cores). Defects detected in the
field using future fault detection and isolation technologies [22]
could necessitate substantial performance degradation to maintain
reliable operation by disabling cores or shrinking caches.

Multi-core CPUs devote a large fraction of die area to regular
memory structures, particularly caches. Fortunately, caches can be
protected from manufacture-time defects using well-known tech-
niques such as array sparing [27], line sparing, and error-correcting
codes (ECC) [5]. These protection techniques cover the caches’
area, meaning that the CPU is not vulnerable to reduced sales price
or large performance loss in the event of (a reasonable number of)
defects in that die area. However, effective coverage of caches
leaves the remainder of the die as the major source of defect vul-
nerability. The bulk of this remainder is CPU cores.

Covering cores against defects is a challenge. One obvious
solution, which we define as core disabling, turns off defective
cores, resulting in the previously-mentioned problems of reduced
sales price and/or reduced performance, depending on when the
defect is discovered. Alternatively core sparing, providing extra
cores that are kept in standby in case of defects, consumes precious
die area while providing no performance or economic benefit in a
non-defective die.

Current and near-term high-performance CPUs have small
enough core counts, in the range of four to eight [13], that losing
even one core can degrade performance substantially. Even poten-
tial future designs with dozens of cores [11] do not obviate the
need to address defect vulnerability because these designs could
experience defects in multiple cores, triggering large losses. In
addition, heterogeneous designs like IBM’s Cell [9], could be vul-
nerable if one of the few large, complex cores is unavailable due to
defects.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
ISCA’09, June 20–24, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-526-0/09/06...$5.00.

1. This work was performed while Shantanu Gupta was an intern in the
FACT Group within SPEARS at Intel Massachusetts.

93

A more desirable alternative to core disabling and core sparing
is core salvaging, which allows defective cores to continue to oper-
ate. Proposed techniques for microarchitectural core salvaging dis-
able defective execution pipelines [19] or schedule operations on
alternate or spare resources [23, 21] to avoid utilizing the defective
area. These techniques require changes to the microarchitecture
and introduce complexity. In addition, techniques that rely on dis-
abling resources can recover only the naturally redundant fraction
of core area that already exists due to performance-driven replica-
tion within the core. These are typically limited to structures that
can be used in parallel, such as integer arithmetic-logic units
(ALUs). The larger fraction of non-redundant execution resources-
-such as multipliers, dividers, and even the result busses between
units--cannot be covered because functionality would be lost. Cre-
ating artificial redundancy by adding spare resources to cover non-
replicated functions faces the same problem as core sparing--
increased complexity and die area with no benefit in defect-free
cores. Table 1 provides definitions of the terminology used
throughout the paper.

We observe that even if some individual cores cannot execute
specific instructions, a CPU die can be instruction-set-architecture
(ISA) compliant, that is execute all of the instructions required by
its ISA, by exploiting existing natural cross-core redundancy.
Accordingly, we suggest a new architectural (core) salvaging
mechanism that 1) covers a significant fraction of the core area and
2) requires only small changes to the microarchitecture. Nearly the
entire execution hardware of the core, including non-replicated
resources, can be covered against defects. Assuming that defects
are known a-priori, as will be discussed in Section 2, only a few
changes to the core are needed to detect un-executable operations
and support thread migration. Instead of addressing a defective
core’s inability to execute an instruction using the microarchitec-
ture, we propose using hardware to migrate the offending thread to
another core that can execute the instruction. If the other core was
busy, the migration becomes a thread swap. By implementing the

thread migration in hardware, this mechanism can be made trans-
parent to the operating system (O/S) and user.

Architectural core salvaging avoids the main problem of core
disabling by allowing faulty cores to contribute to overall through-
put. How much faulty cores contribute to throughput depends on
the frequency of non-executable instructions with core-disabling
providing a lower bound (at zero throughput for defective cores).
We divide the possibilities into three cases. First, in the case of
infrequent instructions--those that may occur only a few times in a
workload or in a few clusters of occurrences, such as floating point
divide or square root--performance loss compared to a fault-free
die can be negligible. Even if all threads executing on the die use
instructions that are non-executable by one or a few cores, migra-
tion overhead can be amortized over the large gaps (e.g., tens of
thousands of cycles) between those infrequent instructions since
there are only a few migrations. Second, in the case of frequently-
occurring instructions that are used by only some executing threads
(e.g., heterogeneous multi-programmed or multi-threaded work-
loads), we utilize migration policies to find quickly a stable thread
schedule where the defective core executes a thread that does not
utilize un-executable instructions. Once the schedule stabilizes,
there will be no performance loss compared to a fault-free die.
Third and finally, for instructions that a workload uses frequently
in all threads, we fall back on core disabling to avoid thrashing and
bound our performance to be no worse than that of core disabling.
We also avoid pathological performance loss by not utilizing cores
incapable of executing certain critical instructions (e.g., load, store,
branch, integer arithmetic).

Architectural core salvaging offers advantages over microarchi-
tectural core salvaging by being simpler, requiring fewer changes
to the core, and covering a larger area. Though the idea of architec-
tural salvaging is in itself simple, potential pitfalls of cross-core
migrations and execution on defective cores must be carefully
avoided to maintain high performance and user transparency.

Table 1: Redundancy and core salvaging terminology.

Term Definition

Redundancy

Redundancy CPU can function correctly without a resource

Natural redundancy CPU can function correctly without a resource because of pre-existing alternate (spare) resources

Artificial redundancy CPU can function correctly without a resource because a spare resource has been added

Microarchitectural redundancy intra-core redundancy: core can function without a resource and/or a spare exists in the core

Architectural redundancy inter-core redundancy; core can function without a resource by using a spare on another core

Hybrid hardware redundancy hybrid of artificial microarchitectural redundancy and architectural redundancy

Salvaging

Core disabling turning off a defective core and utilizing a CPU with fewer functional cores

Core sparing alternate cores on standby, used only to replace defective cores; functional-core count is constant

Microarchitectural core salvaging exploiting microarchitectural redundancy to make a defective core functional

Architectural core salvaging exploiting architectural redundancy to make a defective core functional

Hybrid core salvaging exploiting hybrid hardware redundancy to make a defective core functional

Replication of functionality

Non-replicatable function A function that can execute on only one resource (resource is not redundant)

Replicatable function A function that can execute on more than one resource (resource may be redundant)

94

The main contribution of this paper is to make a case for archi-
tectural core salvaging to exploit natural architectural redundancy,
which we define as cross-core redundancy, and cover a large core
area against faults without substantial changes to the microarchi-
tecture. Specifically:
• We describe how leveraging existing CPU capability to enable

thread migration can minimize architectural core salvaging’s
intrusion into the core, simplifying the implementation.

• We show it is possible to optimize architectural core salvaging
to have performance on a faulty die near that of a fault-free die-
-significantly better than core disabling for many workloads
and no worse for the remainder.

• We describe architectural and hybrid core salvaging opportuni-
ties to cover approximately 30% of the vulnerable core area
compared to 10% for microarchitectural salvaging.
The rest of this paper is organized as follows. In Section 2 we

discuss related work on defect detection and exploiting redun-
dancy. Section 3 explains some of the limitations of microarchitec-
tural redundancy. In Section 4 and Section 5 we introduce our
architectural core salvaging technique. Section 6 explains our
experimental methodology, and Section 7 presents our results. We
conclude with Section 8.

