
Appears in the 20
th

 International Symposium on High Performance Computer Architecture (HPCA)

Orlando, Florida, February 17-19, 2014

1

PVCoherence: Designing Flat Coherence Protocols for Scalable Verification

Meng Zhang
1
, Jesse D. Bingham

2
, John Erickson

2
, and Daniel J. Sorin

1

1
Department of ECE

2
Intel Corporation

Duke University

Abstract

The goal of this work is to design cache coherence

protocols with many cores that can be verified with

state-of-the-art automated verification methodologies. In

particular, we focus on flat (non-hierarchical) coherence

protocols, and we use a mostly-automated methodology

based on parametric verification (PV). We propose several

design guidelines that architects should follow if they want to

design protocols that can be parametrically verified. We

experimentally evaluate performance, storage overhead, and

scalability of a protocol verified with PV compared to a

highly optimized protocol that cannot be verified with PV.

1. Introduction

There is a tension in cache coherence protocol design

between performance and verification difficulty. Efforts to

improve coherence protocol performance often lead to

increasing amounts of parallelism and coherence state that

must be maintained. However, increasing the amount of

parallelism and coherence state makes the verification of

protocols more difficult. Typically, performance is the

primary goal, and the verification team attempts to verify the

protocol as best as possible. Complete formal verification of

typical high-performance protocols requires more time than

is practical, and thus industry relies on some combination of

incomplete formal verification (e.g., verifying a protocol

with far fewer caches than in the real system) and incomplete

testing of the protocol in a simulator.

In this work, our ultimate goal is to design cache

coherence protocols such that they can be formally verified.

There are two primary techniques for formal verification:

model checking and theorem proving. Model checking uses

fully automated tools to model the system and then check

whether the coherence invariants hold throughout the entire

reachable state space. With theorem proving, the verification

team models a system mathematically and manually guides a

tool towards a proof that the system is correct. Both formal

techniques are considered complete methods as they

mathematically prove the correctness of a design. However,

neither technique is capable of verifying today’s

high-performance cache coherence protocols. Model

checking has the infamous “state explosion” problem and

does not scale as we increase the number of cores. Theorem

proving requires an impractical amount of manual effort to

verify non-trivial systems. Thus we still need a way to verify

large scale systems.

Some recent work has indeed proposed coherence protocol

designs that can be verified for arbitrary numbers of cores

[31][4][30]. The key insight in these papers is that

hierarchical designs can be inductively verified for arbitrarily

sized systems—but only assuming that the base case or the

building blocks can themselves be verified. To satisfy this

assumption, TreeFractal [31] is limited to a binary tree

organization that incurs significantly more latency and

storage overhead for directory controllers than if one could

verify a base case with a higher degree tree. Similarly, MCP

[4] assumes that the building blocks it composes together can

be verified, which is true only for small building blocks.

We seek to architect arbitrarily large flat (non-hierarchical)

protocols such that they can be verified using a

mostly-automated methodology. These flat protocols can be

used either on their own or as building blocks in inductively

verified hierarchical protocols [31][4]. To achieve this goal,

we use a previously developed technique called parametric

verification. The key idea of parametric verification is to

treat the number of nodes—in this work on coherence

protocols, a node is a core plus its private cache(s)—as a

parameter instead of as a concrete number. Parametric

verification can prove that certain properties are true for the

system regardless of the value of the parameter.

There have been several proposals for how to perform

parametric verification (PV), and in this work we focus on a

method that is highly automated. We believe that automation

is critical for usability by non-experts. We use a method

developed by Chou et al. [8] and McMillan [22] that makes

heavy use of automated tools plus a relatively small amount

of manual intervention. We discuss this method, which we

refer to as Simple-PV,
 1
 in Section 2.

PV, particularly Simple-PV, has been previously used to

verify specific cache coherence protocols [21][24], and prior

work has focused on how to apply PV to given protocols.

These papers are formal and tailored towards verification

experts who must verify protocols given to them. Our focus

in this paper differs in that we explore how to design

1 The method is called CoMpositional Parameterized verification or CMP

in the verification literature, but the CMP acronym is overloaded in the

architecture literature.

2

protocols such that they can be verified with PV. While it is

true that verification experts often have intuition into which

protocol features are verifiable, we seek to provide architects

with a practical, non-mathematical set of guidelines for

designing protocols.

In this paper, we have two goals: 1) clearly lay out the

guidelines that the protocol must follow, in terms that do not

require expertise in formal verification and 2) show that

conforming to these guidelines does not have a large

performance impact.

To achieve the first goal, we explore the design space of

cache coherence protocols that can be parametrically verified

with Simple-PV. We seek to categorize the design options of

a cache coherence protocol as either “can be verified” or

“cannot be verified,” so that architects know what design

options they can use. We do not claim that these design

options include all possible features of a cache coherence

protocol, but we address many of the most important design

choices. We study the fundamental limitations of PV, in

general, as well as the limitations introduced by Simple-PV.

Based on these observations, we extract several design

guidelines for making a cache coherence protocol amenable

to PV. Today’s protocols already adhere to some of these

guidelines (although not necessarily because the architects

were considering PV), but other guidelines are not typically

met. Regardless of today’s protocols, we hope to make the

designers of future protocols aware of these guidelines.

We refer to any protocol that obeys all of the proposed

guidelines as a PVCoherence protocol. It is possible that a

PVCoherence protocol, due to limitations imposed by

following our guidelines, may perform worse or require more

storage overhead than a traditional optimized protocol. To

evaluate this possibility and thus achieve our second goal, we

construct a typical high performance protocol, called

OP-MOESI, that cannot be parametrically verified. Then we

create a new protocol called PV-MOESI by modifying

OP-MOESI to adhere to the design guidelines we propose for

PVCoherence. We verify PV-MOESI using Simple-PV.

We experimentally examine the differences between

OP-MOESI and PV-MOESI in performance, network traffic,

scalability, and storage overhead, and we find that they are

comparable. Even though the evaluation is performed on

only a single PVCoherence protocol, we believe the

conclusions extend to other PVCoherence protocols, because

none of the changes required to convert a typical protocol to a

PVCoherence protocol is likely to have a large impact on

performance, network traffic, or storage costs.

We make the following contributions.

• We present a set of design guidelines for cache

coherence protocols. Following these guidelines,

architects can design cache coherence protocols that can

be parametrically verified.

• We describe the design process of a PVCoherence

protocol, called PV-MOESI, that can be verified with

model checking tools and limited human intervention

for any arbitrary number of nodes.

• We experimentally compare the performance, network

traffic, scalability, and storage overhead of PV-MOESI

and a highly optimized protocol, OP-MOESI, that

cannot be verified with Simple-PV.

The rest of the paper is organized as follows. Section 2

explains parametric verification. Section 3 describes the

system model we assume. Section 4 presents our guidelines

on how to design protocols such that they can be

parametrically verified. Section 5 illustrates how we convert

a highly optimized protocol that cannot be verified into a

PVCoherence protocol. Section 6 presents our experimental

results. Section 7 discusses related work, and Section 8

concludes the paper.

