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Abstract 
  

The goal of this work is to design cache coherence 

protocols with many cores that can be verified with 

state-of-the-art automated verification methodologies.  In 

particular, we focus on flat (non-hierarchical) coherence 

protocols, and we use a mostly-automated methodology 

based on parametric verification (PV).  We propose several 

design guidelines that architects should follow if they want to 

design protocols that can be parametrically verified.  We 

experimentally evaluate performance, storage overhead, and 

scalability of a protocol verified with PV compared to a 

highly optimized protocol that cannot be verified with PV.  

1. Introduction 

There is a tension in cache coherence protocol design 

between performance and verification difficulty.  Efforts to 

improve coherence protocol performance often lead to 

increasing amounts of parallelism and coherence state that 

must be maintained.  However, increasing the amount of 

parallelism and coherence state makes the verification of 

protocols more difficult.  Typically, performance is the 

primary goal, and the verification team attempts to verify the 

protocol as best as possible.  Complete formal verification of 

typical high-performance protocols requires more time than 

is practical, and thus industry relies on some combination of 

incomplete formal verification (e.g., verifying a protocol 

with far fewer caches than in the real system) and incomplete 

testing of the protocol in a simulator. 

In this work, our ultimate goal is to design cache 

coherence protocols such that they can be formally verified. 

There are two primary techniques for formal verification: 

model checking and theorem proving. Model checking uses 

fully automated tools to model the system and then check 

whether the coherence invariants hold throughout the entire 

reachable state space. With theorem proving, the verification 

team models a system mathematically and manually guides a 

tool towards a proof that the system is correct.  Both formal 

techniques are considered complete methods as they 

mathematically prove the correctness of a design. However, 

neither technique is capable of verifying today’s 

high-performance cache coherence protocols.  Model 

checking has the infamous “state explosion” problem and 

does not scale as we increase the number of cores. Theorem 

proving requires an impractical amount of manual effort to 

verify non-trivial systems.  Thus we still need a way to verify 

large scale systems. 

Some recent work has indeed proposed coherence protocol 

designs that can be verified for arbitrary numbers of cores 

[31][4][30].  The key insight in these papers is that 

hierarchical designs can be inductively verified for arbitrarily 

sized systems—but only assuming that the base case or the 

building blocks can themselves be verified.  To satisfy this 

assumption, TreeFractal [31] is limited to a binary tree 

organization that incurs significantly more latency and 

storage overhead for directory controllers than if one could 

verify a base case with a higher degree tree.  Similarly, MCP 

[4] assumes that the building blocks it composes together can 

be verified, which is true only for small building blocks. 

We seek to architect arbitrarily large flat (non-hierarchical) 

protocols such that they can be verified using a 

mostly-automated methodology.  These flat protocols can be 

used either on their own or as building blocks in inductively 

verified hierarchical protocols [31][4].  To achieve this goal, 

we use a previously developed technique called parametric 

verification.  The key idea of parametric verification is to 

treat the number of nodes—in this work on coherence 

protocols, a node is a core plus its private cache(s)—as a 

parameter instead of as a concrete number. Parametric 

verification can prove that certain properties are true for the 

system regardless of the value of the parameter.  

There have been several proposals for how to perform 

parametric verification (PV), and in this work we focus on a 

method that is highly automated.  We believe that automation 

is critical for usability by non-experts.  We use a method 

developed by Chou et al. [8] and McMillan [22] that makes 

heavy use of automated tools plus a relatively small amount 

of manual intervention.   We discuss this method, which we 

refer to as Simple-PV,
 1
 in Section 2. 

PV, particularly Simple-PV, has been previously used to 

verify specific cache coherence protocols [21][24], and prior 

work has focused on how to apply PV to given protocols.  

These papers are formal and tailored towards verification 

experts who must verify protocols given to them.  Our focus 

in this paper differs in that we explore how to design 

 

 
1 The method is called CoMpositional Parameterized verification or CMP  

in the verification literature, but the CMP acronym is overloaded in the 

architecture literature. 
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protocols such that they can be verified with PV.  While it is 

true that verification experts often have intuition into which 

protocol features are verifiable, we seek to provide architects 

with a practical, non-mathematical set of guidelines for 

designing protocols.  

In this paper, we have two goals: 1) clearly lay out the 

guidelines that the protocol must follow, in terms that do not 

require expertise in formal verification and 2) show that 

conforming to these guidelines does not have a large 

performance impact.  

To achieve the first goal, we explore the design space of 

cache coherence protocols that can be parametrically verified 

with Simple-PV. We seek to categorize the design options of 

a cache coherence protocol as either “can be verified” or 

“cannot be verified,” so that architects know what design 

options they can use.  We do not claim that these design 

options include all possible features of a cache coherence 

protocol, but we address many of the most important design 

choices.  We study the fundamental limitations of PV, in 

general, as well as the limitations introduced by Simple-PV.   

Based on these observations, we extract several design 

guidelines for making a cache coherence protocol amenable 

to PV. Today’s protocols already adhere to some of these 

guidelines (although not necessarily because the architects 

were considering PV), but other guidelines are not typically 

met.  Regardless of today’s protocols, we hope to make the 

designers of future protocols aware of these guidelines.  

We refer to any protocol that obeys all of the proposed 

guidelines as a PVCoherence protocol.  It is possible that a 

PVCoherence protocol, due to limitations imposed by 

following our guidelines, may perform worse or require more 

storage overhead than a traditional optimized protocol. To 

evaluate this possibility and thus achieve our second goal, we 

construct a typical high performance protocol, called 

OP-MOESI, that cannot be parametrically verified. Then we 

create a new protocol called PV-MOESI by modifying 

OP-MOESI to adhere to the design guidelines we propose for 

PVCoherence. We verify PV-MOESI using Simple-PV.  

We experimentally examine the differences between 

OP-MOESI and PV-MOESI in performance, network traffic, 

scalability, and storage overhead, and we find that they are 

comparable. Even though the evaluation is performed on 

only a single PVCoherence protocol, we believe the 

conclusions extend to other PVCoherence protocols, because 

none of the changes required to convert a typical protocol to a 

PVCoherence protocol is likely to have a large impact on 

performance, network traffic, or storage costs. 

We make the following contributions. 

• We present a set of design guidelines for cache 

coherence protocols. Following these guidelines, 

architects can design cache coherence protocols that can 

be parametrically verified.  