2 RELATED WORK
In this section, we briefly discuss techniques on detecting and

isolating defects caused by hard errors. Next, we discuss previous
defect tolerance work. Fault tolerance techniques generally consist
of two distinct and necessary pieces, fault detection/isolation and
error correction/recovery. This paper focuses on the latter aspect of
correction/recovery via techniques to exploit redundancy regard-
less of the underlying defect-detection technique. While detecting
and isolating faults, either at manufacturing time or in the field, are
necessary components of any fault-tolerance scheme and may add
additional complexity, they are beyond the scope of this work.

2.1 Defect Detection and Isolation
Techniques for detecting defects can be divided into manufac-

turing-time and run-time methods. We first discuss manufacturing
time detection. Manufacturing test primarily focuses on identifying
defective parts, but those detection techniques can be expanded to
isolate faults to determine if a particular defect might be covered
by redundancy.

Manufacturing test has an advantage over run-time detection
because the tester has access to scan chains and other debug mech-
anisms which provide fine-grain visibility into micro-architectural
CPU state. Manufacturing test to detect (but not isolate) defects is a
well understood topic [4]. Some previous proposals aim to aid
manufacturing test in isolating defects. Rescue, proposed in [19],
proposes altering the microarchitecture to increase visibility of
scan. They propose increasing intra-cycle-independence of
microarchitectural structures throughout a pipeline so defects can
be isolated to the logic between two successive pipeline latches.

Run-time isolation is more challenging than manufacturing-
time isolation. One proposal for run-time isolation is BlackJack
[20], which exploits simultaneously-redundant threads on an SMT,
previously used to detect soft errors, to detect defects. Bower et al.
in [3] propose using DIVA-checkers, small auxiliary cores that
check committed instructions [1], for defect isolation. Constan-
tinides et al. in [6] propose a virtualization layer between the oper-
ating system and the hardware to introduce periodic special
instructions for defect isolation.

2.2 Defect Tolerance

2.2.1 Using Translation or Virtualization
There have been proposals to tolerate defects via binary transla-

tion or virtualization. Detouring [16] is an all-software approach
for defect tolerance in simple cores that translates code to avoid
defects in execution units, register files, and instruction and data
memory. While well-suited to simple cores, high-performance x86
cores typically avoid binary translation layers. Joseph [15] pro-
poses using a virtualization layer to tolerate coarse-grained execu-
tion-cluster defects in an Alpha 21264 microarchitecture via either
instruction emulation or thread migration.

2.2.2 Using Microarchitectural Salvaging
There have been several proposals to exploit microarchitectural

redundancy, or add extra redundancy, to tolerate defects via
microarchitectural salvaging. Rescue [19] combines their fault-iso-
lation mechanism with de-mapping failed redundant resources.
Rescue achieves high coverage but requires alterations to many
components to create exploitable redundancy, such as segmenting
the issue logic into two halves and forbidding same-cycle commu-
nication between the halves. These alterations add complexity and
may add performance degradation.

Bower et al. [2] utilize microarchitectural salvaging, which they
call self repair, in array structures. Srinivasan et al. [23] analyze the
performance impact of both moving execution to duplicated
resources and gracefully degrading performance by disabling fail-
ing redundant resources.

Core Cannibalization [18] allows one core to borrow resources
from another core at the pipeline-stage level. While cannibalization
exploits a form of cross-core redundancy, we classify it with intra-
core microarchitectural salvaging because the additional intercon-
nect required to support borrowing closely couples the cores. Such
interconnect also presents performance and complexity challenges.

Shivakumar et al. in [21] identify microarchitectural redun-
dancy in an Alpha 21264. They exploit redundancy by de-mapping
failed combinational units and de-mapping failed entries in small
arrays such as the reorder buffer and register files. They report high
coverage, but as we discuss in the next section, their coverage esti-
mates may be too optimistic.

3 LIMITATIONS OF
MICROARCHITECTURAL REDUNDANCY

In this section, we discuss how defect coverage derived from
microarchitectural redundancy may be limited in modern CPUs.
Recall from Section 1 that because of existing coverage techniques
for large memory structures, the main defect vulnerability lies in
the cores, and that successful defect-tolerance techniques must
cover a substantial fraction of core area. We first discuss coverage

Figure 1: Decoder-area breakdown.

(4 decoders total)

Simple
Complex

Microsequencer logic

26%
20%

54%

95

challenges in exploiting microarchitectural redundancy in combi-
national logic, and then discuss challenges for sequential logic con-
tained in small arrays. Finally, we discuss general concerns for
microarchitectural redundancy which impact all structures.

We do not discuss large arrays, including caches, translation
lookaside buffers (TLBs), and register files, because these arrays
can already be covered against defects by introducing artificial
redundancy in the form of spare rows, spare columns, spare arrays
[27], and error-correcting codes as mentioned in Section 1.

3.1 Limited coverage of combinational logic
While certain combinational structures are typically redundant

in superscalar CPUs, many are not. Some architectures may also
have more redundancy than others. We discuss the impact of cer-
tain microarchitectural techniques in two portions of the CPU pipe-
line, the front end and back end. The front end includes the fetch
and decode logic while the back end includes the rename tables,
reservation stations, execution resources and re-order buffer.

3.1.1 Front End
Rescue [19] considers each of the instruction decoders in a

pipeline to be equivalent and thus redundant. However, an instruc-
tion-set-architecture (ISA) such as x86, which includes both simple
instructions and complex instructions which decode into micro-
code flows, typically utilizes a single complex decoder and several
simple decoders. Only the simple decoders are redundant. Unfortu-
nately, the single complex decoder can be larger in area than all of
the simple decoders combined. If the microsequencer logic
(excluding microcode ROM arrays, which could be protected by
ECC) is included as part of the decoder, the simple decoders repre-
sent an even smaller fraction. The relative area of all simple decod-
ers, the complex decoder, and the microsequencer logic of an
Intel® Core-2™-like processor are shown in Figure 1.

3.1.2 Back End
Multiple equivalent execution units in a superscalar CPU are

the most typically cited example of microarchitectural redundancy.
It is easy, however, to overestimate execution-unit redundancy.
Execution-unit redundancy is extremely dependent on both ISA
and microarchitectural symmetry. (i.e., are there many general
units which can execute most instructions?) When considering
execution-unit redundancy, it is important to determine the redun-
dancy of structures in addition to replicatability of instructions,
which is simply whether an instruction can execute on more than
one structure, even if those structures are not redundant. Only
structural redundancy increases defect coverage, regardless of
instruction replication.

Some structures, such as input muxes and result busses, may be
utilized across multiple classes of instructions. However, even if

some of the instructions are replicated instructions that can execute
on multiple structures, the structures themselves may not be redun-
dant because these structures are also required for some other class
of instruction. For example, there may be multiple integer adders
but only one that is capable of generating addresses for loads. As a
result, neither the adder that generates load addresses, nor any of
the input/output circuitry for that adder, are redundant even though
there may be other similar adders and other input/output circuitry.
While it may seem desirable for reliability to create a more general
architecture with more inherently redundant structures, doing so
can lead to complexity that can impact performance and/or power,
as discussed in Section 1.

For execution-unit redundancy, Shivakumar [21] takes advan-
tage of the fairly symmetric, clustered 6-instruction-issue Alpha
21264 microarchitecture which contains duplicate integer and
floating-point clusters. However, such wide-issue cores have fallen
out of favor in part due to complexity and power concerns.