2. Background on Parametric Verification

In this section, we explain parametric verification (PV) at a

level that is relevant to architects who would want to design

protocols that can be verified with this method. Due to space

constraints and our intended audience, we intentionally do

not delve deeply into the theoretical foundations of PV.

There are a number of methodologies for PV, with greatly

varying levels of automation. At one extreme, any modern

theorem proving system is capable of doing PV, given

enough human insight and effort. At the other extreme, there

are fully automated approaches [3][12]. Unfortunately

automation can be costly; such methods typically suffer from

extreme limitations on the protocols that can be verified

and/or high computational complexity (i.e., the “automation”

is of no practical use). In the middle ground we find

approaches [10] that are more automated than pure theorem

proving but do require some manual intervention.

Simple-PV falls into this space and has seen perhaps the most

success in academia and industry.

2.1. Model Checking

Model checking is a method to mathematically verify a

finite-state concurrent system. The user provides a model (a

description of a system) and a specification (the properties to

which the system should adhere). Then a model checking

tool automatically and exhaustively searches the reachable

state space and checks whether this model meets the given

specification. If not, the tool provides a counterexample,

which is a sequence of states that leads to a violation of the

specification. The counterexample gives useful information

for the user to debug the system and find design errors.

There are various kinds of model checking tools. Murphi

[11] is a widely used tool, especially for the verification of

cache coherence protocols. The user models the cache

coherence protocol in an expressive language and specifies

the invariants. When model checking coherence protocols, it

is common to assume that each cache contains only a single

1-bit line. Furthermore, details such as the physical

interconnection and the memory controller are not modeled,

because they have no impact on the correctness of the

3

protocol. For the verification of cache coherence protocols,

there are two primary invariants.

1. Permissions Invariant: The protocol must enforce the

single-writer, multiple-reader (SWMR) invariant [27]: for

each block of memory, at any given time, the block either

has a single writer or zero or more readers.

2. Data Invariant: A read of a block must return the value of

the most recent write to that block.

Model checking is limited to small systems (typically 2-5

nodes), because of its use of exhaustive search. Researchers

have developed some techniques for reducing the size of the

reachable state space—such as leveraging the “symmetry” of

identical components to remove redundant states [23]—but

these techniques cannot enable the verification of systems

with arbitrary numbers of nodes.

2.2. Methodology of Simple-PV

Although model checking is attractive because it is fully

automated, model checking is insufficient for parametric

verification. Except in very restrictive situations (e.g., trivial

systems), parametric verification fundamentally requires

some amount of human effort [15], and we focus on the PV

method that is practical and that we have found to require the

least amount of human effort.

Chou et al. [8] propose a simple method, which we call

Simple-PV, to parametrically verify cache coherence

protocols. This method is based on McMillan’s

compositional reasoning theory [22]. The main advantage of

Simple-PV, compared to other PV methods, is that it

leverages automated tools where possible to minimize the

required manual effort, and it is practical for realistic designs.

Consider a system with an arbitrary number of nodes, N.

We illustrate the Simple-PV process for verifying this

system’s coherence protocol in Figure 1 and now discuss

each step. We start with a non-parametric model, like in a

typical non-parametric verification.

Step #1: Automatically Create Parametric Model

The first step in Simple-PV is to create a parametric model

from the non-parametric model. Consider the system with N

nodes in Figure 2. Starting with two concrete nodes
2
 in the

non-parametric model, we then abstract the other N-2 nodes

into a single “Other” node that we refer to as OtherNode.

OtherNode represents the behaviors of all N-2 nodes and we

must ensure that the parametric model permits all possible

behaviors that the concrete nodes can do as well as the

actions those abstracted nodes can do to them.

We perform this process of abstraction with a fully

automated tool called Abster [28] that was developed by Intel.

Given a non-parametric model specified in the Murphi model

checker’s language, Abster produces a parametric Murphi

model by generating the behavior for OtherNode. Abster’s

automation helps greatly in avoiding tedious and error-prone

manual abstraction. The key point of abstraction is that it

must preserve all the behaviors of OtherNode that could

occur. Thus, Abster conservatively over-approximates the

behavior of the N-2 nodes that it abstracts; that is, the

automatically generated OtherNode is likely to exhibit

behaviors that would not be possible had we instead

instantiated N-2 concrete nodes. This over-approximation

leads to a challenge that we address in Step #3.

Abster may fail to generate a parametric model. This

failure does not necessarily mean that a protocol cannot be

verified with Simple-PV; instead, it means the protocol is not

compatible with Abster. Because we would like to make the

verification as automated as possible, we modify the protocol

until it is compatible with Abster.

Step #2: Automatically Model Check the Model

If Abster successfully creates a parametric model, we use

Murphi model to automatically model check that the model

satisfies the two coherence invariants listed in Section 2.1. If

Murphi succeeds, the protocol is coherent and we are done.

If Murphi fails, there are four possible scenarios:

1. There are real bugs in the cache coherence protocol

design. In this case, we must debug the protocol and

then return to Step #2.

2 The number of concrete nodes to instantiate depends on the protocol, for

reasons explained in Section 2.3, but it tends to be two or three.

Figure 1. Simple-PV Verification Process

Figure 2. Parametric Model

4

2. The state space of the parametric model exceeds the

capacity of Murphi. Even with parameterization, there

are systems that are too large for Murphi. In this case,

we must re-design the protocol such that the abstracted

parametric protocol “fits” in Murphi.

3. The over-approximation in Step #1 enables OtherNode

to behave in a way that causes spurious violations of the

coherence invariants. In this case, we proceed to Step

#3 (to “fix” OtherNode) and then return to Step #2.

4. The protocol is incompatible with Simple-PV. In this

case, no amount of fixing OtherNode leads to a protocol

that can be verified with Murphi.

Step #3: Manually Refine the Model
Because Abster over-approximates when it abstracts the

N-2 nodes into OtherNode, it is possible that, in Step #2,

Murphi discovers spurious violations of invariants. When

this happens, the verifier must manually intervene and refine

the parametric model by modifying OtherNode. Based on

the counter-example provided by Murphi, the verifier

modifies OtherNode to restrict its behavior.

Restricting the behavior of OtherNode may seem to

introduce the possibility of “defining away the problem.” If

we arbitrarily remove behaviors from OtherNode, we could

fool ourselves into a false verification in which we remove

behaviors that are possible and that lead to genuine violations

of the coherence invariants.

The key to refinement is to both constrain the behavior of

OtherNode and also check that these constraints are valid.

Thus for each constraint we add to OtherNode’s behavior, we

add an invariant that Murphi checks, and this invariant is that

the constraint is justified (i.e., true for a non-abstracted

model). Furthermore, this added invariant is checked on the

concrete nodes.
3
 In the PV literature, such an invariant is

called a lemma, and we adopt this terminology here.