•  We describe the design process of a PVCoherence 

protocol, called PV-MOESI, that can be verified with 

model checking tools and limited human intervention 

for any arbitrary number of nodes. 

• We experimentally compare the performance, network 

traffic, scalability, and storage overhead of PV-MOESI 

and a highly optimized protocol, OP-MOESI, that 

cannot be verified with Simple-PV. 

The rest of the paper is organized as follows. Section 2 

explains parametric verification. Section 3 describes the 

system model we assume. Section 4 presents our guidelines 

on how to design protocols such that they can be 

parametrically verified. Section 5 illustrates how we convert 

a highly optimized protocol that cannot be verified into a 

PVCoherence protocol. Section 6 presents our experimental 

results. Section 7 discusses related work, and Section 8 

concludes the paper. 

2. Background on Parametric Verification 

In this section, we explain parametric verification (PV) at a 

level that is relevant to architects who would want to design 

protocols that can be verified with this method.  Due to space 

constraints and our intended audience, we intentionally do 

not delve deeply into the theoretical foundations of PV. 

There are a number of methodologies for PV, with greatly 

varying levels of automation.  At one extreme, any modern 

theorem proving system is capable of doing PV, given 

enough human insight and effort.  At the other extreme, there 

are fully automated approaches [3][12].  Unfortunately 

automation can be costly; such methods typically suffer from 

extreme limitations on the protocols that can be verified 

and/or high computational complexity (i.e., the “automation” 

is of no practical use).  In the middle ground we find 

approaches [10] that are more automated than pure theorem 

proving but do require some manual intervention.  

Simple-PV falls into this space and has seen perhaps the most 

success in academia and industry. 

2.1. Model Checking  

Model checking is a method to mathematically verify a 

finite-state concurrent system. The user provides a model (a 

description of a system) and a specification (the properties to 

which the system should adhere). Then a model checking 

tool automatically and exhaustively searches the reachable 

state space and checks whether this model meets the given 

specification. If not, the tool provides a counterexample, 

which is a sequence of states that leads to a violation of the 

specification. The counterexample gives useful information 

for the user to debug the system and find design errors.  

There are various kinds of model checking tools. Murphi 

[11] is a widely used tool, especially for the verification of 

cache coherence protocols. The user models the cache 

coherence protocol in an expressive language and specifies 

the invariants.  When model checking coherence protocols, it 

is common to assume that each cache contains only a single 

1-bit line. Furthermore, details such as the physical 

interconnection and the memory controller are not modeled, 

because they have no impact on the correctness of the 



 

 

 

3 

 

protocol.  For the verification of cache coherence protocols, 

there are two primary invariants.   

1. Permissions Invariant: The protocol must enforce the 

single-writer, multiple-reader (SWMR) invariant [27]: for 

each block of memory, at any given time, the block either 

has a single writer or zero or more readers.   

2. Data Invariant: A read of a block must return the value of 

the most recent write to that block.    

Model checking is limited to small systems (typically 2-5 

nodes), because of its use of exhaustive search.  Researchers 

have developed some techniques for reducing the size of the 

reachable state space—such as leveraging the “symmetry” of 

identical components to remove redundant states [23]—but 

these techniques cannot enable the verification of systems 

with arbitrary numbers of nodes.  

2.2. Methodology of Simple-PV 

Although model checking is attractive because it is fully 

automated, model checking is insufficient for parametric 

verification.  Except in very restrictive situations (e.g., trivial  

systems), parametric verification fundamentally requires 

some amount of human effort [15], and we focus on the PV 

method that is practical and that we have found to require the 

least amount of human effort. 

Chou et al. [8] propose a simple method, which we call 

Simple-PV, to parametrically verify cache coherence 

protocols. This method is based on McMillan’s 

compositional reasoning theory [22].  The main advantage of 

Simple-PV, compared to other PV methods, is that it 

leverages automated tools where possible to minimize the 

required manual effort, and it is practical for realistic designs.   

Consider a system with an arbitrary number of nodes, N.     

We illustrate the Simple-PV process for verifying this 

system’s coherence protocol in Figure 1 and now discuss 

each step.  We start with a non-parametric model, like in a 

typical non-parametric verification.  

Step #1: Automatically Create Parametric Model 

The first step in Simple-PV is to create a parametric model 

from the non-parametric model.  Consider the system with N 

nodes in Figure 2. Starting with two concrete nodes
2
 in the 

non-parametric model, we then abstract the other N-2 nodes 

into a single “Other” node that we refer to as OtherNode.  

OtherNode represents the behaviors of all N-2 nodes and we 

must ensure that the parametric model permits all possible 

behaviors that the concrete nodes can do as well as the 

actions those abstracted nodes can do to them. 

We perform this process of abstraction with a fully 

automated tool called Abster [28] that was developed by Intel.  

Given a non-parametric model specified in the Murphi model 

checker’s language, Abster produces a parametric Murphi 

model by generating the behavior for OtherNode.  Abster’s 

automation helps greatly in avoiding tedious and error-prone 

manual abstraction.  The key point of abstraction is that it 

must preserve all the behaviors of OtherNode that could 

occur.  Thus, Abster conservatively over-approximates the 

behavior of the N-2 nodes that it abstracts; that is, the 

automatically generated OtherNode is likely to exhibit 

behaviors that would not be possible had we instead 

instantiated N-2 concrete nodes.  This over-approximation 

leads to a challenge that we address in Step #3. 

Abster may fail to generate a parametric model.  This 

failure does not necessarily mean that a protocol cannot be 

verified with Simple-PV; instead, it means the protocol is not 

compatible with Abster. Because we would like to make the 

verification as automated as possible, we modify the protocol 

until it is compatible with Abster.  

Step #2: Automatically Model Check the Model 

If Abster successfully creates a parametric model, we use 

Murphi model to automatically model check that the model 

satisfies the two coherence invariants listed in Section 2.1.   If 

Murphi succeeds, the protocol is coherent and we are done.  

If Murphi fails, there are four possible scenarios: 

1. There are real bugs in the cache coherence protocol 

design.  In this case, we must debug the protocol and 

then return to Step #2. 

 

 
2 The number of concrete nodes to instantiate depends on the protocol, for 

reasons explained in Section 2.3, but it tends to be two or three. 