To illustrate another possibility, we analyzed the execution-unit
redundancy in an Intel® Core-2™-like x86 microarchitecture, as
shown in Figure 2. Note that execution-unit redundancy is highly
implementation specific, and this analysis is just one representative
example. The instruction (micro-op) classes are separated into two
bins shown in the table, the replicated classes which can be exe-
cuted on more than one functional unit (B and C), and non-repli-
cated classes which cannot (A). To complete the redundancy
analysis, however, we need to map each class of instruction to the
structures it uses to determine which structures are redundant.

To complete the mapping, we use activity information from a
detailed Architectural Level Power Simulator (ALPS) like archi-
tectural power model that tracks activity and power for over 300
functional-unit-blocks per core, as described in [10, 17]. This
model maps occurrences of each class of instruction to microarchi-
tectural structures. Structures that are used for only replicated
instructions are themselves considered redundant. The pie chart
shows the relative areas of redundant execution structures (execut-
ing replicated instructions in C) and non-redundant execution
structures (execution non-replicated instructions in A and repli-
cated instructions in B) within the total execution-unit area. As
shown in the figure, the redundant structure area is small compared
to the total area, and the number of replicated instruction classes
that execute on redundant structures is much smaller than the num-
ber of replicated instructions.

3.2 Limited area coverage in small arrays
Many of the structures in both the front and back ends of mod-

ern CPU cores are small non-cache arrays that are generally not
covered by cache redundancy techniques (e.g., spare rows, spare
columns, etc.) because of their small size and the high relative
overhead of such coverage. Small arrays, particularly those that

Non-replicated instruction classes (A)

branch load store

control reg. slow ALU int mult.

int divide simd mult. simd other

fp load fp store fp mult.

fp divide fp ROM fp shuffle

fp other fp add fp other

Replicated instruction classes (B)

logical simd_shift

vector sse condition code

int shuffle simd shuffle

Replicated instruction classes using solely
redundant structures (C)

int ALU shift

vector inst. extended simd shuffleFigure 2: Example of execution-unit redundancy
in an x86 core.

A

B
C

74%

10%
16%

Execution-Unit Area

96

use circular queues, can be easily covered using microarchitectural
salvaging by enhancing their decoder and pointer logic to skip
defective entries. Shivakumar [21] showed that structures such as
the ROB can lose a few entries with minimal loss of performance.
Our own studies on an Intel® Core-2™-like processor (detailed
later in Section 6) concur that losing several entries in either the
instruction decode queue, reservation stations, or re-order buffer
has minimal performance impact (on average less than 1%, and at
worst less than 10%).

Small-array area coverage estimates can be misleading. Tolerat-
ing defective array entries covers only the static RAM (SRAM)
cells and wordlines, but not the supporting logic of bitlines, sense
amps, decoder logic, and array-pointer logic. While in caches the
area of memory cells may dwarf that of the support logic, that is
not the case in small arrays where the support logic is a substantial
fraction of the area.

Figure 3 shows area breakdowns for SRAM cells and support
logic for several structures in an Intel® Core-2™-like microarchi-
tecture. To estimate area, we use CACTI version 5.3 [26] config-
ured for a 45nm technology and aggressive interconnects. We
consider the area efficiency of the arrays, as reported by CACTI, as
a measure of redundant area. Area efficiency is the fraction of
structure area devoted to memory cells, and excludes non-redun-
dant components like decoders and sense amplifiers. As represen-
tative small arrays, we model a decoded-instruction queue and
reorder buffer. We also show the data array of a typical L1 cache
for a reference on potential redundancy in large data arrays. The
redundant area in the small arrays are both less than 20%, while the
redundant area in the cache data array is 60%. This result illustrates
the limited area coverage of microarchitectural redundancy in
small arrays. Array salvaging techniques cover a large portion of a
cache array but are less effective for small arrays. It is also worth
noting that the example structures are all RAMs with no additional
support logic other than that needed to read and write data. RAMs
with additional support logic and content-addressable memories
(CAMs) would show substantially less redundancy.

3.3 General concerns
Another key concern with microarchitectural redundancy is that

nearly every redundant structure requires a slightly different sal-
vaging mechanism. This complexity was illustrated in Rescue [19],
which described their techniques pipe stage by pipe stage, and by
Shivakumar et al., which exploits three meta-categories of redun-
dancy (component-level, array, and dynamic-queue) across 20
structures. Covering these structures might require structure-spe-
cific implementation details. For example, the dynamic-queue

redundancy in the integer instruction window, a CAM, is unlikely
to be the same as that in the register file, a RAM.

Unfortunately, there seems to be no one-stop solution to exploit
microarchitectural redundancy in a large area of the core. Worse,
when taking into consideration the true structure redundancy as
described above in Section 3.1 and Section 3.2, the total fraction of
area covered by microarchitectural redundancy is not high.
Figure 4 breaks down the area redundancy of our Intel® Core-2™-
like CPU core based on the discussion of the previous subsections.
The total area of the core excludes cache arrays and TLB arrays,
which we assume can use existing salvaging techniques. The figure
shows the non-redundant area and the redundant structure area for
each of the execution units, simple decoders, and small arrays. The
small-array area includes the reservation stations, fetch queue, load
buffer, and store buffer area in addition to the reorder buffer and
decode queue areas discussed in Section 3.2. Combined, only
about 10% of the non-cache core area is covered. This data indi-
cates that in order to achieve high coverage, we need to look
beyond mere microarchitectural redundancy.

4 CORE SALVAGING WITH
ARCHITECTURAL REDUNDANCY

Architectural redundancy provides an opportunity for increased
coverage by relaxing the requirement that each individual core be
fully functional and using the other cores to complete the missing
functionality. This relaxation greatly increases the opportunity for
redundancy coverage, because non-replicated structures within a
core can be considered non-essential and be covered against
defects by migrating threads that use these defective structures
away from a defective core.

In this section, we present the potential of architectural redun-
dancy. We then discuss the use of architectural redundancy through
architectural core salvaging to increase hard-error coverage, partic-
ularly in combinational logic. Architectural redundancy is well

17%

Figure 3: Redundant and non-redundant area of small-array structures and a cache data array.

Decode Queue:
32 64-bit entries, 4 read ports, 4 write ports

Reorder Buffer
96 72-bit entries,8 read ports, 4 write ports

Cache Data Array (for reference):
64KB, 2-way, 1 read/write port

13% 60%

Redundant area (memory cells) Non-redundant area (support logic/wires)

Figure 4: Area redundancy
breakdown of x86 core.

Core-2 like core: total area excluding cache and TLB arrays

Non-redundant: 89.6%

Exec units: 3.3%

Simple decoders: 0.7%

Small arrays: 6.4%

Redundant structures:

97

suited to combinational logic, which may be used for only a por-
tion of instructions but less suited to covering small arrays in the
pipeline (such as the decode queue discussed in Section 3.2)
because these structures are critical for pipeline functionality. In
Section 5 we will introduce a hybrid of architectural and microar-
chitectural redundancy that can cover critical array structures. This
section also discusses implementation options and optimizations
necessary for architectural redundancy to maintain high perfor-
mance in the presence of defective cores.

4.1 Potential of Architecture Salvaging
Architectural salvaging makes sense in a multicore design

where the number of cores is small enough to warrant trying to sal-
vage (rather than deactivate) a defective core but large enough to
amortize the performance degradation due to migrating threads
away from a defective core. In this subsection, we explore that
design space.