Steps #2 and #3 represent an iterative process of

identifying spurious violations in Murphi and refining the

model accordingly. The process ends when either (a) Murphi

successfully verifies the parametric model, in which case we

know the protocol is correct for any arbitrary number of

nodes, or (b) the iterative refinement process does not

eventually result in a model that Murphi can verify, in which

case we consider the protocol to be incompatible with

Simple-PV. We discuss why protocols may be incompatible

with Simple-PV in Section 2.4.

While Step #3 involves manual effort, prior work (on

simple protocols [8]) and our work here indicates that the

process is both straightforward and tends to involve only a

few iterations.

3 It appears that checking the lemma on the concrete nodes when

OtherNode has been constrained is circular. However, verification literature

has shown that the circularity is broken using an induction over time along

with symmetry, and hence the method is sound [8][22].

2.3. Choosing the Number of Concrete Nodes

 One issue in Simple-PV is choosing the number of

concrete nodes in the parametric model. This number is a

function of both the protocol and the invariants. A rigorous

explanation of the theory behind choosing the number of

concrete nodes [8] is beyond the scope of this paper, but we

provide the intuition here. Essentially, we must have enough

concrete nodes such that we can describe every possible

situation and invariant. For example, if we have only one

concrete node, then we cannot describe the invariant that two

different (concrete) nodes cannot both be in M(odified) state

at the same time. In this situation, at least two concrete nodes

are needed. Our protocol in this paper requires two concrete

nodes, but some other protocols may require three.

2.4. Limitations of Simple-PV

One limitation of Simple-PV is that, as mentioned

previously and illustrated in Figure 1, some possible

protocols are incompatible with Simple-PV. This limitation

of Simple-PV is understandable, because there is a trade-off

between the expressiveness of a logical formalism and the

difficulty of its decision problem [13]. To be more specific,

Simple-PV seeks to maximize the usage of automated tools

and reduce the human effort. The automated tools ease the

verification process, but heavy reliance on automation may

somewhat limit the kinds of protocols we can verify.

From a formal and mathematical perspective, Krstic [14]

describes the limitations of Simple-PV. Krstic describes the

syntax of a mathematical language that can be used to

describe protocols for which Simple-PV is always

applicable. However, it is not obvious how to recast these

mathematical formulations into a set of guidelines for

realistic protocols (that are not specified mathematically).

One motivation for our paper is that the practical

limitations of applying Simple-PV to today’s coherence

protocols are mostly unknown. Most of the systems verified

with Simple-PV are old and may not be suitable for today’s

multicore processors. For example, the two example

protocols in Chou et al.’s paper [8] assume that each core is

its own chip with its own dedicated link to its own portion of

the distributed memory. The exception is recent work by

O’Leary et al. [24] that shows that Simple-PV can be

successfully applied to a specific high-performance modern

protocol. However, as with much prior work, it is unclear

how to generalize from the specific protocol verified to the

space of protocol features that are compatible with

Simple-PV. Furthermore, even if a feature is incompatible

with Simple-PV, it is unclear whether the constraints

imposed to ensure compatibility are too costly in terms of

performance or storage.

Our goal is to explore the limitations of Simple-PV from

an architect’s perspective and provide the designers with

insights into how to design cache coherence protocols that

are compatible with Simple-PV.

5

3. System Architecture

In this section, we present the system architecture based on

which we design cache coherence protocols. Currently

multicore processors usually employ a multi-level cache

hierarchy, in which each core has one or more private caches

and all cores share a last level cache. This system model

includes Intel’s Nehalem [26] and AMD’s Barcelona [9]. We

illustrate this system model in Figure 3.

Coherence Protocol: We assume a directory-like

coherence protocol. We describe the operation of the cache

coherence protocols in this paper using terminology common

to both Sorin et al. [27] and the protocols that are distributed

with the gem5 simulator [7]. The coherence requests are:

“GetS” to obtain Shared (read-only) access, “GetM” to

obtain Modified (read-write) access, “PutM” to writeback a

Modified block, “PutO” to writeback an Owned block, and

“PutE” to writeback an Exclusive block.

Cache Hierarchy: The last-level L2 cache is inclusive with

respect to the L1 caches. To maintain inclusion, evicting a

block from an L2 requires invalidating that block from any

L1 caches that hold it. With an inclusive L2, the L2 tags can

be extended to create a co-located directory cache. That is,

each L2 block holds the directory state for that block.

Because the L2 is inclusive, the directory cache has the state

of all blocks present in one or more L1 caches, and a miss in

the L2 implies that the block’s state is I(nvalid) and leads to a

memory access.

Interconnection Network: We make no assumptions about

the interconnection network except regarding virtual

channels. Directory protocols require multiple virtual

channels to avoid deadlocks due to circular dependences on

messages. Request messages can lead to Forwarded Request

messages (including invalidations) that can lead to Response

messages that can, in some protocols, lead to Completion

messages. Each class of message travels on its own virtual

channel. These virtual channels may or may not be ordered,

depending on the protocol; we later discuss the impact of

ordering on verification.

4. Guidelines for Coherence Protocol Design

 We seek to design cache coherence protocols that can be

parametrically verified with Simple-PV. However, not all

possible protocol features are compatible with Simple-PV,

due to its theoretical limitations. Our goal in this paper is to

explore the fundamental limitations of Simple-PV and

discover which protocol features do and do not satisfy these

limitations. We have strived to include the most important

protocol features in our study, but we cannot claim that the

list of features is complete, because there are so many

possible ways to design a protocol. Nevertheless, we believe

we have explored the most important design decisions and

whether they satisfy the fundamental constraints of

Simple-PV. Ideally, an architect can use this study to

determine if a new feature is compatible with Simple-PV.

 When we discuss how compatibility with Simple-PV

imposes limitations on cache coherence design, we generally

focus on limitations that are due to the fundamental theory

underlying Simple-PV. However there are some limitations

we present that are not fundamental but are rather limitations

imposed by state-of-the-art tools. A tool-based limitation

may seem uninteresting, but architects must use today’s tools,

and there is no clear path to enhancing the tools to overcome

these current limitations.

We now present the guidelines in order from the most

intuitive to what we consider to be the least intuitive.

Guideline #1: All nodes must be identical.
 If, instead of identical nodes we have a variety of node

types, then we must have multiple “flavors” of OtherNode,

one for each variety of node. This complicates the PV

abstraction and refinement process, and it also makes state

space explosion much more likely. Abster, for example, does

not support abstraction of heterogeneous nodes. Hence our

notion of Simple-PV disallows such protocols.

 In theory, an automated tool could abstract a system with

two different concrete nodes and all other N-2 nodes being

the same type as one of the two concrete nodes. But such a

system is not practically interesting and we do not consider it.