 

Figure 1.  Simple-PV Verification Process 

 

 
Figure 2.  Parametric Model 
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2. The state space of the parametric model exceeds the 

capacity of Murphi.  Even with parameterization, there 

are systems that are too large for Murphi.  In this case, 

we must re-design the protocol such that the abstracted 

parametric protocol “fits” in Murphi. 

3. The over-approximation in Step #1 enables OtherNode 

to behave in a way that causes spurious violations of the 

coherence invariants.  In this case, we proceed to Step 

#3 (to “fix” OtherNode) and then return to Step #2. 

4. The protocol is incompatible with Simple-PV. In this 

case, no amount of fixing OtherNode leads to a protocol 

that can be verified with Murphi. 

Step #3: Manually Refine the Model 
Because Abster over-approximates when it abstracts the 

N-2 nodes into OtherNode, it is possible that, in Step #2, 

Murphi discovers spurious violations of invariants.  When  

this happens, the verifier must manually intervene and refine 

the parametric model by modifying OtherNode.  Based on 

the counter-example provided by Murphi, the verifier 

modifies OtherNode to restrict its behavior. 

Restricting the behavior of OtherNode may seem to 

introduce the possibility of “defining away the problem.”  If 

we arbitrarily remove behaviors from OtherNode, we could 

fool ourselves into a false verification in which we remove 

behaviors that are possible and that lead to genuine violations 

of the coherence invariants. 

The key to refinement is to both constrain the behavior of 

OtherNode and also check that these constraints are valid.  

Thus for each constraint we add to OtherNode’s behavior, we 

add an invariant that Murphi checks, and this invariant is that 

the constraint is justified (i.e., true for a non-abstracted 

model). Furthermore, this added invariant is checked on the 

concrete nodes.
3
  In the PV literature, such an invariant is 

called a lemma, and we adopt this terminology here.   

Steps #2 and #3 represent an iterative process of 

identifying spurious violations in Murphi and refining the 

model accordingly.  The process ends when either (a) Murphi 

successfully verifies the parametric model, in which case we 

know the protocol is correct for any arbitrary number of 

nodes, or (b) the iterative refinement process does not 

eventually result in a model that Murphi can verify, in which 

case we consider the protocol to be incompatible with 

Simple-PV.  We discuss why protocols may be incompatible 

with Simple-PV in Section 2.4.   

While Step #3 involves manual effort, prior work (on 

simple protocols [8]) and our work here indicates that the 

process is both straightforward and tends to involve only a 

few iterations. 

 

 
3  It appears that checking the lemma on the concrete nodes when 

OtherNode has been constrained is circular.  However, verification literature 

has shown that the circularity is broken using an induction over time along 

with symmetry, and hence the method is sound [8][22]. 

2.3. Choosing the Number of Concrete Nodes 

    One issue in Simple-PV is choosing the number of 

concrete nodes in the parametric model.  This number is a 

function of both the protocol and the invariants.  A rigorous 

explanation of the theory behind choosing the number of 

concrete nodes [8] is beyond the scope of this paper, but we 

provide the intuition here.  Essentially, we must have enough 

concrete nodes such that we can describe every possible 

situation and invariant.  For example, if we have only one 

concrete node, then we cannot describe the invariant that two 

different (concrete) nodes cannot both be in M(odified) state 

at the same time. In this situation, at least two concrete nodes 

are needed.  Our protocol in this paper requires two concrete 

nodes, but some other protocols may require three. 

2.4. Limitations of Simple-PV 

One limitation of Simple-PV is that, as mentioned 

previously and illustrated in Figure 1, some possible 

protocols are incompatible with Simple-PV. This limitation 

of Simple-PV is understandable, because there is a trade-off 

between the expressiveness of a logical formalism and the 

difficulty of its decision problem [13]. To be more specific, 

Simple-PV seeks to maximize the usage of automated tools 

and reduce the human effort. The automated tools ease the 

verification process, but heavy reliance on automation may 

somewhat limit the kinds of protocols we can verify.  

From a formal and mathematical perspective, Krstic [14] 

describes the limitations of Simple-PV.  Krstic describes the 

syntax of a mathematical language that can be used to 

describe protocols for which Simple-PV is always 

applicable.  However, it is not obvious how to recast these 

mathematical formulations into a set of guidelines for 

realistic protocols (that are not specified mathematically).  

One motivation for our paper is that the practical 

limitations of applying Simple-PV to today’s coherence 

protocols are mostly unknown.   Most of the systems verified 

with Simple-PV are old and may not be suitable for today’s 

multicore processors. For example, the two example 

protocols in Chou et al.’s paper [8] assume that each core is 

its own chip with its own dedicated link to its own portion of 

the distributed memory. The exception is recent work by 

O’Leary et al. [24] that shows that Simple-PV can be 

successfully applied to a specific high-performance modern 

protocol.   However, as with much prior work, it is unclear 

how to generalize from the specific protocol verified to the 

space of protocol features that are compatible with 

Simple-PV.  Furthermore, even if a feature is incompatible 

with Simple-PV, it is unclear whether the constraints 

imposed to ensure compatibility are too costly in terms of 

performance or storage. 

Our goal is to explore the limitations of Simple-PV from 

an architect’s perspective and provide the designers with 

insights into how to design cache coherence protocols that 

are compatible with Simple-PV.  
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3. System Architecture 

In this section, we present the system architecture based on 

which we design cache coherence protocols. Currently 

multicore processors usually employ a multi-level cache 

hierarchy, in which each core has one or more private caches 

and all cores share a last level cache.  This system model 

includes Intel’s Nehalem [26] and AMD’s Barcelona [9]. We 

illustrate this system model in Figure 3.  

Coherence Protocol: We assume a directory-like 

coherence protocol.  We describe the operation of the cache 

coherence protocols in this paper using terminology common 

to both Sorin et al. [27] and the protocols that are distributed 

with the gem5 simulator [7].  The coherence requests are: 

“GetS” to obtain Shared (read-only) access, “GetM” to 

obtain Modified (read-write) access, “PutM” to writeback a 

Modified block, “PutO” to writeback an Owned block, and 

“PutE” to writeback an Exclusive block. 

Cache Hierarchy: The last-level L2 cache is inclusive with 

respect to the L1 caches. To maintain inclusion, evicting a 

block from an L2 requires invalidating that block from any 

L1 caches that hold it.   With an inclusive L2, the L2 tags can 

be extended to create a co-located directory cache.   That is, 

each L2 block holds the directory state for that block.  