Table 2 depicts a simple analytical model of overall throughput
on a multicore die for core counts ranging from 1 to 20. The col-
umns show throughput relative to a defect-free die for various
defect-tolerance mechanisms. The second column shows relative
throughput if 1 core is deactivated (so, for example, the throughput
is 0 for a 1 core die). The third and fourth columns show relative
throughput if 1 core’s throughput is degraded 10% and 25% due to
defects, such as those tolerated by architectural salvaging.

Assuming we are willing to tolerate a 5% degradation in overall
die throughput, the shaded cells represent the core counts for which
architectural salvaging is an effective solution. Once a die has 20
cores, core deactivation reduces throughput only 5%. At the other
extreme of small core counts, throughput degradation from archi-
tectural salvaging can be intolerably high, such as in the cases with
less than 6 cores in the fourth column. Given the depicted potential
throughput degradations for defective cores, the sweet spot for
architectural salvaging is die with more than 4 but fewer than 20
cores, which is similar to proposed designs for the next few gener-
ations of microprocessors [13].

It is worth noting that in cases of multiple defective cores,
architectural salvaging may be worthwhile at higher core counts.
Multiple defects may be a concern in future unreliable processes,
but in this paper, we limit our modeling to a single defective core.

4.2 Redundancy in Combinational Logic
The key limitation in covering combinational logic, as dis-

cussed in Section 3.1, is that so much logic is not replicated. Archi-
tectural redundancy increases opportunities for coverage in both
the back-end execution units and front-end instruction decoders.

4.2.1 Execution Units
For architectural redundancy, the coverage criteria is no longer

which structures are redundant (as discussed in Section 3.1) but
which structures are not critical for basic functionality. As dis-
cussed in Section 1, we define a minimal set of instructions for a
core to be considered functional. These include loads, stores,
branches, and arithmetic integer ALU operations. (While some-
what arbitrary, this list is based on intuition and high-occurrence of
certain instructions.) Only the structures necessary to execute those
operations are considered critical; everything else may be consid-
ered redundant. Figure 5 breaks down execution-unit area in our
Intel® Core-2™-like CPU into that for critical instructions and that
which is redundant. Coverage opportunities for architectural
redundancy are substantially higher (83%) than the microarchitec-
tural redundancy opportunities shown earlier in Figure 2 (16%).

However, as we explore later in Section 7, we may not want to
exploit all of the available redundancy. Some operations beyond
the critical set may be used so frequently as to justify disabling any
core that is incapable of executing them.

4.2.2 Instruction Decoders
The instruction decoder also contains a large amount of non-

replicated area. Recall from Figure 1 that the complex-instruction
decoder and microsequencer logic are substantially larger than the
simple instruction decoders and are not replicated, and only the
simple instruction decoders are microarchitecturally redundant.
Because certain complex instructions are rare in many applica-
tions, architectural redundancy might reverse the situation by mak-
ing the complex decoder and microsequencer logic partially
redundant as well.

4.3 Implementation
This section discusses how we implement architectural core

salvaging by making minimal additions to the core and by leverag-
ing existing CPU capabilities.

4.3.1 Minimal Core Changes
One goal of architectural salvaging is to minimize changes to

the core. The two main requirements for core salvaging using
architectural redundancy are 1) detecting the presence of instruc-
tions that cannot execute, and 2) transferring the architectural state
of the thread to and from the core.

Detecting defective instructions can be done with a comparison
at instruction decode. The system can use a lookup table, either
fused at manufacturing or programmed in the field, to identify un-

Table 2: Core salvaging potential.

Die throughput relative to defect-free die if:

Cores
per die

1 core
deactivated

1 core loses x% throughput
x=10% x=25%

1 0.00 0.90 0.75
2 0.50 0.95 0.88
4 0.75 0.98 0.94
6 0.83 0.98 0.96
8 0.88 0.99 0.97
12 0.92 0.99 0.98
16 0.94 0.99 0.98
20 0.95 0.99 0.99

Figure 5: Architectural
redundancy in execution units.

Critical: 17%

Redundant: 83%

98

executable instructions. Since the thread migration must occur
before any defective instructions commit, detecting at decode
allows adequate time to trigger a stall and initiate a migration with-
out placing the lookup on any critical paths.

Transferring the architectural state requires transferring the
architectural registers to and from a buffer off of the core. Fortu-
nately, this capability already exists as part of deep-sleep power
states such as core C6, which moves state off of a core to an on-die
SRAM for power savings [12]. The core C6 array used to store an
x86 core’s microarchitectural state is about 10KB [8]. Leveraging
this capability for architectural core salvaging merely requires add-
ing support (outside the core itself) for migrating the state from one
core to another.

4.3.2 Migration and Overhead
Assuming all cores are busy, each thread migration is actually a

thread swap between a salvaged core and another core. State
migration between cores can occur over whatever interconnect is
already present (bus, etc.), or via a specialized interconnect. The
bandwidth requirements to migrate the architectural state are a few
kilobytes in the case of the low-register-count x86 architecture.
(Although the core C6 array is 10KB, the array was designed to
hold all of the microarchitectural state for a core [8]. We need to
store and to migrate only the architectural state.) The overhead of
this migration may be on the order of many tens to a few hundred
cycles, but should be amortized as long as migrations are infre-
quent. The overhead of warming up caches and branch predictors
after a migration will be similarly amortized.

4.3.3 Operating System Transparency
To keep our technique entirely hardware-based, we propose

keeping salvaging-based migrations transparent to the operating
system (O/S). Doing so requires “fooling” the O/S into believing
that a migrated thread is operating on the same logical core, which
we accomplish by leveraging the existing Advanced Programma-
ble Interrupt Controller (APIC) ID number. The O/S already identi-
fies cores through their APIC ID number. While conventionally
this number is fixed, it is a small change to make it programmable,
allowing the APIC ID to migrate with a thread.

It may be possible to optimize architectural salvaging using the
O/S, but these optimizations, while interesting, are beyond the
scope of this work.

4.4 Optimizations
In this section, we discuss hardware optimizations to architec-

tural salvaging to avoid performance loss.

4.4.1 Migration Policy
The core-selection policy for a thread that must be migrated

from a defective core must be chosen carefully. Assuming all cores
are busy, each migration is a thread swap between two cores. The
policy should ensure that in the event of repeated migrations, a
small subset of threads do not bounce on and off the defective core.
Allowing the defective core to swap threads with all cores ensure
that if a thread exists that does not utilize the defective compo-
nents, the CPU will eventually settle on a stable thread assignment.

A simple policy that meets this goal is round robin. Under this
policy, if core N is defective, it will swap with each other core
before returning to swap with a core again. A more complex policy
might use performance-monitoring registers to maintain a thread
instruction profile for each core and intelligently select threads that
are least likely to trigger such migrations. Complex policies such

as this one may be helpful at reducing migrations in the event that
more than one core is defective, because they can avoid migrating
a thread onto a core that will likely migrate again soon.

4.4.2 Triggering Migrations
Thread migration can be triggered as soon as the un-executable

instruction is seen, at instruction decode, or just before the instruc-
tion would commit. The advantage of triggering migration at
decode is that the process starts sooner. The advantage of trigger-
ing migration at commit is that decoding an un-executable wrong-
path instruction will not force a needless migration. However, an
effective branch predictor may obviate the need for triggering
migration at commit by largely avoiding fetch and decode of
wrong-path instructions.

4.4.3 Fall-back to Core Disabling
Some workloads may experience many frequent migrations

because all threads utilize a defective structure often. In such cases,
it may be better to fall back to core disabling and simply deactivate
the defective core. If necessary, this fall-back can be made O/S
transparent by maintaining the architectural state of the extra
thread on-die and, at intervals near the O/S quanta intervals, rotat-
ing which thread is assigned to the non-executing core.