Cache

Entry Tag State Data
Sharer

Counter

Sharer

Set

Directory

Cache Entry
Tag State

Sharer

Counter

Sharer

Set

Forwarded

Message
Header Data

Sharer

Counter

Sharer

Set

Figure 4. Components impacted by Guideline #2

Guideline #2: The protocol cannot use any variable that

depends on the number of nodes.
With Simple-PV, we treat the number of nodes as a

parameter rather than as a concrete number. We cannot

perform any math function, such as addition or comparison,

on the parameter. Therefore, the protocol cannot use any

variable that depends on the actual value of the parameter.

This guideline most directly impacts coherence protocol

design by prohibiting the use of counters (that count the

number of nodes). Typical directory protocols often use

Figure 3. System Architecture

6

counters to aid in collecting acknowledgments, such that a

core waits to write to a block until it has received

acknowledgments from some number of other cores that had

been sharing the block. Token Coherence [18] uses counters

to track tokens used to determine permissions.

Figure 4 shows the protocol components that may be

impacted by Guideline #2. The gray entries indicate storage

and message fields that we need to avoid: sharer counters.

Instead of a sharer counter, we need to use a bit vector to

denote the sharer set. This constraint leads to potential

overhead in two ways. One overhead is storage, because a bit

vector consumes more storage than a counter. The other

overhead is network traffic, because a message containing a

sharer set is larger than an equivalent message containing a

sharer counter.

It is perhaps surprising that Simple-PV allows us to use a

bit vector with a size equal to the number of nodes but

disallows a counter with a size equal to the number of nodes,

even though the bit vector is larger than the counter.

However, the intuition is that using a counter is prohibited

because it involves comparisons to a value that is

parameterized.

Guideline #3: We cannot have ordering over a list/queue

whose size depends on the number of nodes.
Ordering of nodes implies that nodes are being treated

individually. If we need to maintain ordering, we must

explicitly represent each node, which precludes representing

all N-2 abstracted nodes with an OtherNode.

This guideline has a significant impact on coherence

protocol design. Adhering to this guideline prohibits us from

designing protocols in which we enforce point-to-point

ordering for a virtual channel that has a queue depth that

depends on the number of nodes. Some queues have a depth

that does not depend on the number of nodes, such as a queue

of requests from one L1 cache to the L2; the depth of this

queue depends on the number of outstanding requests the L1

can have, which is both small and not parameterized.

Nevertheless, there are situations in which we might want

a queue with a depth that depends on the number of nodes,

and we discuss two examples in order of complexity.

(1) Consider a system in which all of the L1 caches share a

queue of requests to the L2. This queue has a depth that

is proportional to the number of nodes. Such a queue is

compatible with Simple-PV only if it is unordered.

(2) Consider a protocol that relies upon point-to-point

ordering of forwarded coherence requests from the

directory to each L1. Many protocols rely on this

ordering to avoid races that would otherwise

complicate the protocol and require additional

messages to acknowledge message reception.

However, ordering of this queue is not compatible with

Simple-PV if the number of forwarded messages that

can be in this queue is a function of the number of

nodes. Unfortunately, in many protocols, this situation

is possible. For example, if Core C1 has requested

Modified permissions for block B, the directory could

forward subsequent GetS requests for B to C1 from

every other core before C1 receives the data for B and

can start responding to the GetS requests that have

filled its queue. We illustrate this scenario in Figure 5.

Most protocols do not rely on ordering of the forwarded

GetS requests in this example
4

; nevertheless, the

possibility of having a number of messages in the queue

that depends on the number of nodes precludes ordering

any messages in this queue.

Guideline #3 certainly constrains protocol design, but this

constraint is necessary for compatibility with Simple-PV.

Guideline #4: We should not parameterize buffers or

queues in more than one dimension.
In our protocol models (and in all model checking work we

have seen), arrays are used to represent channels and

messages are entries in these arrays. For example, we specify

the buffer of requests from Core C1’s L1 cache to the L2

cache as buffer_L1_C1_to_L2[SIZE], where SIZE is the

number of entries in the buffer. It is common to designate

SIZE as a concrete value (e.g., 4) or as a variable that is equal

to the number of cores. The latter situation can occur, for

example, in a queue of forwarded requests from the directory

to a given L1 cache; as explained in the discussion of

4 Ordering is more useful for races involving writebacks.

Initially, the left-most L1 cache issues GetM and waits for data. Then the left-most L1 cache receives Forwarded-GetS messages

from all other L1 caches.

Figure 5. Scenario #2 forbidden by Guideline #3

7

Guideline #3, such a queue could hold forwarded GetS

requests from all other cores. Although the buffer depth in

this example is a function of the parameterized number of

nodes, the protocol is still compatible with Simple-PV,

because the array is parameterized in only one dimension.

The problem for Simple-PV appears only when we want to

specify an array that is parameterized in more than one

dimension. The consequence of this constraint is that it

affects a common protocol design option. Namely, it

precludes us from letting a core that issues a GetM collect all

of the acknowledgment messages from cores that were

invalidated by the GetM. In this scenario, Core C1 issues a

GetM to the L2 and the L2 sends an invalidation to all cores

with Shared copies of the block. In most protocols, the

invalidated cores send acknowledgments to C1. However,

that implies that we have buffers from each core to each other

core. Because the number of nodes is parameterized, we thus

have a two-dimensional parameterization with a structure

like AcknowledgmentBuffers[N][N].

Therefore, to follow Guideline #4, a protocol must collect

acknowledgments at the L2 instead of at the requesting L1.

The L2 then sends a single, aggregated acknowledgment to

the requesting L1. This design option is somewhat less

efficient than having the requesting L1 collect the

acknowledgments, because it requires an extra message on

the critical path for completing the transaction.

Guideline #4 is not as fundamental as the others; we could

violate this guideline and still have a protocol that is

compatible with Simple-PV. Nevertheless, there are two

reasons we follow this guideline. First and foremost,

parameterizing in multiple dimensions requires much more

concrete state to be maintained in the parameterized model

(compared to a model with a one-dimensional

parameterization), and this extra state may well exceed the

capacity of the model checker. A secondary reason to follow

this guideline is that multiple dimensional parameterization

requires a more sophisticated abstraction tool, which may not

be available. Abster, as one example, does not support

parameterization in multiple dimensions. This tool-specific

reason for following Guideline #4 is a practical but not

fundamental limitation of Simple-PV.

Observations about Specific Optimizations

The above four guidelines are basic rules for protocol

design. However, even if a protocol follows all of these

guidelines, the subtle details of the protocol can affect the

protocol’s compatibility with Simple-PV. We explore the

design space to determine which design choices are

compatible with Simple-PV and which are not.