Because the L2 is inclusive, the directory cache has the state 

of all blocks present in one or more L1 caches, and a miss in 

the L2 implies that the block’s state is I(nvalid) and leads to a 

memory access. 

Interconnection Network: We make no assumptions about 

the interconnection network except regarding virtual 

channels.  Directory protocols require multiple virtual 

channels to avoid deadlocks due to circular dependences on 

messages.  Request messages can lead to Forwarded Request 

messages (including invalidations) that can lead to Response 

messages that can, in some protocols, lead to Completion 

messages.  Each class of message travels on its own virtual 

channel.   These virtual channels may or may not be ordered, 

depending on the protocol; we later discuss the impact of 

ordering on verification.  

4. Guidelines for Coherence Protocol Design 

    We seek to design cache coherence protocols that can be 

parametrically verified with Simple-PV.  However, not all 

possible protocol features are compatible with Simple-PV, 

due to its theoretical limitations.  Our goal in this paper is to 

explore the fundamental limitations of Simple-PV and 

discover which protocol features do and do not satisfy these 

limitations. We have strived to include the most important 

protocol features in our study, but we cannot claim that the 

list of features is complete, because there are so many 

possible ways to design a protocol.  Nevertheless, we believe 

we have explored the most important design decisions and 

whether they satisfy the fundamental constraints of 

Simple-PV.  Ideally, an architect can use this study to 

determine if a new feature is compatible with Simple-PV.  

 When we discuss how compatibility with Simple-PV 

imposes limitations on cache coherence design, we generally 

focus on limitations that are due to the fundamental theory 

underlying Simple-PV.  However there are some limitations 

we present that are not fundamental but are rather limitations 

imposed by state-of-the-art tools.  A tool-based limitation 

may seem uninteresting, but architects must use today’s tools, 

and there is no clear path to enhancing the tools to overcome 

these current limitations.  

We now present the guidelines in order from the most 

intuitive to what we consider to be the least intuitive.  

Guideline #1: All nodes must be identical. 
 If, instead of identical nodes we have a variety of node 

types, then we must have multiple “flavors” of OtherNode, 

one for each variety of node.  This complicates the PV 

abstraction and refinement process, and it also makes state 

space explosion much more likely. Abster, for example, does 

not support abstraction of heterogeneous nodes.  Hence our 

notion of Simple-PV disallows such protocols. 

 In theory, an automated tool could abstract a system with 

two different concrete nodes and all other N-2 nodes being 

the same type as one of the two concrete nodes. But such a 

system is not practically interesting and we do not consider it.  
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Figure 4.  Components impacted by Guideline #2 

Guideline #2: The protocol cannot use any variable that 

depends on the number of nodes.  
With Simple-PV, we treat the number of nodes as a 

parameter rather than as a concrete number. We cannot 

perform any math function, such as addition or comparison, 

on the parameter.  Therefore, the protocol cannot use any 

variable that depends on the actual value of the parameter.   

This guideline most directly impacts coherence protocol 

design by prohibiting the use of counters (that count the 

number of nodes).  Typical directory protocols often use 
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counters to aid in collecting acknowledgments, such that a 

core waits to write to a block until it has received 

acknowledgments from some number of other cores that had 

been sharing the block.   Token Coherence [18] uses counters 

to track tokens used to determine permissions. 

Figure 4 shows the protocol components that may be 

impacted by Guideline #2. The gray entries indicate storage 

and message fields that we need to avoid: sharer counters. 

Instead of a sharer counter, we need to use a bit vector to 

denote the sharer set. This constraint leads to potential 

overhead in two ways.  One overhead is storage, because a bit 

vector consumes more storage than a counter. The other 

overhead is network traffic, because a message containing a 

sharer set is larger than an equivalent message containing a 

sharer counter.   

It is perhaps surprising that Simple-PV allows us to use a 

bit vector with a size equal to the number of nodes but 

disallows a counter with a size equal to the number of nodes, 

even though the bit vector is larger than the counter.  

However, the intuition is that using a counter is prohibited 

because it involves comparisons to a value that is 

parameterized. 

Guideline #3: We cannot have ordering over a list/queue 

whose size depends on the number of nodes.  
Ordering of nodes implies that nodes are being treated 

individually. If we need to maintain ordering, we must 

explicitly represent each node, which precludes representing 

all N-2 abstracted nodes with an OtherNode.  

This guideline has a significant impact on coherence 

protocol design.  Adhering to this guideline prohibits us from 

designing protocols in which we enforce point-to-point 

ordering for a virtual channel that has a queue depth that 

depends on the number of nodes.  Some queues have a depth 

that does not depend on the number of nodes, such as a queue 

of requests from one L1 cache to the L2; the depth of this 

queue depends on the number of outstanding requests the L1 

can have, which is both small and not parameterized. 

Nevertheless, there are situations in which we might want 

a queue with a depth that depends on the number of nodes, 

and we discuss two examples in order of complexity.   

(1) Consider a system in which all of the L1 caches share a 

queue of requests to the L2.  This queue has a depth that 

is proportional to the number of nodes.  Such a queue is 

compatible with Simple-PV only if it is unordered. 

(2) Consider a protocol that relies upon point-to-point 

ordering of forwarded coherence requests from the 

directory to each L1.  Many protocols rely on this 

ordering to avoid races that would otherwise 

complicate the protocol and require additional 

messages to acknowledge message reception.  

However, ordering of this queue is not compatible with 

Simple-PV if the number of forwarded messages that 

can be in this queue is a function of the number of 

nodes.  Unfortunately, in many protocols, this situation 

is possible.  For example, if Core C1 has requested 

Modified permissions for block B, the directory could 

forward subsequent GetS requests for B to C1 from 

every other core before C1 receives the data for B and 

can start responding to the GetS requests that have 

filled its queue.  We illustrate this scenario in Figure 5.  

Most protocols do not rely on ordering of the forwarded 

GetS requests in this example
4

; nevertheless, the 

possibility of having a number of messages in the queue 

that depends on the number of nodes precludes ordering 

any messages in this queue.  

Guideline #3 certainly constrains protocol design, but this 

constraint is necessary for compatibility with Simple-PV.  