Fallback to core disabling can be triggered by maintaining a
migration count over a certain time window. If, for example, a core
is forced to migrate a thread more than 10 times per 100,000
cycles, the defective core can be temporarily disabled. Fallback
could also be triggered if throughput on a core drops below some
pre-determined level. While falling back to core disabling may
degrade performance, particularly for parallel workloads, it is bet-
ter than the alternative of the thread thrashing between cores.

Disabling migration implies stalling a thread that would be exe-
cuting on the defective core, so we must carefully avoid potential
deadlock conditions from starving that thread. These can be
avoided by migrating and re-scheduling the stalled thread to a non-
defective core on O/S-quanta-sized intervals, and stalling a thread
that would otherwise execute. O/S quanta are long enough to amor-
tize the overhead of the migration but frequent enough to ensure
forward progress.

4.4.4 Running Less Than the Max Number of Threads
If fewer than the maximum number of threads are available to

execute, the defective core should be left idle, and there is no
throughput degradation due to the defect. While this case is patho-
logical and quite simple, it may actually be quite common in multi-
core systems. The policy can be implemented in an O/S-transpar-
ent fashion by simply assigning the lowest-priority APIC ID to the
defective core. (Recall from Section 4.3 that the APIC ID is made
programmable for architectural salvaging.)

5 HYBRID HARDWARE REDUNDANCY
Architectural redundancy alone can cover only structures that

are not essential for basic pipeline functionality, leaving many
structures uncovered. In this section, we describe a hybrid of archi-
tectural and microarchitectural redundancy which makes small
changes to the core, like architectural redundancy, but covers
defects in pipeline-critical structures, like microarchitectural
redundancy.

5.1 Hybrid Redundancy Overview
Section 3.2 discussed limitations of microarchitectural redun-

dancy in small arrays. Although microarchitectural-redundancy

99

opportunity is limited, architectural-redundancy opportunity seems
even less because any of these small arrays are critical for pipeline
functionality.

We propose the introduction of minimally functional, structure-
independent, small artificially redundant secondary replacements
for some of these primary small arrays. By minimally functional,
we mean that a pipeline will continue to function correctly,
although possibly with large performance degradation. By struc-
ture-independent, we mean that the secondary structure will have
its own decoders and/or support logic, so that the entire primary
structure is covered. The secondary structure could also achieve
independence by being a stand-alone part of the primary structure.
(e.g., a sub-array with its own decoders) Finally, we require that
the secondary structure be small compared to the primary structure
to avoid high area overhead and potential for additional defects. It
is important to note that the proposed secondary structures are not
full-scale copies of the primary structures.

If a primary structure is defective, we use the secondary struc-
ture to maintain core functionality. We use architectural salvaging
to minimize the performance impact of the degraded core, relying
on extensions of the optimizations discussed in Section 4.4. Instead
of a simple round-robin migration policy, more intelligent thread-
selection mechanisms that take into account the specific defects on
a given core are likely necessary. We describe such policies next.

5.2 Examples of Hybrid Redundancy
In this subsection, we give examples of structures that can

exploit hybrid redundancy and describe policies to mitigate perfor-
mance loss associated with defects in these structures.

5.2.1 Branch Predictors
Branch prediction is not strictly necessary at all for functional

correctness, although a minimally functional branch predictor is
necessary to avoid pathological performance loss. To cover the pri-
mary branch predictor against defects, a simple bimodal predictor
with only a relatively few entries can be introduced as a secondary
structure. Such a predictor will still correctly predict the majority
of branches; [14] showed prediction rates of over 90% for a 2KB
bimodal predictor. To mitigate performance loss in a defective core
using the secondary predictor, the thread selection policy may
choose threads such that they either a) have extremely high branch
prediction rates (and thus might be handled by even the simplest
predictor) or b) have extremely low branch prediction rates (and
thus will be handled poorly on any predictor). If threads are run for
some time on both a defective and non-defective cores, the thread
selector also might choose the thread with the smallest change in
prediction-rate.

5.2.2 Load and Store Buffers
Memory re-ordering is not strictly necessary for functionality.

If the load or store buffers are defective, the core can force all
memory operations to execute in program order, covering the buff-
ers and most of their support logic against defects. The thread
selector can mitigate performance loss by either choosing a thread
with few memory operations for the defective core, or similar to
the branch-predictor scheme, choosing a thread that sees the least
performance degradation in the absence of reordering.

5.2.3 Other structures
Other structures that can be covered using hybrid redundancy

include the fetch queues, decode queues, and out-of-order execu-
tion buffers. The fetch and decode queues can be covered by add-

ing minimally-sized secondary queues (i.e., sized at the fetch and
decode width).

Covering the out-of-order buffers, specifically the reservation
stations and/or reorder-buffer, is more ambitious. These structures
are highly integrated into the pipeline, but it may be possible to
function with defects if all instructions are forced to execute in pro-
gram order.

6 METHODOLOGY
To analyze performance of using architectural core salvaging,

we use a detailed execution-driven simulation of an Intel® Core-
2™-like microprocessor core in the Asim [7] simulation environ-
ment. The parameters of our system, are shown in Table 3.

Our area estimates for memory arrays come from Cacti [26].
Our area estimates for cores and execution units are derived from
block-level estimates from our target microprocessor core.

We assume a 100-cycle overhead to migrate architectural state
between cores. This overhead is in addition to the overhead from
draining instructions from the cores prior to migration.

We use applications from the SPEC CPU 2000 [24] and SPEC
CPU 2006 [25] suites, in addition to multimedia and server work-
loads. Our server workloads consist of TPC-C, TPC-H, and
specweb99. A summary of the number of benchmark runs in each
group appears in the first two lines of Table 4. We run 8 copies of
the same thread, providing a worst-case workload for our core-sal-
vaging technique because all threads will need the same resources.
(Realistic non-worst-case workloads would be heterogeneous, as
discussed in Section 4.4.) Unless otherwise noted, we run each
application for 5 million instructions after warming up cache state.

7 RESULTS
In this section we present our results. First we give an analysis

of the potential for core salvaging in execution units with small
performance degradation. Then we present our results for core sal-
vaging in combinational structures. Due to space and computation
limitations, we show a small subset of the potential redundancy
available across many classes of instructions. Finally, we present
examples of hybrid redundancy.

7.1 Opportunity
In this section, we present the opportunity for core salvaging in

execution units to avoid performance degradation based on the

Table 3: System Parameters.
Instruction issue 4, out-of-order
I-cache 64KB 4-way
D-cache 64KB 8-way, 2 cycles, 2 load

ports
Branch Predictor Bimodal (512 entries) + Gshare

(1024 entries)
Branch Target Buffer 4K entries; 16-way
Fetch / Decode queues 14/24 entries
Reservation Stations 32
Reorder Buffer Entries 96
Load/Store Buffers 50/24 entries
L2 cache 1MB, private, 8-way, 10-cycles
Cores 8
L3 cache Shared, 8MB, 8-way

100

occurrence of instruction classes in the benchmarks. We expect a
large number of benchmarks to use rarely or never certain classes
of instructions, representing an opportunity to salvage cores that
cannot execute those instruction classes.

