Threadmill: A Post-Silicon Exerciser for
Multi-Threaded Processors

Motivation

Overview of Threadmill

Key Techniques of Threadmill
Conclusion

Questions

Debate!

Motivation — Why Post Silicon?

Pre-Silicon Verification
is inadequate

o-

* Post-Silicon validation is becoming the next-level
vehicle for functional verification

Pre-Silicon Post-Silicon -
Verification » Validation

Problems of Post-Silicon Validation

Threadmill j2ge ontoa

Loading tests externally have
and memory overhead

* Existing on-platform test generators are tG<

* Developing full OS system takes time

Simple on-platform
test generator

Motivation

Overview of Threadmill
Key Techniques of Threadmill
Conclusion

Questions
Debate!

Threadmill Image

Threadmill Architecture

Generator
& Kernel
Test
Template
» Builder »

System
Topology & t

Configuration

Test Template

Topology

Architectural
Model

Accelerator

S
=S

Generation

l Execution

Architectural Model

Testing Knowledge Checking

OS services

Test-Template Language

Test Program Template

Variable: addr = 0x100
Values: Variable:
Bias: register-dependency

Instructions: Store R5 -> ?
Repeat (addr 200)
Instruction:|Load reg <- addr
elect
Instruction: Add ? <-reg + ?
Bias: sum-zero
Instruction: Sub ? <-? - 7?
addr = addr + 0x10

Resource Initial Values:
R6=8, R3=-25,..., R17=-16
100=7, 110=25,..., 1FO=16

Instructions:

500: Store R5 -> FFO

: Load R4 -> 100

508: Sub R5 -> R6-R4
50C: Load R4 -> 110

Add R6 -> R4+R3

57C: Load R4 -> 1FO
580: Add R9 -> R4+R17

Execution Process

Execute

Generate »
Test Case

Test Case

» Check
Result

Motivation

Overview of Threadmill

Key Techniques of Threadmill
Conclusion

Questions
Debate!

Threadmill Design

Coverage

Multi-

Threaded

_

K
Techniques: Multi-pass
Consistency Checking

4 Static Test Floating-Point Concurrent Test
ey Generation Generation Generation

Debugging

Tests

10

[Static Test] —

Dynamic vs Static Generation

CPU is probably
doing....

0
Dynamic Test Static Test
Generator Generator

But what do you do when you really need
to know the state of the CPU?

Observing Machine State

| want to send:
beq $s0, Ssi, exit # if (x==y)
but will it branch or not?

What’s SsO? Ss17?

=

Threadmill

Static Test
Generation

Instruction Stream

addi St1, St1, 1 #i=i+1
add SsO, SsO, St1 # X = x+i
sub Ss1, Ss1, St1 #y=y-i

uArch State

12

Static Test
Generation | |

Observing Machine State

Instructions Executed

addi St1, St1, 1 #i=i+1
add Ss0, SsO, St1 # x = x+i
sub Ss1, Ss1, St1 #y=y-i
Oxdeadbeef # Bogus

uArch State

Interrupt

Handler

13

Observing Machine State

Now | know Ss0=Ss1, so
beq $s0, Ssi, exit # if (x==y)
will branch to exit.

—

Threadmill

Static Test
Generation

Instructions Executed

addi St1, St1, 1 #i=i+l
add $s0, $50, St1 # X = x+i
sub $s1, $s1, St1 #y = y-|
beq $50, $s1, exit # if (x==y)

uArch State

14

[Floating Point] —

Floating-Point Instructions

How to choose argument values? instr argd _ argl des
[fp-instrlf-valOIf-val1IresultJ
random # inefficient

FPgen: Generate table of interesting
test cases “off-line”

Floating Point
Search Space

Threadmill Floating Point Tests

Table

Underflow, etc

15

Concurrent
Generation

Concurrent Test Generation

Need to be random, but consistent
across all the test threads

Write-Write | True Collision
Write-Read False Collision

Test Test Test Test
Thread 0 Thread 1 Thread 2 Thread 3 1 6

Multi-Pass Consistency C

necking

[Multu Pass

Consistency] —

Main Focus: Detecting Bugs in Mu

ti-Threaded Consistency

Case1

Thread 1

Thread 2

Thread 3

Thread 4

Case?2

Thread 1

Thread 2

Thread 3

Thread 4

e

Resultlng State

17

Multi-Pass Consistency C

necking

a L

[Multi-Pass]
Consistency

Main Focus: Detecting Bugs in Mu

ti-Threaded Consistency

Execution O

Threadmill

Execution i+1

Registers,
Memory values, etc

Threadmill

Each execution can have
different timing or order of
operation, but should end with
the same result.

g E T

| Debugging
Tests

Debugging Tests

* Restart the failed exerciser image a few
test-cases before the failure

* Take the test-template that causes the
bug and run it on a pre-silicon test
generation

Conclusion

Strengths

v'Fast and Light-weight.

v Automatic testing and
checking of multi-threaded
execution.

Weakness

(d Doesn’t check datapath or
permanent bugs.

 Little evaluation of
performance or coverage of
the platform (paper).

20

Questions?

Debate

Threadmill’s failure detection mechanism only
checks for bugs in multi-threaded interactions, and
do not check bugs in the datapath. Is this adequate?

Instead of generating tests on-chip, isn’t it better to
simply load pre-generated tests?

22