We start with a simple protocol with three stable states: M,

S, and I. The protocol follows Guidelines #1-#4 and is

conservative (has little concurrency). Basically, only one

transaction is allowed at a time. Before a transaction can

complete, the requesting L1 cache must send a “completion”

message to the L2 cache. Before this completion message

arrives at the L2, the L2 blocks subsequent requests from

other cores. This simple protocol can be abstracted by Abster

and verified by Murphi with the manual addition of only one

lemma. Informally, this lemma constrains the behavior of a

node such that a node with a block in state M has the most

current data for that block. Without specifying this lemma,

the block’s data value that is generated by Abster is arbitrary,

which can lead to violations of the Data Invariant.

Although this protocol is compatible with Simple-PV and

requires minimal manual effort to verify, this protocol is

overly simplistic and would not perform well. Hence, we

optimize this simple protocol by adding more states (both

stable and transient states) and transactions, which increases

concurrency. We considered the following list of

optimizations, adding them in this order:

1. We add the stable state E(xclusive).

2. We add the stable state O(wned).

3. We add an Upgrade request for increasing coherence

permission from read-only (Shared) to read-write

(Modified). The response to an Upgrade request does

not require a large data message. Without an Upgrade

request, a core with a Shared block must issue a GetM

and receive data even though it already has valid data.

4. We add silent eviction for Shared blocks. An L1 cache

can evict a Shared block without notifying the L2 cache.

5. We remove the completion messages for GetS

transactions when the data response comes from the L2

(and not another L1). An L1 cache that sends a GetS

request to the L2 does not have to notify the L2 once it

has received the data from the L2, and the L2 no longer

blocks while waiting for completion messages.

6. We remove the completion messages for GetM

transactions. An L1 cache that sends a GetM request to

the L2 does not have to notify the L2 once it has

received the data and the (aggregated) acknowledgment

from the L2, and the L2 no longer blocks while waiting

for completion messages.

 The impact of these optimizations on Simple-PV varies.

Adding the “E” state (Optimization 1) has zero impact.

Because the protocol is still conservative in that it allows

only one transaction at a time, we can verify it without adding

more lemmas. Adding the “O” state (Optimization 2)

requires two lemmas; for example, one lemma constrains

OtherNode’s behavior based on whether the L2’s coherence

state indicates that a concrete L1 is in state S or not.

 Optimizations 3-5 require a few extra lemmas during the

iterative verification process, but the protocols are still

verifiable with Simple-PV. For example, one lemma says

that when an L1 cache is waiting for a data reply from the L2

cache, there cannot be other L1 caches sending data to the

requesting L1. This lemma constrains the behavior of

OtherNode, preventing its abstracted caches from sending

data to the concrete caches when they are not supposed to.

 Optimization 6 is not compatible with Simple-PV. Assume

that one of the N-2 abstracted L1 caches is the Modified

owner of a block. L1 cache C0 has the block in state I and

issues a GetM to the L2 and transitions to transient state IM

8

(in I, waiting to go to M). The L2 forwards C0’s GetM to

OtherNode and immediately changes the directory state to

indicate that C0 is the owner.
5
 Before C0 receives data from

the owner (in OtherNode), another abstracted L1 cache issues

a GetM to the L2. The L2 forwards this request to C0 and

changes the directory state to indicate that the owner is

OtherNode. C0 still does not have data, and it changes its

block state to the transient state IMI (in I, waiting to go to M,

will do one store when it gets the data, and then will go back

to I). At this time, cache C1 goes through the same process

that C0 has just gone through and also ends up in state IMI.

Now the problem for Simple-PV emerges. OtherNode

replies with data but cannot determine whether to send to C0

or C1. C0 and C1 are in the same state and both are eligible

to receive data. The L2 cannot maintain the ordering in

which the GetM requests arrived, because that would require

ordering a list that has a size proportional to the number of

nodes (and Guideline #3 explains why ordering such a list is

incompatible with Simple-PV). Thus the races caused by this

particular optimization make the protocol with this

optimization incompatible with Simple-PV. One could

imagine protocols that allow the L2 to send data to either C0

or C1 without regard to the order in which their requests

arrive, but such protocols would suffer from fairness and

potential starvation problems.

Conclusions: Designing a coherence protocol that can be

verified with Simple-PV requires adhering to several

guidelines. The list of features in this section may not be

exhaustive, but we believe that we have included all of the

fundamental reasons for why features may be incompatible.

5. Design of a PVCoherence Protocol

Following the above guidelines, we can design

PVCoherence protocols. The common feature of all

PVCoherence protocols is that they can be formally verified

using Simple-PV. Although all PVCoherence protocols obey

the design guidelines presented in Section 4, there can still be

considerable variation between different PVCoherence

protocols. In this section, we show the design process of one

PVCoherence protocol, called PV-MOESI. We have also

experimented with other PVCoherence protocols, but

PV-MOESI covers more of the interesting features discussed

in Section 4 and thus we present it here.

PV-MOESI is based on the system architecture in Figure 3.

To highlight the ramifications of designing a protocol to be

compatible with Simple-PV, we compare and contrast the

design of PV-MOESI with a protocol we call OP-MOESI.

OP-MOESI is similar to typical multicore protocols, and it

provides high performance but it cannot be verified using

Simple-PV. In the design of PV-MOESI, we try to keep it as

5This immediate transition differs from a protocol with a completion

message; with a completion message, the directory state would not change

until the completion arrives from C0.

similar to OP-MOESI as possible, only modifying it when

necessary to satisfy the constraints of Simple-PV.

5.1. Optimized Baseline Protocol: OP-MOESI

 The OP-MOESI coherence protocol is a fairly standard
directory protocol that is optimized for performance.

OP-MOESI is similar to other prevalent protocols [9][26].

OP-MOESI has five stable L1 cache coherence states

(MOESI) and more than 30 transient states to improve

performance. An L2 block can be in a similar set of states,

except that an L2 block cannot be in E (there is no use for it)

and it can be in one of two “stale” states: M(s) and O(s).

These stale states denote when there is an L1 that has the

block in M or O, respectively, and that L1 potentially has a

more up-to-date value of the data than the L2.

The directory state, which is co-located with the L2

tag/state, includes a full-map bit vector that denotes which L1

caches are currently caching each block. We denote L2

states in the form X:Y, where X is the state of the L2 block

itself and Y is the directory state. For example, an L2 state of

M:I denotes that the L2 holds an M copy of the block and no

L1 caches have a copy of the block.

The protocol relies on having three virtual channels in the

system; there are virtual channels for requests, forwarded

requests, and responses. All of these virtual channels enforce

point-to-point ordering for OP-MOESI.

We specify OP-MOESI at a high level in Table 1. This

specification omits all of the complexity of transient states,

but it provides the big picture of how the protocol works.

5.2. PV-MOESI

Although highly optimized, OP-MOESI cannot be verified

with Simple-PV. Abster fails to generate an abstracted model

for OP-MOESI and thus we cannot run it through Murphi. In

this section, we create PV-MOESI by modifying OP-MOESI

to satisfy the guidelines in Section 4. The specification of

PV-MOESI is alongside the specification of OP-MOESI in

Table 1, with PV-MOESI’s differences highlighted in bold.