For core salvaging, we are interested in extended execution
periods that are absent certain instruction classes, providing an
opportunity to execute on a defective core. We computed the mean,
median, and standard deviation of distances between instructions
of given classes (not shown), but found the numbers not particu-
larly useful. Similar instructions tend to occur in bursts, making the
statistics misleading. Instead, we computed the fraction of non-
overlapping 100,000-instruction periods that lack specific instruc-
tion classes in a 10-million instruction (single-thread) run. 100,000
instructions represents a period long enough to execute a thread on
a defective core while amortizing the overhead of a potential future
migration.

Figure 6 presents statistics on instruction occurrence across our
workloads. Across the x-axis are 8 instruction classes; the 5 work-
loads have a bar for each instruction class. The top graph shows the
average fraction of 100,000-instruction intervals that are absent
that instruction class for a particular workload. (A value of 1 means
that instruction class never occurs while 0 means it occurs in every
window.) The bottom graph shows standard deviation of the frac-
tions.

Instruction occurrence varies across workloads, but many of the
instructions are infrequent in several workloads. Floating-point
divide is largely absent from all but spec2K-int and multimedia.
Floating-point ROM instructions, which utilize the constant ROM,
are rare except in multimedia.

An outlier among the shown instruction classes is integer multi-
plies, which occur frequently in every workload. Because integer
multiplies occur in more than 50% of windows in all of the work-
loads except spec2K-fp, integer multiplies may be a candidate for
addition to the critical instructions which a core must be able to
execute to be considered functional, as described in Section 4.2.1.

Table 4 presents a deeper dive into the instruction occurrences,
showing example benchmarks that are at the high occurrence rate
and low occurrence rate for each workload. The majority of the
low (and high) occurrences are at or near 0% (and 100%), indicat-
ing that while there are trends within each workload, as shown in

Figure 6, most workloads still contain some benchmark with both
frequent and infrequent occurrence of the instruction classes.
Exceptions are that none of the server workloads utilize integer
shuffle or simd shift, and the fp-rom is not used by either spec2k-
int or spec 2006.

In the next section, we show the performance impact of having
one core unable to execute these instruction classes as a result of
core salvaging.

7.2 Core-Salvaging
In this section, we present throughput results for core salvaging

when one core is unable to execute particular instructions. We
expect larger area coverage than microarchitectural salvaging can

Table 4: Benchmarks with high and low fraction of 100K-instruction windows missing instruction class.
workload spec int 2K spec fp 2K spec 2006 server multimedia
benchmarks 32 34 31 27 73
fp div gzip (1) vpr (0) sixtrack (1) apsi (0) milc (1) gamess

(0)
specweb99ssl
-1 (1)

specjappser
ver04 (0.42)

photoshop
(1)

renderman
ball (0)

fp mul gzip (1) vpr (0) sixtrack (1) lucas (0) libquan-
tum (1)

gromacs
(0)

specweb99ssl
-1 (1)

tpcc_yukon
(0.21)

photoshop
(1)

renderman
ball (0)

fp rom all are 1 wupwise (1) facerec (1) all are 1 db2_tpch (1) tpcc_yukon
(0.93)

photoshop
(1)

videostu-
dio (0)

i mul bzip2
(1.0)

vpr (0) swim (1) facerec (0) mcf (1) astar (0) specweb99ssl
-2 (0.47)

tpcc_yukon
(0)

renderman
_ball-2 (1)

renderman
_ball (0)

i div bzip2 (1) twolf (0) galgel (1) fma3d (0) libquan-
tum (1)

sjeng (0) db2_tpch
(0.84)

tpcc_sql_20
00 (0)

videostu-
dio (1)

spec-apc-
3dsmax (0)

i shuf gap (1) eon (0) equake (1) apsi (0) per-
lbench (1)

gamess
(0)

all are 1 spec-apc-
3dsmax (1)

cinema4dr
8_stairs (0)

si(md) shift parser
(1)

vpr (0) art (1) fma3d (0) gcc (1) gamess
(0)

all are 1 spec-apc-
3dsmax (1)

cinema4dr
8_stairs (0)

i slow bzip2 (1) vortex
(0)

wupwise
(1)

mesa
(0.06)

bzip2 (1) soplex
(0.99)

db2_tpch
(0.98)

tpcc_win2k
(0)

rendermal
_ball-2 (1)

photoshop
_2 (0)

Figure 6: Fraction of non-overlapping 100K- instruction windows
that do not contain an instruction class for 5 workloads.

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Me
an

St
an

da
rd

 D
ev

iat
ion

i f 6 s m

i: spec int 2K f: spec fp 2K 6: spec 2006
s: server m: multimedia

fp div fp mul fp rom i div i shuf sishift i slowi mul

101

provide. We expect throughput for core salvaging to be near that of
a defect-free core for applications that use the un-executable
instructions never or infrequently. For applications that use un-exe-
cutable instructions frequently throughout their execution, we
expect throughput similar to that of core disabling. We show
behavior for homogeneous 8-thread workloads because they are
more interesting and are worst-case. Heterogeneous workloads
would quickly settle on a stable or near-stable schedule and would
perform as well or better than homogeneous workloads.

Figure 7 (A) shows average throughput for each of our work-
loads relative to 8 defect-free cores (top bar) and 7 defect-free
cores (bottom bar, equivalent to core disabling of one core). Each
group of bars corresponds to disabling one or more instruction
classes. From left-to-right, the first 7 are a subset of the classes in
Section 7.1 The last three represent disabling both integer and simd
shuffle (i,si-shuf), all divide operations (alldiv), and all floating-
point operations (allfp). These groups were chosen because the
corresponding instructions share many hardware resources.

7.2.1 Coverage
The numbers under the groups in Figure 7 represent the percent

of execution-unit area covered by that group of instructions. Recall
from Figure 2 that there was potentially 16% coverage via microar-
chitectural redundancy. In comparison to microarchitectural redun-
dancy’s low coverage, each of the floating-point multiply, int/simd
shuffle, and division hardware represent individually between 5
and 7 percent of the execution-unit area. Note that integer-divide
alone does not cover any area because it shares resources with
floating-point divide. Allowing core salvaging in the presence of
completely defective floating-point units provides 34.7% coverage
of the execution-unit areas. The values represent a subset of the
potential 83% coverage of execution-unit area shown in Figure 5.

7.2.2 Throughput
The throughput values in Figure 7 (A) assume that core salvag-

ing is enabled, and processors fall-back to core disabling for an
interval of 150,000 cycles if more than 2 migrations occur during a
rolling 40,000-cycle window.

As expected, for most of the potential defects, we salvage
enough performance from the defective core to exceed core dis-
abling (i.e., exceeds relative to 7 defect-free cores). Average
throughput across all of the defect cases is between 5% and 7%
better than core disabling for all workloads except multimedia. For
multimedia, throughput is 3% better than core disabling. Through-
put is particularly good in the case of defective integer and simd
shuffle (8%, 8%, 9%, 11% and 5% for spec2k-int, spec2k-fp,
spec06, server, and multimedia), floating-point ROM (10%, 8%,
10%, 13%, and 8% for spec2k-int, spec2k-fp, spec06, server, and
multimedia), or simd-shifter (10%, 9%, 10%, 13% and 8% for
spec2k-int, spec2k-fp, spec06, server, and multimedia). These
cases approach the throughput of a defect-free 8-core die and
exceed core disabling for all workloads.

One case that does not perform well is a core with a defective
integer multiplier. Throughput is 2%-3% below that of a 7 core die
for both server and multimedia workloads, and more than 5%
below that of a defect-free die for all workloads. Based on this
throughput, and because integer multiply is used in a large fraction
of benchmarks as mentioned in Section 7.1, integer multiply may
not be a good candidate for core salvaging.

