
A Systematic Methodology to

Develop Resilient Cache

Coherence Protocols

Konstantinos Aispos Li-Shiuan Peh

Presented by: Helen Arefayne Milind Furia

What is cache coherence?

Loading the correct value when the
same data is stored in multiple caches

2

Shared memory

Cache Cache Cache

Interconnect

Core 1 Core 2 Core 3

Incoherent
state!

Types of cache coherence

Directory-based

Broadcast-based

Snooping

3

Problem

4

request
R

…

…
…

R
response

Unreliable
interconnect

Suspended
transaction

Cause

Transient faults

5

Solution

Extend coherence protocols for
resilience
Detect deadlocks

Retransmit lost messages

6

Related work

Checkpointing [Prvulovic et al., Sorin, et al.]
Pro-active

FTDirCMP [Pascual et al.]

Protocol-specific

7

Characters of a resilient protocol

Property 1
 All initiators of transactions stay in transient

state until all state go to stable state

Property 2
 Previously transmitted messages can be

retransmitted

Property 3
 All nodes can tolerate duplicate messages and

produce same outcome

8

request

b

IS

S

requestI

unblock

I

requestor directory

S

MemoryDATA

unblock

mem_req

DATA

E

DATA

NP

mb

S v[1000]

request

memory

request

DATA DATA

unblock

a) data: NP/S, request: S

requestrequestrequest

Directory based coherence - A

9

request

b

IS

Sd

S

requestI

done

unblock

I

requestor directory

S

MemoryDATA
unblock

done

mem_req

DATA

Ed

E

DATA

NP

mb

S v[1000]

request

memory

request

DATA DATA

unblock done

a) data: NP/S, request: S

Enforcing property 1

10

request

S v[1000]

request

unblock

I

directory exclusive
sharer

M

unblock

M

I

request
DATA

b) data: M, request: M/S

DATA

request

M v[1000]

M v[1000]
request

requestor

I

IM

M

request

DATA

unblock

Directory based coherence - B

11

request

S v[1000]

request

unblock

I

directory exclusive
sharer

M
done

unblock

M

Ip

I

request
DATA

Invalidate
perm

Invalidate

ack

b) data: M, request: M/S

DATA
Invalidate perm

Invalidate ack

request

M v[1000]

M v[1000]
request

done

requestor

I

IM

M

Ma

Md

request

Invalidate permDATA

Invalidate ack unblock

done

Enforcing property 2

12

request

b v[1000]

Invalidate

1000,0100
,0001

unblock

I

directory sharer

M

ack count
unblock

S

I

Invalidate
ack

c) data: S, request: M

ack

invalidate

M v[1000]

S v[1000]
request

requestor

I

IM

M

IM, a=1

IM, a=2

request

ack

ack

S

= 3

= 3

ack unblock

I

ack count (3)

ack

Directory based coherence - C

13

request

b v[1000]

Invalidate

1000,0100
,0001

unblock

I

directory sharer

M

expected acks
unblock

S

I

Invalidate
ack [id]

c) data: S, request: M

done

ack

invalidate

M v[1000]

S v[1000]
request

done

requestor

I

IM

M

IM, a[1000]

IM, a[1001]

request

expected acks

[1101]ack [1000]

ack [0001]

S

= [1101]

= [1101]

ack [0100] unblock

Md

done

I

ack

Enforcing property 3

14

Experimental setup

Wisconsin Multifacet GEMS simulator

64-core tiled CMP

Private split L1 caches

Physically distributed shared L2 cache

Fault rates of 1 fault/ms – 1 fault/µs

15

fft fmm lu radix water nsq water sp

SPLASH Benchmark

Performance overhead

16

Large working sets’
traffic saturate NoC

No faults

1 fault/1ms

1 fault/100µs

1 fault/10µs

More exclusive
requests

Average over all benchmarks

Higher fault rate Higher execution overhead
Low overhead
when no faults

Network congestion

17

Most congested link

Baseline protocol, no faults
Resilient protocol, no faults
Resilient protocol, 1 fault/10µs

8% increase!

Average over all links

Hardware overhead

18

PC Req. …. State Transaction
ID

Sender
bitvector

Timeout

 6 bits 64 bits 13 bits

Router
 Adder per buffered packet

0
.
.
.

31
1 bit

 MSHR table

Total= 352 bytes/node, 20 X 16 bit adder/router << core gate count

Conclusion

Lost messages lead to suspended
transactions.
Three properties were defined that

guarantee transactions will eventually
complete.
Experimental results indicated negligible

hardware overhead and execution overhead
of 0.8% during fault-free operation.

19

20

Questions?

Discussion

Does addressing only transient faults
guarantee sufficient resilience?

The resilient version of the protocol is
much more elaborate than the
baseline. Is this worth it?

21

22

THANK YOU!