1. For GetM transactions, we remove the counter in the

response message from the L2 to the requesting L1. We

replace it with a sharer set that is, unfortunately, larger

than the counter (C bits compared to log2C bits).

2. For GetM transactions, we have the L2, instead of the

L1 requestor, collect the acknowledgments from L1

caches that are invalidated. After collecting all L1

acknowledgements, the L2 sends a single

acknowledgement to the L1 requestor. This

modification adds one more network hop per GetM.

3. We remove the point-to-point ordering in all virtual

channels. This is the most significant change in the

protocol because it leads to more races. The races

happen when an L1 receives a forwarded request or an

invalidation while in a transient state. PV-MOESI

handles these races in the usual fashion (with extra

9

Table 1. High-level specifications of OP-MOESI and PV-MOESI. Ignores transient states.

Differences between OP-MOESI and PV-MOESI are in bold font in PV-MOESI specification.

 OP-MOESI PV-MOESI

Structures

L1 cache entry 64B data, tag, state={M,O,E,S,I}

L2 cache entry 64B data, tag/bit vector to track L1 caches, directory state={I:I, S:S, O:S, M:I, O(s):O, M(s):M}

Core C1 has load miss on block B in its L1, sends GetS to L2

L2 = I:I

L2 gets block from memory and sends it to C1;

L2 adds C1 to bit vector; L2 M(s):M; C1’s L1 E

same as OP-MOESI

L2 = S:S or O:S L2 sends data to C1; L2 adds C1 to bit vector;

C1’s L1 S

same as OP-MOESI

L2 = M:I L2 sends data to C1; L2 M(s):M; C1’s L1 E L2 sends data to C1; C1 sends Completion to L2;

L2 M(s):M; C1’s L1 E

L2 = O(s):O

C2 is the owner

L2 forwards GetS to C2; L2 adds C1 to bit vector;

C2 sends data to C1; C1’s L1 S

L2 forwards GetS to C2; L2 adds C1 to bit vector;

C2 sends data to C1; C1 sends Completion to L2;

C1’s L1 S

L2 = M(s):M

C2 is the owner

L2 forwards GetS to C2; L2 adds C1 to bit vector;

L2 O (s):O; C1’s L1 S

L2 forwards GetS to C2; L2 adds C1 to bit vector;

C1 sends Completion to L2;
L2 O (s):O; C1’s L1 S

Core C1 has store miss on block B in its L1, sends GetM to L2

L2 = I:I

L2 gets block from memory and sends it to C1;

L2 M(s):M; C1’s L1 M

L2 gets block from memory and sends it to C1;

C1 sends Completion to L2;

L2 M(s):M; C1’s L1 M

L2 = S:S or O:S L2 sends data to C1 with number of sharers and sends

invalidations to sharers; sharers send acks to C1;

L2 M(s):M; C1’s L1 M

L2 sends invalidations to sharers; sharers send acks to

L2; L2 sends data to C1 (without number of sharers);

C1 sends Completion to L2; L2 M(s):M; C1’s L1 M

L2 = M:I L2 sends data to C1; L2 M(s):M; C1’s L1 M L2 sends data to C1; C1 sends Completion to L2;

L2 M(s):M; C1’s L1 M

L2 = O(s):O

L1 owner is C2

L2 forwards GetM to C2 with number of sharers and

sends invalidation to sharers; C2 sends data to C1;

sharers send acks to C1;

L2 M(s):M; C1’s L1 M; C2’s L1 I

L2 forwards GetM to C2 (without number of sharers) and

sends invalidations to sharers; C2 sends data to C1;

sharers send acks to L2; L2 sends ack to C1;

C1 sends Completion to L2;
L2 M(s):M; C1’s L1 M; C2’s L1 I

L2 = M(s):M

L1 owner is C2

L2 forwards GetM to C2; C2 sends data to C1;

L2 M(s):M; C1’s L1 M; C2’s L1 I

L2 forwards GetM to C2; C2 sends data to C1;

C1 sends Completion to L2;
L2 M(s):M; C1’s L1 M; C2’s L1 I

Core C1 has store miss on block B in its L1, but it has the data, sends Upgrade to L2

L2 = S:S or O:S

or O(s):O

L2 sends invalidations to sharers except C1; L2 sends ack

to C1 with number of sharers; sharers send acks to C1; L2

M(s):M; C1’s L1 M

L2 sends invalidations to sharers except C1; sharers send

acks to L2; L2 sends ack to C1; C1 sends Completion to

L2; L2 M(s):M; C1’s L1 M

Core C1 wants to evict block B from its L1

C1’s L1=S C1 immediately evicts block; C1’s L1 I

C1’s L1=E C1 sends PutE to L2 without data, waits for ack

C1’s L1=O or M C1 sends PutO or PutM with data to L2, waits for ack

L2 wants to evict block B

L2 = I:I L2 immediately evicts block

L2 = S:S or O:S L2 sends invalidations to L1 sharers, waits for acks, then evicts

L2 = M:I L2 writes data back to memory, waits for ack from memory, then evicts

L2 = O(s):O L2 sends GetM to L1 owner, sends invalidations to L1 sharers, waits for data and acks, then evicts

L2 = M(s):M L2 sends GetM to L1 owner, waits for data, then evicts

10

messages and extra transient states) but without ever

blocking. These races are not unique to PV-MOESI but

rather a well-known issue for protocols that cannot rely

on point-to-point ordering. Handling the races

introduces some complexity but is manageable.

After the above modifications, we find that the model can

be abstracted by Abster. However, the abstracted model still

cannot be verified by Murphi, regardless of how we try to

refine it. This problem—which arises due to multiple

in-flight GetM requests—was discussed at the end of Section

4, and we handle it by modifying how the protocol handles

GetM requests. When the L2 receives a GetM it forwards the

GetM and/or invalidations (as in OP-MOESI) but then blocks

subsequent requests until it receives a Completion message

from the L1 that requested the GetM. The L1 sends the

Completion once it has received data and/or the

acknowledgment from the L2. This protocol modification

potentially impacts performance due to blocking at the L2.

We formally verify PV-MOESI with Simple-PV. We find

that we need to manually add only 7 lemmas during

refinement to enable verification. Adding these lemmas is

not trivial, but neither is it terribly complicated. All other

verification work is automatic with Abster and Murphi. The

Murphi model checking completed in under one hour and

used several gigabytes of memory.

6. Evaluation

Creating PV-MOESI from OP-MOESI revealed several

issues which could potentially cause PV-MOESI to be worse

than OP-MOESI with respect to performance, storage, and

network traffic. Therefore, we performed a series of

experiments to compare PV-MOESI and OP-MOESI.

6.1. Methodology

 We evaluate OP-MOESI and PV-MOESI using the gem5

full-system simulator [7]. For both protocols, we keep the

common architectural parameters the same: processor

configuration, L1/L2 cache size, memory size, link latency,

link bandwidth, etc. We calculated the access latency of

storage structures using Cacti [25]. The system parameters

are shown in Table 2.