Of the three cases that cover the largest amount of area, i,si-
shuf, alldiv, and allfp, the first two have good throughput that

exceeds that of core disabling for all workloads. (Multimedia
barely outperforms on alldiv because of the large number of float-
ing-point divides). Allfp, which covers over a third of the execu-
tion area, does not fare as well because so many resources are
disabled, but throughput is still higher than core disabling for
spec2k-int and server workloads.

7.2.3 Optimizing the fall-back interval
This subsection shows the impact of fine-tuning the interval for

which core-salvaging falls back to core disabling in the presence of
too many migrations. Too small of an interval can result in thrash-
ing due to repeated migrations, but too long of an interval can
waste execution potential on the defective core. Figure 7 (B) shows
results for each of our workloads for various fall-back intervals for
the case of one core which cannot execute any divides (alldiv). We
choose the alldiv case because it is one of our worst performers,
and the aim of falling back to core disabling is to mitigate through-
put loss.

Unlike the previous Figure 7(A), the top bar represents mean
throughput compared to 8 defect-free cores, and the bottom bar
represents a workload’s worst-performing benchmark’s throughput
compared to 8 defect-free cores. Also unlike the previous figure,
each group of bars represents one workload, and the bars within the
group each interval size. The interval sizes are defined by two
numbers in the format X/Y. X is the number of cycles for which we
fall back to core disabling, and Y is the size of a cycle window dur-
ing which we allow 2 migrations to occur before we fall back to
core disabling. The cases are shown in the figure (a-d).

The first two bars for each workload vary the tolerance window
for migrations before falling back to core disabling, specifically a)
tolerates two migrations in 60,000 cycles and b) tolerates two
migrations in 40,000 cycles. There is little difference between
those cases. In other experiments (not shown), we found through-
put is generally insensitive to the size of the tolerance window for
values less than 100,000 cycles or to the number of migrations
allowed in the tolerance window, for values less than 5.

The last three bars present increasing fall-back windows from
150,000 cycles to 250,000 cycles. Increasing the size of the fall
back window improves worst-case throughput slightly for spec2k-
int, spec2k-fp, and spec06, but degrades worst-case throughput for
server and multimedia. The degradation for window sizes above
150,000 cycles is substantial for multimedia, indicating that the
long fall-back to core disabling is denying useful opportunity to
execute on the salvaged core. Because of that behavior, and
because the impact of fall-back window size on average-case
throughput is minimal, we choose a fall-back window of 150,000
cycles as our best case.

7.3 Hybrid Hardware Redundancy
In this section, we show results for core salvaging based on a

hybrid of artificial microarchitectural redundancy and architectural
redundancy, as discussed in Section 5. When one core is using a
small secondary structure in place of a primary structure, we
expect throughput to fall between that of a defect-free processor
and one using core disabling. For the results shown, we again use
our worst-case homogeneous workloads. Because workloads are
homogeneous, the scheduling optimizations discussed in
Section 5.1 would not be applied.

Figure 8 shows our results. We evaluate three scenarios which
deviate from the baseline core given in Table 3: 1) a core relies
only on a bimodal branch direction predictor, 2) a core relies on an

102

10-entry instruction decode queue, and 3) a core relies on small
secondary load and store buffers. Each scenario is a group of bars,
and each bar represents one of our workloads.

The numbers under the scenarios in the figure represent the
fraction of core area covered by allowing core salvaging (not
including cache and TLB array area, as discussed earlier in
Section 3.3). The coverage for these sample structures compares
favorably to the potential coverage for microarchitectural salvag-
ing, as shown earlier in Figure 4. Figure 4 showed microarchitec-
tural salvaging covering a total of 10.4% for all small arrays,
execution units, and simple decoders, while these three example
structures alone add up to 12% coverage.

For the processor relying on a smaller instruction decode
queue, all workloads outperform core disabling substantially, likely
because pressure on the decode queue is low during most execu-
tion. The results for the small load and store buffers are mixed, but
all but spec2k-fp at least outperform core disabling. Spec2k-fp and
multimedia are both memory intensive, which likely causes their
relatively poor performance with the secondary load and store
buffers.

Finally, salvaging cores with defective branch predictors pro-
vides a model example where core salvaging is beneficial on all

workloads. For the processor relying on only the bimodal branch
predictor, no workload loses more than 1% average performance
compared to 8 defect-free cores, and all have 9% or 10% higher
throughput than core disabling.

8 CONCLUSION
The incidence of hard errors in CPUs is a challenge for future

multicore designs due to increasing total core area. Even if the
location and nature of hard errors are known a priori, either at man-
ufacture-time or in the field, cores with such errors must be dis-
abled in the absence of hard-error tolerance. While caches, with
their regular and repetitive structures, are easily covered against
hard errors by providing spare arrays or spare lines, structures
within a core are neither as regular nor as repetitive. Previous work
has proposed microarchitectural core salvaging to exploit struc-
tural redundancy within a core and maintain functionality in the
presence of hard errors. Unfortunately microarchitectural salvag-
ing introduces core complexity and may provide only limited cov-
erage of core area against hard errors due to a lack of natural
redundancy in the core. We showed that microarchitectural redun-
dancy may have the potential to cover only about 10% of the vul-
nerable core area.

This paper makes a case for architectural core salvaging. We
observe that even if some individual cores cannot execute certain
operations, a CPU die can be instruction-set-architecture (ISA)
compliant, that is execute all of the instructions required by its
ISA, by exploiting natural cross-core redundancy. We propose
using hardware to migrate offending threads to another core that
can execute the operation. Architectural core salvaging can cover a
large core area against faults, and be implemented by leveraging
known techniques that minimize changes to the microarchitecture.
We show it is possible to optimize architectural core salvaging
such that the performance on a faulty die approaches that of a fault-
free die--assuring significantly better performance than core dis-
abling for many workloads and no worse performance than core
disabling for the remainder.

We showed that architectural core salvaging has the potential to
cover 86% of execution-unit area, and we showed proofs-of-con-
cept covering 46% of the execution-unit area. That 46% of execu-
tion-unit area equates to 9% of vulnerable core area. We also
showed proofs-of-concept for hybrid redundancy techniques that
cover an additional 12% of core area. Thus, the total coverage of
our examples is 21% of core area.

Me
an

 th
ro

ug
hp

ut

Figure 7: Core salvaging throughput.

0.7

0.8

0.9

1.0

1.1

1.2

i f 6 s m

i: spec int 2K f: spec fp 2K 6: spec 2006 s: server m: multimedia

fp div fp mul fp rom i div si-shift i slow i,si-shufi mul alldiv allfp

(A) Core-Salvaging throughput relative to 7 and 8 defect-free cores
for one core missing given instruction class(es)

(B) Optimizing core-disabling fall-back interval: alldiv

1.5 5.1 2.1 2.5 0.0 2.2 0.3 6.2 6.9 34.7 i f 6 s m

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
re

lat
ive

 to
 8

% of exec-unit area covered

average number
of migrations

4 4 3 3

Relative to 8 defect-free cores Relative to 7 defect-free cores Worst-case benchmark Mean

de
fec

t-f
re

e c
or

es

7 7 5 5 6 6 6 4 8 8 6 5 11 11 9 8

a b c d

a: 150K/60K b: 150K/40K c: 200K/40K d: 250K/40K

Figure 8: Hybrid core salvaging throughput.

