Threadmill: A Post-Silicon Exerciser for
Multi-Threaded Processors
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Motivation — Why Post Silicon?

Pre-Silicon Verification
is inadequate

o-

* Post-Silicon validation is becoming the next-level
vehicle for functional verification

Pre-Silicon Post-Silicon -
Verification » Validation




Problems of Post-Silicon Validation

Threadmill j2ge ontoa

Loading tests externally have
and memory overhead

*  Existing on-platform test generators are tG<

*  Developing full OS system takes time

Simple on-platform
test generator




Motivation

Overview of Threadmill
Key Techniques of Threadmill
Conclusion

Questions
Debate!



Threadmill Image
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Test-Template Language

Test Program Template

Variable: addr = 0x100
Values: Variable:
Bias: register-dependency

Instructions: Store R5 -> ?
Repeat (addr 200)
Instruction:|Load reg <- addr
elect
Instruction: Add ? <-reg + ?
Bias: sum-zero
Instruction: Sub ? <-? - 7?
addr = addr + 0x10

Resource Initial Values:
R6=8, R3=-25,..., R17=-16
100=7, 110=25,..., 1FO=16

Instructions:

500: Store R5 -> FFO

: Load R4 -> 100

508: Sub R5 -> R6-R4
50C: Load R4 -> 110

Add R6 -> R4+R3

57C: Load R4 -> 1FO
580: Add R9 -> R4+R17



Execution Process

Execute

Generate »
Test Case

Test Case

» Check
Result
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Threadmill Design

Coverage

Multi-

Threaded

\_

K
Techniques: Multi-pass
Consistency Checking

4 Static Test Floating-Point Concurrent Test
ey Generation Generation Generation

Debugging

Tests
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[ Static Test ] —

Dynamic vs Static Generation

CPU is probably
doing....

0
Dynamic Test Static Test
Generator Generator

But what do you do when you really need
to know the state of the CPU?




Observing Machine State

| want to send:
beq $s0, Ssi, exit # if (x==y)
but will it branch or not?

What’s SsO? Ss17?

=

Threadmill

Static Test
Generation

Instruction Stream

addi St1, St1, 1 #i=i+1
add SsO, SsO, St1  # X = x+i
sub Ss1, Ss1, St1 #y=y-i

uArch State

12



Static Test
Generation | |

Observing Machine State

Instructions Executed

addi St1, St1, 1 #i=i+1
add Ss0, SsO, St1 # x = x+i
sub Ss1, Ss1, St1 #y=y-i
Oxdeadbeef # Bogus

uArch State

Interrupt

Handler
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Observing Machine State

Now | know Ss0=Ss1, so
beq $s0, Ssi, exit # if (x==y)
will branch to exit.

—

Threadmill

Static Test
Generation

Instructions Executed

addi St1, St1, 1 #i=i+l
add $s0, $50, St1  # X = x+i
sub $s1, $s1, St1 #y = y-|
beq $50, $s1, exit  # if (x==y)

uArch State
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[ Floating Point ] —

Floating-Point Instructions

How to choose argument values? instr argd _ argl  des
[fp-instrlf-valOIf-val1IresultJ
random # inefficient

FPgen: Generate table of interesting
test cases “off-line”

Floating Point
Search Space

Threadmill Floating Point Tests

Table

Underflow, etc
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Concurrent
Generation

Concurrent Test Generation

Need to be random, but consistent
across all the test threads

Write-Write | True Collision
Write-Read False Collision

Test Test Test Test
Thread 0 Thread 1 Thread 2 Thread 3 1 6




Multi-Pass Consistency C

necking

[ Multu Pass

Consistency ] —

Main Focus: Detecting Bugs in Mu

ti-Threaded Consistency

Case1

Thread 1

Thread 2

Thread 3

Thread 4

Case?2

Thread 1

Thread 2

Thread 3

Thread 4

e

Resultlng State
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Multi-Pass Consistency C

necking

a L

[ Multi-Pass ]
Consistency

Main Focus: Detecting Bugs in Mu

ti-Threaded Consistency

Execution O

Threadmill

Execution i+1

Registers,
Memory values, etc

Threadmill

Each execution can have
different timing or order of
operation, but should end with
the same result.




g E T

| Debugging
Tests

Debugging Tests

* Restart the failed exerciser image a few
test-cases before the failure

* Take the test-template that causes the
bug and run it on a pre-silicon test
generation




Conclusion

Strengths

v'Fast and Light-weight.

v Automatic testing and
checking of multi-threaded
execution.

Weakness

(d Doesn’t check datapath or
permanent bugs.

 Little evaluation of
performance or coverage of
the platform (paper).
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Questions?



Debate

Threadmill’s failure detection mechanism only
checks for bugs in multi-threaded interactions, and
do not check bugs in the datapath. Is this adequate?

Instead of generating tests on-chip, isn’t it better to
simply load pre-generated tests?
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