Guideline #4: We should not parameterize buffers or 

queues in more than one dimension. 
In our protocol models (and in all model checking work we 

have seen), arrays are used to represent channels and 

messages are entries in these arrays.  For example, we specify 

the buffer of requests from Core C1’s L1 cache to the L2 

cache as buffer_L1_C1_to_L2[SIZE], where SIZE is the 

number of entries in the buffer.  It is common to designate 

SIZE as a concrete value (e.g., 4) or as a variable that is equal 

to the number of cores.  The latter situation can occur, for 

example, in a queue of forwarded requests from the directory 

to a given L1 cache; as explained in the discussion of 

 

 
4 Ordering is more useful for races involving writebacks. 

  
Initially, the left-most L1 cache issues GetM and waits for data. Then the left-most L1 cache receives Forwarded-GetS messages 

from all other L1 caches. 

Figure 5.  Scenario #2 forbidden by Guideline #3 
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Guideline #3, such a queue could hold forwarded GetS 

requests from all other cores.  Although the buffer depth in 

this example is a function of the parameterized number of 

nodes, the protocol is still compatible with Simple-PV, 

because the array is parameterized in only one dimension.   

The problem for Simple-PV appears only when we want to 

specify an array that is parameterized in more than one 

dimension.  The consequence of this constraint is that it 

affects a common protocol design option.  Namely, it 

precludes us from letting a core that issues a GetM collect all 

of the acknowledgment messages from cores that were 

invalidated by the GetM.  In this scenario, Core C1 issues a 

GetM to the L2 and the L2 sends an invalidation to all cores 

with Shared copies of the block.  In most protocols, the 

invalidated cores send acknowledgments to C1.  However, 

that implies that we have buffers from each core to each other 

core.  Because the number of nodes is parameterized, we thus 

have a two-dimensional parameterization with a structure 

like AcknowledgmentBuffers[N][N].   

Therefore, to follow Guideline #4, a protocol must collect 

acknowledgments at the L2 instead of at the requesting L1.  

The L2 then sends a single, aggregated acknowledgment to 

the requesting L1.  This design option is somewhat less 

efficient than having the requesting L1 collect the 

acknowledgments, because it requires an extra message on 

the critical path for completing the transaction.  

Guideline #4 is not as fundamental as the others; we could 

violate this guideline and still have a protocol that is 

compatible with Simple-PV.  Nevertheless, there are two 

reasons we follow this guideline.  First and foremost, 

parameterizing in multiple dimensions requires much more 

concrete state to be maintained in the parameterized model 

(compared to a model with a one-dimensional 

parameterization), and this extra state may well exceed the 

capacity of the model checker.  A secondary reason to follow 

this guideline is that multiple dimensional parameterization 

requires a more sophisticated abstraction tool, which may not 

be available.  Abster, as one example, does not support 

parameterization in multiple dimensions.  This tool-specific 

reason for following Guideline #4 is a practical but not 

fundamental limitation of Simple-PV. 

Observations about Specific Optimizations  

The above four guidelines are basic rules for protocol 

design. However, even if a protocol follows all of these 

guidelines, the subtle details of the protocol can affect the 

protocol’s compatibility with Simple-PV.  We explore the 

design space to determine which design choices are 

compatible with Simple-PV and which are not.  

We start with a simple protocol with three stable states: M, 

S, and I. The protocol follows Guidelines #1-#4 and is 

conservative (has little concurrency).  Basically, only one 

transaction is allowed at a time.   Before a transaction can 

complete, the requesting L1 cache must send a “completion” 

message to the L2 cache.  Before this completion message 

arrives at the L2, the L2 blocks subsequent requests from 

other cores.  This simple protocol can be abstracted by Abster 

and verified by Murphi with the manual addition of only one 

lemma.  Informally, this lemma constrains the behavior of a 

node such that a node with a block in state M has the most 

current data for that block.  Without specifying this lemma, 

the block’s data value that is generated by Abster is arbitrary, 

which can lead to violations of the Data Invariant. 

Although this protocol is compatible with Simple-PV and 

requires minimal manual effort to verify, this protocol is 

overly simplistic and would not perform well.  Hence, we 

optimize this simple protocol by adding more states (both 

stable and transient states) and transactions, which increases 

concurrency.  We considered the following list of 

optimizations, adding them in this order:    

1. We add the stable state E(xclusive). 

2. We add the stable state O(wned).  

3. We add an Upgrade request for increasing coherence 

permission from read-only (Shared) to read-write 

(Modified).  The response to an Upgrade request does 

not require a large data message.  Without an Upgrade 

request, a core with a Shared block must issue a GetM 

and receive data even though it already has valid data. 

4. We add silent eviction for Shared blocks.  An L1 cache 

can evict a Shared block without notifying the L2 cache. 

5. We remove the completion messages for GetS 

transactions when the data response comes from the L2 

(and not another L1).  An L1 cache that sends a GetS 

request to the L2 does not have to notify the L2 once it 

has received the data from the L2, and the L2 no longer 

blocks while waiting for completion messages. 

6. We remove the completion messages for GetM 

transactions.  An L1 cache that sends a GetM request to 

the L2 does not have to notify the L2 once it has 

received the data and the (aggregated) acknowledgment 

from the L2, and the L2 no longer blocks while waiting 

for completion messages. 

    The impact of these optimizations on Simple-PV varies.  

Adding the “E” state (Optimization 1) has zero impact. 

Because the protocol is still conservative in that it allows 

only one transaction at a time, we can verify it without adding 

more lemmas. Adding the “O” state (Optimization 2) 

requires two lemmas; for example, one lemma constrains 

OtherNode’s behavior based on whether the L2’s coherence 

state indicates that a concrete L1 is in state S or not.   

    Optimizations 3-5 require a few extra lemmas during the 

iterative verification process, but the protocols are still 

verifiable with Simple-PV.  For example, one lemma says 

that when an L1 cache is waiting for a data reply from the L2 

cache, there cannot be other L1 caches sending data to the 

requesting L1. This lemma constrains the behavior of 

OtherNode, preventing its abstracted caches from sending 

data to the concrete caches when they are not supposed to. 

    Optimization 6 is not compatible with Simple-PV. Assume 

that one of the N-2 abstracted L1 caches is the Modified 

owner of a block.  L1 cache C0 has the block in state I and 

issues a GetM to the L2 and transitions to transient state IM 
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(in I, waiting to go to M).  The L2 forwards C0’s GetM to 

OtherNode and immediately changes the directory state to 

indicate that C0 is the owner.
5
  Before C0 receives data from 

the owner (in OtherNode), another abstracted L1 cache issues 

a GetM to the L2. The L2 forwards this request to C0 and 

changes the directory state to indicate that the owner is 

OtherNode. C0 still does not have data, and it changes its 

block state to the transient state IMI (in I, waiting to go to M, 

will do one store when it gets the data, and then will go back 

to I). At this time, cache C1 goes through the same process 

that C0 has just gone through and also ends up in state IMI.   

