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What is cache coherence? 

Loading the correct value when the 
same data is stored in multiple caches
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Shared memory

Cache Cache Cache

Interconnect
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Incoherent 
state! 



Types of cache coherence 

Directory-based

Broadcast-based

Snooping
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Problem
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Cause

Transient faults 
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Solution

Extend coherence protocols for 
resilience
Detect deadlocks

Retransmit lost messages 
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Related work

Checkpointing [Prvulovic et al., Sorin, et al.]
Pro-active

FTDirCMP [Pascual et al.]

Protocol-specific
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Characters of a resilient protocol

Property 1
 All initiators of transactions stay in transient 

state until all state go to stable state

Property 2
 Previously transmitted messages can be 

retransmitted

Property 3
 All nodes can tolerate duplicate messages and 

produce same outcome
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Experimental setup 

Wisconsin Multifacet GEMS simulator

64-core tiled CMP 

Private split L1 caches

Physically distributed shared L2 cache 

Fault rates of 1 fault/ms – 1 fault/µs
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Large working sets’ 
traffic saturate NoC

No faults

1 fault/1ms

1 fault/100µs
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More exclusive 
requests

Average over all benchmarks

Higher fault rate Higher execution overhead 
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when no faults



Network congestion
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Most congested link 

Baseline protocol, no faults
Resilient protocol, no faults
Resilient protocol, 1 fault/10µs

8% increase!

Average over all links 



Hardware overhead
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PC Req. …. State Transaction
ID

Sender 
bitvector

Timeout

 6 bits    64 bits   13 bits 

Router
 Adder per buffered packet

0
.
.
.

31
1 bit

 MSHR table

Total= 352 bytes/node, 20 X 16 bit adder/router << core gate count  



Conclusion

Lost messages lead to suspended 
transactions.
Three properties were defined that 

guarantee transactions will eventually 
complete.
Experimental results indicated negligible 

hardware overhead and execution overhead 
of 0.8% during fault-free operation.
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Questions?



Discussion

Does addressing only transient faults 
guarantee sufficient resilience?

The resilient version of the protocol is 
much more elaborate than the 
baseline. Is this worth it? 
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THANK YOU!