0.8

1.0

1.2

Me
an

 th
ro

ug
hp

ut

i

Core-Salvaging throughput relative to 7 and 8 defect-free cores for
one core with a defective structure replaced by secondary structure

% of (non cache/tlb array) core area covered
i: spec int 2K f: spec fp 2K 6: spec 2006

s: server m: multimedia

Branch pred: Inst. decode q: Load/Store Buffer
bimodal-only 10 entries 4 entries

 f 6 s m

5% 2% 5%

Relative to 8 defect-free cores
Relative to 7 defect-free cores

103

In contrast, microarchitectural salvaging potentially covered
only 10.4% of vulnerable core area across all of the execution
units, decoders, and small arrays. If the full potential coverage of
execution units was utilized in addition to our hybrid coverage,
architectural salvaging would cover up to 30% of vulnerable core
area. Thus architectural core salvaging can provide substantially
more coverage than microarchitectural salvaging without the per-
formance loss of core disabling, while incurring minimal core
changes and maintaining throughput near that of a fault-free CPU.

ACKNOWLEDGEMENTS
The authors wish to acknowledge the work of Omer Khan who-

made significant improvements to the Asim model while interning
with the AMI group within SPEARS at Intel Massachusetts.

REFERENCES
[1] T. M. Austin. DIVA: A reliable substrate for deep submicron

microarchitecture design. In Proceedings of the 32nd Interna-
tional Symposium on Microarchitecture (MICRO 32), Nov.
1999.

[2] F. A. Bower, P. G. Shealy, S. Ozev, and D. J. Sorin. Tolerating
hard faults in microprocessor array structures. In International
Conference on Dependable Systems and Networks (DSN2004),
pages 51–60, June 2004.

[3] F. A. Bower, D. J. Sorin, and S. Ozev. A mechanism for online
diagnosis of hard faults in microprocessors. In Proceedings of
the 38th International Symposium on Microarchitecture (MI-
CRO 38), pages 197–208, Nov. 2005.

[4] M. Bushnell and V. Agrawal. Essentials of Electronic Testing
for Digital, Memory, and Mixed-Signal VLSI Circuits. Spring-
er, 2000.

[5] J. Chang, M. Huang, J. Shoemaker, J. Benoit, S.-L. Chen,
W. Chen, S. Chiu, R. Ganesan, G. Leong, V. Lukka, S. Rusu,
and D. Srivastava. The 65nm 16mb on-die l3 cache for a dual
core multi-threaded xeon processor. In 2006 Symposium on
VLSI Circuits, pages 126–127, Feb. 2006.

[6] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco. Soft-
ware-based online detection of hardware defects: Mechanisms,
architectural support, and evaluation. In Proceedings of the
40th International Symposium on Microarchitecture (MICRO
40), pages 97–108, Dec. 2007.

[7] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne,
S. S. Mukherjee, H. Patel, S. Wallace, N. Binkert, R. Espasa,
and T. Juan. Asim: A performance model framework. In IEEE
Computer 0018-9162:68-76, pages 68–76, Feb. 2002.

[8] G. Gerosa, S. Curtis, M. D’Addeo, B. Jiang, B. Kuttanna,
F. Merchant, B. Patel, M. Taufique, and H. Samarchi. A sub-
lw to 2w low-power IA processor formobile internet devices
and ultra-mobile PCs in 45nm hi-k metal gate CMOS. In 2008
IEEE International Solid-State Circuits Conference, Feb.
2008.

[9] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins,
Y. Watanabe, and T. Yamazaki. A novel simd architecture for
the cell heterogeneous chip-multiprocessor. In Proceedings of
Seventeenth Symposium of IEEE Hot Chips, Aug. 2005.

[10] S. Gunther, F. Binns, D. M. Carmean, and J. C. Hall. Manag-
ing the impact of increasing microprocessor power consump-
tion. In Intel Technology Journal Q1 2001, Q1 2001.

[11] Intel Corporation. First Details on a Future Intel Design Code-
named Larrabee. http://www.intel.com/pressroom/archive/re-
leases/20080804fact.htm, Aug. 2008.

[12] Intel Corporation. Intel Core 2 Duo Processor and Intel Core 2
Extreme Processor on 45-nm Process for Platforms Based on
Mobile Intel 965 Express Chipset Family. ftp://download.in-
tel.com/design/mobile/datashts/31891401.pdf, Jan. 2008.

[13] Intel Corporation. Intel Corporation’s Multicore Architecture
Briefing. http://www.intel.com/pressroom/archive/releases/
20080317fact.htm, Mar. 2008.

[14] D. A. Jimenez. Reconsidering complex branch predictors. In
Ninth International Symposium on High Performance Comput-
er Architecture (HPCA), pages 43–52, Feb. 2003.

[15] R. Joseph. Exploring salvage techniques for multi-core archi-
tectures. In Workshop on High Performance Computing Reli-
ability Issues (HPCRI) 2005, Feb. 2005.

[16] A. Meixner and D. J. Sorin. Detouring: Translating software to
circumvent hard faults in simple cores. In International Con-
ference on Dependable Systems and Networks (DSN2008),
pages 80–89, June 2008.

[17] M. D. Powell, A. Biswas, J. Emer, S. S. Mukherjee, B. R.
Sheikh, and S. Yardi. CAMP: A technique to estimate per-
structure power at run-time using a few simple parameters. In
Fifteenth International Symposium on High Performance
Computer Architecture (HPCA), Feb. 2009.

[18] B. F. Romanescu and D. J. Sorin. Core cannibalization archi-
tecture: Improving lifetime chip performance for multicore
processors in the presence of hard faults. In Proceedings of the
2008 International Conference on Parallel Architectures and
Compiliation, pages 43–51, Oct. 2008.

[19] E. Schuchman and T. N. Vijaykumar. Rescue: A microarchi-
tecture for testability and defect tolerance. In Proceedings of
the 32st International Symposium on Computer Architecture
(ISCA 32), pages 160–171, June 2005.

[20] E. Schuchman and T. N. Vijaykumar. Blackjack: Hard error
detection with redundant threads on smt. In International Con-
ference on Dependable Systems and Networks (DSN2007),
pages 327–337, June 2007.

[21] P. Shivakumar, S. W. Keckler, C. R. Moore, and D. Burger.
Exploiting microarchitectural redundancy for defect tolerance.
In International Conference on Computer Design (ICCD),
2003.

[22] J. C. Smolens, B. T. Gold, J. C. Hoe, B. Falsafi, and K. Mai.
Detecting emerging wearout faults. In Workshop on Silicon Er-
rors in Logic - System Effects (SELSE-3), Apr. 2007.

[23] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Exploiting
structural duplication for lifetime reliability enhancement. In
Proceedings of the 32st International Symposium on Computer
Architecture (ISCA 32), June 2005.

[24] The Standard Performance Evaluation Corporation. Spec
CPU2000 suite. http://www.specbench.org/osg/cpu2000/.

[25] The Standard Performance Evaluation Corporation. Spec
CPU2006 suite. http://www.specbench.org/osg/cpu2006/.

[26] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi.
CACTI 5.1. Technical report, HP Laboratories, Palo Alto,
2008.

[27] D. Weiss, J. J. Wuu, and V. Chin. The on-chip 3-MB subarray-
based third-level cache on an Itanium microprocessor. IEEE
Journal of Solid-State Circuits, 37(11):1523–1529, 2002.

104