For benchmarks, we use the PARSEC benchmark suite [6],

except for two benchmarks, streamcluster and fluidanimate,

that are not compatible with gem5. We run each experiment

multiple times to accommodate the natural variability in

simulation runtimes [2]; error bars in graphs indicate

plus/minus one standard deviation from the mean.

6.2. Performance

The primary goal of our experimental evaluation is to

determine the performance difference between the

unverifiable OP-MOESI and the verifiable PV-MOESI.

There are several reasons why PV-MOESI’s performance

could potentially be less than that of OP-MOESI, including

PV-MOESI’s extra Completion messages and requiring the

L2 to collect invalidation acknowledgments. The question is

whether, in practice, these potential performance

degradations occur. In Figure 6, we plot the runtimes for both

OP-MOESI and PV-MOESI, normalized to the runtime of

OP-MOESI, for 32-core systems. While there are some

differences in the runtimes, they are “within the noise.” On

some benchmarks, PV-MOESI even has a marginally shorter

runtime than OP-MOESI, but these differences are also

within the noise and are not meaningful speedups.

To better understand why PV-MOESI’s performance is

effectively the same as that of OP-MOESI, we evaluated two

issues: the impact of PV-MOESI’s Completion messages and

PV-MOESI’s additional network usage.

Completion Messages: PV-MOESI’s use of Completion

messages can potentially hinder performance. While waiting

for a Completion message on block B, the L2 stalls requests

for block B. To evaluate the performance impact of this L2

stalling, we inspected the fraction of requests that arrive at

the L2 and must stall while waiting for a Completion. For all

benchmarks, this fraction was well less than 1%, i.e., the use

of Completions messages causes few stalls and has little

impact on performance.

Network Overhead: PV-MOESI uses more interconnection

network bandwidth than OP-MOESI. This extra bandwidth

is mainly due to the extra messages caused by Completions.

Intuitively, this bandwidth overhead should be small, but we

experimentally evaluated it to confirm this expectation. In

Figure 7, we plot the total traffic consumed by PV-MOESI,

normalized to the traffic consumed by OP-MOESI. For most

benchmarks, the overhead is less than 5%, but it is as high

as13.8% for canneal. In our system model, the performance

impact of this extra network traffic is minimal, but it could be

greater in systems with more limited network bandwidth.

Table 2. Simulation Configurations

Processor Core Parameters

Cores 32 in-order x86 cores

Clock frequency 2 GHz

Cache and Memory Parameters

Cache line size 64 bytes

L1 I&D caches 32 KB, 2-way, 2 cycle hit

L2 cache
inclusive with respect to L1s;

8MB split into 16 banks –

each bank 512 KB, 8-way, 12-cycle hit

Memory 2GB, 160-cycle hit

Interconnection Network Parameters

Topology 2D mesh

Link bandwidth 32 GB/s

Link latency 1 cycle

11

6.3. Scalability

Because our goal is to create protocols that are verifiable

even as they scale to larger numbers of cores, we are

interested in studying PV-MOESI’s performance scalability.

We focus on one representative benchmark, blackscholes,

and we show how its performance scales from 4-32 cores.

 In

Figure 8, we compare the runtimes for OP-MOESI and

PV-MOESI, normalized to OP-MOESI’s 4-core runtime, as a

function of the number of cores. We observe that

PV-MOESI tracks OP-MOESI’s performance for all core

counts and is thus just as scalable—both up and down—as

OP-MOESI. We also note that speedups are less than linear

with core count, which is a function of the benchmark more

than that of the protocol.

6.4. Storage Overhead

We evaluate the storage overhead of PV-MOESI by

looking at the L2 cache and L1 cache separately.

In the L2 cache, PV-MOESI requires a sharer set in the

directory to record all L1 sharers. This is also true for

OP-MOESI. Therefore, PV-MOESI adds no storage

overhead compared to a protocol with a full-map directory.

Those optimization techniques for reducing the storage cost

of the directory, such as coarse directory, limited pointer

directory [1], etc., can also be employed in PV-MOESI as

long as they do not involve sharer counters.

In the L1 cache, PV-MOESI has no storage overhead,

either. One could, however, imagine a PVCoherence

protocol that had L1 storage overhead if the L1 maintained a

sharer set. Such protocols are rare, but it is possible that a

protocol would have the L1’s MSHR entries track

outstanding acknowledgments, in which case PVCoherence

would require a sharer set instead of a less costly counter.

Even in this scenario, the storage overhead is tiny compared

to the overall size of the L1 cache.

7. Related Work

The most related work consists of hierarchical protocols

that were designed for verification. Zhang et al. [31] design

coherence protocols in a fractal, hierarchical way, which

ensures self-similarity at each scale, to enable inductive

verification. The base case of the proof is the verification of a

minimum-scale system. Voskuilen and Vijaykumar [30]

greatly improve upon the performance of fractal coherence

protocols by creating protocols that are provably equivalent

to fractal protocols yet do not have some of the performance

pathologies of Zhang et al’s protocol. Matthews et al. [20]

apply the fractal approach for a dynamic power management

protocol. Beu et al. [4] leverage a coherence design

framework called MCP [5] for composing heterogeneous

protocols in a hierarchical fashion. Beu et al. show that, if

each of the building block protocols is verified correct then

the hierarchical protocol is also correct by induction. Our

work in this paper complements this prior work on verifiable

hierarchical protocols, because it enables the verification of

larger “minimum systems” in fractal protocols and larger

“building blocks” in MCP. Current automated tools can

verify protocols with only 2-5 caches, which is not ideal for

either fractal base cases or MCP building blocks. It is

important to be able to verify larger flat protocols, both for

stand-alone purposes and for use in hierarchical protocols.

Other work considers verification or design complexity

when designing protocols. HCC [16] is organized

hierarchically as a tree of caches. This tree organization

facilitates verification of liveness and consistency. HCC is

verified manually, unlike the largely automated verification

in our work. Vantrease et al. [29] propose an atomic

coherence protocol that avoids races and is thus simpler; we

expect it would be easier to verify than a typical non-atomic

protocol, but verification is not discussed in the paper.

 Some prior work has compared the verification effort

required for different coherence protocols. Martin [17]

compared snooping and directory protocols. Marty et al. [19]

discussed the formal verification efforts of different protocol

Figure 6. Runtime comparison: OP-MOESI vs PV-MOESI

Figure 7. Network traffic overhead of PV-MOESI

Figure 8. Performance Scalability

0

0.2

0.4

0.6

0.8

1

1.2

N
e

tw
o

r
k

 T
r
a

ff
ic

 N
o

r
m

a
li

z
e

d

to
 O

P
-M

O
E

S
I

OP-MOESI

PV-MOESI

0

0.2

0.4

0.6

0.8

1

1.2

4core 8core 16core 32coreR
u

n
ti

m
e

 o
f

B
la

c
k

s
c
h

o
le

s

OP-MOESI

PV-MOESI

12

designs and further showed their proposed protocol is more

amenable to formal verification. Our work differs from this

work by considering verification at design time instead of

analyzing verification effort for given designs.