Now the problem for Simple-PV emerges.  OtherNode 

replies with data but cannot determine whether to send to C0 

or C1.  C0 and C1 are in the same state and both are eligible 

to receive data.  The L2 cannot maintain the ordering in 

which the GetM requests arrived, because that would require 

ordering a list that has a size proportional to the number of 

nodes (and Guideline #3 explains why ordering such a list is 

incompatible with Simple-PV).  Thus the races caused by this 

particular optimization make the protocol with this 

optimization incompatible with Simple-PV.  One could 

imagine protocols that allow the L2 to send data to either C0 

or C1 without regard to the order in which their requests 

arrive, but such protocols would suffer from fairness and 

potential starvation problems. 

Conclusions: Designing a coherence protocol that can be 

verified with Simple-PV requires adhering to several 

guidelines.  The list of features in this section may not be 

exhaustive, but we believe that we have included all of the 

fundamental reasons for why features may be incompatible. 

5. Design of a PVCoherence Protocol 

Following the above guidelines, we can design 

PVCoherence protocols. The common feature of all 

PVCoherence protocols is that they can be formally verified 

using Simple-PV. Although all PVCoherence protocols obey 

the design guidelines presented in Section 4, there can still be 

considerable variation between different PVCoherence 

protocols. In this section, we show the design process of one 

PVCoherence protocol, called PV-MOESI. We have also 

experimented with other PVCoherence protocols, but 

PV-MOESI covers more of the interesting features discussed 

in Section 4 and thus we present it here.  

PV-MOESI is based on the system architecture in Figure 3. 

To highlight the ramifications of designing a protocol to be 

compatible with Simple-PV, we compare and contrast the 

design of PV-MOESI with a protocol we call OP-MOESI.  

OP-MOESI is similar to typical multicore protocols, and it 

provides high performance but it cannot be verified using 

Simple-PV.  In the design of PV-MOESI, we try to keep it as 

 

 
5This immediate transition differs from a protocol with a completion 

message; with a completion message, the directory state would not change 

until the completion arrives from C0. 

similar to OP-MOESI as possible, only modifying it when 

necessary to satisfy the constraints of Simple-PV. 

5.1. Optimized Baseline Protocol: OP-MOESI 

   The OP-MOESI coherence protocol is a fairly standard 
directory protocol that is optimized for performance. 

OP-MOESI is similar to other prevalent protocols [9][26].  

OP-MOESI has five stable L1 cache coherence states 

(MOESI) and more than 30 transient states to improve 

performance.  An L2 block can be in a similar set of states, 

except that an L2 block cannot be in E (there is no use for it) 

and it can be in one of two “stale” states: M(s) and O(s).  

These stale states denote when there is an L1 that has the 

block in M or O, respectively, and that L1 potentially has a 

more up-to-date value of the data than the L2.  

The directory state, which is co-located with the L2 

tag/state, includes a full-map bit vector that denotes which L1 

caches are currently caching each block.   We denote L2 

states in the form X:Y, where X is the state of the L2 block 

itself and Y is the directory state.  For example, an L2 state of 

M:I denotes that the L2 holds an M copy of the block and no 

L1 caches have a copy of the block.  

The protocol relies on having three virtual channels in the 

system; there are virtual channels for requests, forwarded 

requests, and responses.  All of these virtual channels enforce 

point-to-point ordering for OP-MOESI.   

We specify OP-MOESI at a high level in Table 1. This 

specification omits all of the complexity of transient states, 

but it provides the big picture of how the protocol works.  

5.2. PV-MOESI 

Although highly optimized, OP-MOESI cannot be verified 

with Simple-PV. Abster fails to generate an abstracted model 

for OP-MOESI and thus we cannot run it through Murphi. In 

this section, we create PV-MOESI by modifying OP-MOESI 

to satisfy the guidelines in Section 4.  The specification of 

PV-MOESI is alongside the specification of OP-MOESI in 

Table 1, with PV-MOESI’s differences highlighted in bold. 

1. For GetM transactions, we remove the counter in the 

response message from the L2 to the requesting L1.  We 

replace it with a sharer set that is, unfortunately, larger 

than the counter (C bits compared to log2C bits). 

2. For GetM transactions, we have the L2, instead of the 

L1 requestor, collect the acknowledgments from L1 

caches that are invalidated. After collecting all L1 

acknowledgements, the L2 sends a single 

acknowledgement to the L1 requestor.  This 

modification adds one more network hop per GetM.  

3. We remove the point-to-point ordering in all virtual 

channels. This is the most significant change in the 

protocol because it leads to more races. The races 

happen when an L1 receives a forwarded request or an 

invalidation while in a transient state.  PV-MOESI 

handles these races in the usual fashion (with extra  
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Table 1.  High-level specifications of OP-MOESI and PV-MOESI.   Ignores transient states.   

Differences between OP-MOESI and PV-MOESI are in bold font in PV-MOESI specification. 

 OP-MOESI PV-MOESI 

Structures 

L1 cache entry 64B data, tag, state={M,O,E,S,I} 

L2 cache entry 64B data, tag/bit vector to track L1 caches, directory state={I:I, S:S, O:S, M:I, O(s):O, M(s):M} 

Core C1 has load miss on block B in its L1, sends GetS to L2 

L2 = I:I 

 

L2  gets block from memory and sends it to C1;   

L2  adds C1 to bit vector;  L2 M(s):M;  C1’s L1  E 

same as OP-MOESI 

L2 = S:S or O:S L2  sends data to C1; L2 adds C1 to bit vector;   

C1’s L1 S 

same as OP-MOESI 

L2 = M:I L2  sends data to C1; L2 M(s):M;  C1’s L1 E L2  sends data to C1; C1 sends Completion to L2; 

L2 M(s):M;  C1’s L1 E 

L2 = O(s):O 

C2 is the owner 

L2 forwards GetS to C2; L2 adds C1 to bit vector;  

C2 sends data to C1; C1’s L1 S  

L2 forwards GetS to C2; L2 adds C1 to bit vector; 

C2 sends data to C1; C1 sends Completion to L2;   

C1’s L1 S 

L2 = M(s):M 

C2 is the owner 

L2 forwards GetS to C2; L2 adds C1 to bit vector;  

L2 O (s):O; C1’s L1 S 

L2 forwards GetS to C2; L2 adds C1 to bit vector;   

C1 sends Completion to L2; 
L2 O (s):O; C1’s L1 S 

Core C1 has store miss on block B in its L1, sends GetM to L2 

L2 = I:I 

 

L2  gets block from memory and sends it to C1;  

L2 M(s):M;  C1’s L1 M 

L2  gets block from memory and sends it to C1;   

C1 sends Completion to L2; 

L2 M(s):M; C1’s L1 M 

L2 = S:S or O:S L2  sends data to C1 with number of sharers and sends 

invalidations to sharers; sharers send acks to C1;   

L2 M(s):M;  C1’s L1 M 

L2 sends invalidations to sharers;  sharers send acks to 

L2; L2 sends data to C1 (without number of sharers);   

C1 sends Completion to L2; L2 M(s):M;  C1’s L1  M 

L2 = M:I L2 sends data to C1; L2 M(s):M;  C1’s L1 M L2 sends data to C1;  C1 sends Completion to L2; 

L2 M(s):M;  C1’s L1 M 

L2 = O(s):O 

L1 owner is C2 

 

L2 forwards GetM to C2 with number of sharers and  

sends invalidation to sharers;  C2 sends data to C1;   

sharers send acks to C1;  

L2 M(s):M;  C1’s L1 M; C2’s L1 I 

L2 forwards GetM to C2 (without number of sharers) and 

sends invalidations to sharers; C2 sends data to C1;   

sharers send acks to L2; L2 sends ack to C1;   

C1 sends Completion to L2; 
L2 M(s):M;  C1’s L1  M; C2’s L1 I 

L2 = M(s):M 

L1 owner is C2 

 

L2 forwards GetM to C2; C2 sends data to C1;   

L2 M(s):M;  C1’s L1  M; C2’s L1 I 

L2 forwards GetM to C2; C2 sends data to C1;  

C1 sends Completion to L2; 
L2 M(s):M;  C1’s L1  M;  C2’s L1 I 

Core C1 has store miss on block B in its L1, but it has the data, sends Upgrade to L2 

L2 = S:S or O:S 

or  O(s):O 

L2 sends invalidations to sharers except C1;  L2 sends ack 

to C1 with number of sharers;  sharers send acks to C1; L2 

M(s):M;  C1’s L1  M 

L2 sends invalidations to sharers except C1; sharers send 

acks to L2; L2 sends ack to C1; C1 sends Completion to 

L2; L2 M(s):M;  C1’s L1  M 

Core C1 wants to evict block B from its L1 

C1’s L1=S C1 immediately evicts block; C1’s L1 I  

C1’s L1=E C1 sends PutE to L2 without data, waits for ack   

C1’s L1=O or M C1 sends PutO or PutM with data to L2, waits for ack 

L2 wants to evict block B 

L2 = I:I L2 immediately evicts block 

L2 = S:S or O:S L2 sends invalidations to L1 sharers, waits for acks, then evicts 

L2 = M:I L2 writes data back to memory, waits for ack from memory, then evicts 

L2 = O(s):O L2 sends GetM to L1 owner, sends invalidations to L1 sharers, waits for data and acks, then evicts 

L2 = M(s):M L2 sends GetM to L1 owner, waits for data, then evicts 
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messages and extra transient states) but without ever 

blocking.  These races are not unique to PV-MOESI but 

rather a well-known issue for protocols that cannot rely 

on point-to-point ordering.  Handling the races 

introduces some complexity but is manageable. 

After the above modifications, we find that the model can 

be abstracted by Abster.  However, the abstracted model still 

cannot be verified by Murphi, regardless of how we try to 

refine it.  This problem—which arises due to multiple 

in-flight GetM requests—was discussed at the end of Section 

4, and we handle it by modifying how the protocol handles 

GetM requests.  When the L2 receives a GetM it forwards the 

GetM and/or invalidations (as in OP-MOESI) but then blocks 

subsequent requests until it receives a Completion message 

from the L1 that requested the GetM.  The L1 sends the 

Completion once it has received data and/or the 

acknowledgment from the L2.  This protocol modification 

potentially impacts performance due to blocking at the L2. 

We formally verify PV-MOESI with Simple-PV. We find 

that we need to manually add only 7 lemmas during 

refinement to enable verification.  Adding these lemmas is 

not trivial, but neither is it terribly complicated. All other 

verification work is automatic with Abster and Murphi.  The 

Murphi model checking completed in under one hour and 

used several gigabytes of memory. 

6. Evaluation 

Creating PV-MOESI from OP-MOESI revealed several 

issues which could potentially cause PV-MOESI to be worse 

than OP-MOESI with respect to performance, storage, and 

network traffic. Therefore, we performed a series of 

experiments to compare PV-MOESI and OP-MOESI. 

6.1. Methodology 

 We evaluate OP-MOESI and PV-MOESI using the gem5 

full-system simulator [7]. For both protocols, we keep the 

common architectural parameters the same: processor 

configuration, L1/L2 cache size, memory size, link latency, 

link bandwidth, etc. We calculated the access latency of 

storage structures using Cacti [25]. The system parameters 

are shown in Table 2. 

For benchmarks, we use the PARSEC benchmark suite [6], 

except for two benchmarks, streamcluster and fluidanimate, 

that are not compatible with gem5. We run each experiment 

multiple times to accommodate the natural variability in 

simulation runtimes [2]; error bars in graphs indicate 

plus/minus one standard deviation from the mean. 

6.2. Performance 

The primary goal of our experimental evaluation is to 

determine the performance difference between the 

unverifiable OP-MOESI and the verifiable PV-MOESI.  

There are several reasons why PV-MOESI’s performance 

could potentially be less than that of OP-MOESI, including 

PV-MOESI’s extra Completion messages and requiring the 

L2 to collect invalidation acknowledgments.  The question is 

whether, in practice, these potential performance 

degradations occur. In Figure 6, we plot the runtimes for both 

OP-MOESI and PV-MOESI, normalized to the runtime of 

OP-MOESI, for 32-core systems.  While there are some 

differences in the runtimes, they are “within the noise.” On 

some benchmarks, PV-MOESI even has a marginally shorter 

runtime than OP-MOESI, but these differences are also 

within the noise and are not meaningful speedups.   