8. Conclusions

We have shown that, with awareness of certain issues that

affect parameterization, we can design protocols that are

compatible with parametric verification. Furthermore, our

experimental results show that we can develop a protocol that

is both compatible with PV and achieves performance

comparable to today’s typical multicore coherence protocols.

Acknowledgments
We thank Murali Talupur of Intel for supporting us in

using his Abster tool. This material is based upon work

supported by the National Science Foundation under grant

CCF-0811290.

References

[1] A. Agarwal, R. Simoni, M. Horowitz, and J. Hennessy, “An

Evaluation of Directory Schemes for Cache Coherence,” in

15th Annual Int’l Symposium on Computer Architecture, 1988.

[2] A. R. Alameldeen and D. A. Wood, “Variability in

Architectural Simulations of Multi-threaded Workloads,” in

Proc. of 9th Int'l Symp. on High-Performance Computer

Architecture, 2003.

[3] K. Baukus, Y. Lakhnech, and K. Stahl, “Parameterized

Verification of a Cache Coherence Protocol: Safety and

Liveness,” in Verification, Model Checking, and Abstract

Interpretation, vol. 2294, A. Cortesi, Ed. Springer Berlin

Heidelberg, 2002.

[4] J. G. Beu et al., “High-Speed Formal Verification of

Heterogeneous Coherence Hierarchies,” in 19th Int’l Symp. on

High Performance Computer Architecture, 2013.

[5] J. G. Beu, M. C. Rosier, and T. M. Conte, “Manager-Client

Pairing: A Framework for Implementing Coherence

Hierarchies,” in Proc. 44th Annual Int’l Symposium on

Microarchitecture, 2011.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC

Benchmark Suite: Characterization and Architectural

Implications,” in Proc. of the Int’l Conference on Parallel

Architectures and Compilation Techniques, 2008.

[7] N. Binkert et al., “The Gem5 Simulator,” ACM SIGARCH

Computer Architecture News, vol. 39, p. 1, Aug. 2011.

[8] C.-T. Chou, P. Mannava, and S. Park, “A Simple Method for

Parameterized Verification of Cache Coherence Protocols,” in

Formal Methods in Computer-Aided Design, 2004.

[9] P. Conway et al., “Cache Hierarchy and Memory Subsystem of

the AMD Opteron Processor,” IEEE Micro, vol. 30, no. 2,

2010.

[10] S. Das, D. L. Dill, and S. Park, “Experience with Predicate

Abstraction,” in Computer Aided Verification, 1999.

[11] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang, “Protocol

Verification as a Hardware Design Aid,” in IEEE Int’l Conf. on

Computer Design: VLSI in Computers and Processors, 1992.

[12] E. A. Emerson and V. Kahlon, “Exact and Efficient

Verification of Parameterized Cache Coherence Protocols,” in

Correct Hardware Design and Verification Methods, 2003.

[13] J. Harrison, “Theorem Proving for Verification (Invited

Tutorial),” in CAV, 2008, pp. 11–18.

[14] S. Krstic, “Parametrized System Verification with Guard

Strengthening and Parameter Abstraction,” Automated

Verification of Infinite State Systems, 2005.

[15] R. Krzysztof and D. Kozen, “Limits for Automatic

Verification of Finite-State Concurrent Systems,” Information

Processing Letters, vol. 22, pp. 307–309, 1986.

[16] E. Ladan-Mozes and C. E. Leiserson, “A Consistency

Architecture for Hierarchical Shared Caches,” in 20th Annual

Symp. on Parallelism in Algorithms and Architectures, 2008.

[17] M. M. K. Martin, “Formal Verification and its Impact on the

Snooping versus Directory Protocol Debate,” in Proc. of the

Int’l Conference on Computer Design, 2005.

[18] M. M. K. Martin, M. D. Hill, and D. A. Wood, “Token

Coherence: Decoupling Performance and Correctness,” in 30th

Annual Int’l Symposium on Computer Architecture, 2003.

[19] M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu, M. M.

Martin, and D. A. Wood, “Improving Multiple-CMP Systems

Using Token Coherence,” in 11th Int’l Symposium on

High-Performance Computer Architecture, 2005.

[20] O. Matthews, M. Zhang, and D. J. Sorin, “Scalably Verifiable

Dynamic Power Management,” in 20th Int’l Symposium on

High Performance Computer Architecture, 2014.

[21] K. L. Mcmillan, “Parameterized Verification of the FLASH

Cache Coherence Protocol by Compositional Model

Checking,” in CHARME 01: IFIP Working Conference on

Correct Hardware Design and Verification Methods, Lecture

Notes in Computer Science 2144, 2001.

[22] K. L. McMillan, “Verification of Infinite State Systems by

Compositional Model Checking,” in Proc. of the 10th IFIP

WG 10.5 Advanced Research Working Conference on Correct

Hardware Design and Verification Methods, 1999.

[23] C. Norris IP and D. Dill, “Better Verification Through

Symmetry,” Formal Methods in System Design, v. 9, no. 1–2,

1996.

[24] J. O’Leary, M. Talupur, and M. R. Tuttle, “Protocol

Verification Using Flows: An Industrial Experience,” in

Formal Methods in Computer-Aided Design, 2009.

[25] T. Shyamkumar, M. Naveen, and A. Ho, P., JN: Cacti 5.1.

Technical Report HPL-2008-20, HP Labs.

[26] R. Singhal, “Inside Intel Next Generation Nehalem

Microarchitecture,” in Hot Chips, 2008, vol. 20.

[27] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory

Consistency and Cache Coherence, Synthesis Lectures on

Computer Architecture. Morgan & Claypool Publishers, 2011.

[28] M. Talupur and M. R. Tuttle, “Going With the Flow:

Parameterized Verification Using Message Flows,” in Int’l

Conf. on Formal Methods in Computer-Aided Design, 2008.

[29] D. Vantrease, M. H. Lipasti, and N. Binkert, “Atomic

Coherence: Leveraging Nanophotonics to Build Race-Free

Cache Coherence Protocols,” in Proc 17th Int’l Symposium on

High-Performance Computer Architecture, 2011.

[30] G. Voskuilen and T. N. Vijaykumar, “High-Performance

Fractal Coherence,” in Proc. 9th Int’l Conf. on Architectural

Support for Programming Languages and Operating Systems,

2014.

[31] M. Zhang, A. R. Lebeck, and D. J. Sorin, “Fractal Coherence:

Scalably Verifiable Cache Coherence,” in Proc. of the 43rd

Annual Int’l Symposium on Microarchitecture, 2010.