To better understand why PV-MOESI’s performance is 

effectively the same as that of OP-MOESI, we evaluated two 

issues: the impact of PV-MOESI’s Completion messages and 

PV-MOESI’s additional network usage. 

Completion Messages:  PV-MOESI’s use of Completion 

messages can potentially hinder performance.  While waiting 

for a Completion message on block B, the L2 stalls requests 

for block B.  To evaluate the performance impact of this L2 

stalling, we inspected the fraction of requests that arrive at 

the L2 and must stall while waiting for a Completion.  For all 

benchmarks, this fraction was well less than 1%, i.e., the use 

of Completions messages causes few stalls and has little 

impact on performance. 

Network Overhead: PV-MOESI uses more interconnection 

network bandwidth than OP-MOESI.  This extra bandwidth 

is mainly due to the extra messages caused by Completions. 

Intuitively, this bandwidth overhead should be small, but we 

experimentally evaluated it to confirm this expectation.  In 

Figure 7, we plot the total traffic consumed by PV-MOESI, 

normalized to the traffic consumed by OP-MOESI.  For most 

benchmarks, the overhead is less than 5%, but it is as high 

as13.8% for canneal.  In our system model, the performance 

impact of this extra network traffic is minimal, but it could be 

greater in systems with more limited network bandwidth. 

Table 2. Simulation Configurations 

Processor Core Parameters 

Cores 32 in-order x86 cores 

Clock frequency 2 GHz 

Cache and Memory Parameters 

Cache line size 64 bytes 

L1 I&D caches 32 KB, 2-way, 2 cycle hit 

L2 cache 
inclusive with respect to L1s; 

8MB split into 16 banks –  

each bank 512 KB, 8-way, 12-cycle hit 

Memory 2GB, 160-cycle hit 

Interconnection Network Parameters 

Topology 2D mesh 

Link bandwidth 32 GB/s 

Link latency 1 cycle 
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6.3. Scalability 

Because our goal is to create protocols that are verifiable 

even as they scale to larger numbers of cores, we are 

interested in studying PV-MOESI’s performance scalability.  

We focus on one representative benchmark, blackscholes, 

and we show how its performance scales from 4-32 cores.
 
 In 

Figure 8, we compare the runtimes for OP-MOESI and 

PV-MOESI, normalized to OP-MOESI’s 4-core runtime, as a 

function of the number of cores.  We observe that 

PV-MOESI tracks OP-MOESI’s performance for all core 

counts and is thus just as scalable—both up and down—as 

OP-MOESI.  We also note that speedups are less than linear 

with core count, which is a function of the benchmark more 

than that of the protocol. 

6.4. Storage Overhead 

We evaluate the storage overhead of PV-MOESI by 

looking at the L2 cache and L1 cache separately.  

In the L2 cache, PV-MOESI requires a sharer set in the 

directory to record all L1 sharers. This is also true for 

OP-MOESI. Therefore, PV-MOESI adds no storage 

overhead compared to a protocol with a full-map directory. 

Those optimization techniques for reducing the storage cost 

of the directory, such as coarse directory, limited pointer  

directory [1], etc., can also be employed in PV-MOESI as 

long as they do not involve sharer counters.  

In the L1 cache, PV-MOESI has no storage overhead, 

either. One could, however, imagine a PVCoherence 

protocol that had L1 storage overhead if the L1 maintained a 

sharer set.  Such protocols are rare, but it is possible that a 

protocol would have the L1’s MSHR entries track 

outstanding acknowledgments, in which case PVCoherence 

would require a sharer set instead of a less costly counter. 

Even in this scenario, the storage overhead is tiny compared 

to the overall size of the L1 cache. 

7. Related Work 

The most related work consists of hierarchical protocols 

that were designed for verification.  Zhang et al. [31] design 

coherence protocols in a fractal, hierarchical way, which 

ensures self-similarity at each scale, to enable inductive 

verification. The base case of the proof is the verification of a 

minimum-scale system. Voskuilen and Vijaykumar [30] 

greatly improve upon the performance of fractal coherence 

protocols by creating protocols that are provably equivalent 

to fractal protocols yet do not have some of the performance 

pathologies of Zhang et al’s protocol. Matthews et al. [20] 

apply the fractal approach for a dynamic power management 

protocol. Beu et al. [4] leverage a coherence design 

framework called MCP [5] for composing heterogeneous 

protocols in a hierarchical fashion.  Beu et al. show that, if 

each of the building block protocols is verified correct then 

the hierarchical protocol is also correct by induction.  Our 

work in this paper complements this prior work on verifiable 

hierarchical protocols, because it enables the verification of 

larger “minimum systems” in fractal protocols and larger 

“building blocks” in MCP.  Current automated tools can 

verify protocols with only 2-5 caches, which is not ideal for 

either fractal base cases or MCP building blocks.  It is 

important to be able to verify larger flat protocols, both for 

stand-alone purposes and for use in hierarchical protocols.   

Other work considers verification or design complexity 

when designing protocols. HCC [16] is organized 

hierarchically as a tree of caches.  This tree organization 

facilitates verification of liveness and consistency.  HCC is 

verified manually, unlike the largely automated verification 

in our work. Vantrease et al. [29] propose an atomic 

coherence protocol that avoids races and is thus simpler; we 

expect it would be easier to verify than a typical non-atomic 

protocol, but verification is not discussed in the paper. 

    Some prior work has compared the verification effort 

required for different coherence protocols. Martin [17] 

compared snooping and directory protocols.  Marty et al. [19] 

discussed the formal verification efforts of different protocol 

 

Figure 6.  Runtime comparison: OP-MOESI vs PV-MOESI 

 

Figure 7.  Network traffic overhead of PV-MOESI 

 

Figure 8.  Performance Scalability 
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designs and further showed their proposed protocol is more 

amenable to formal verification. Our work differs from this 

work by considering verification at design time instead of 

analyzing verification effort for given designs. 

8. Conclusions 

We have shown that, with awareness of certain issues that 

affect parameterization, we can design protocols that are 

compatible with parametric verification.  Furthermore, our 

experimental results show that we can develop a protocol that 

is both compatible with PV and achieves performance 

comparable to today’s typical multicore coherence protocols. 
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