
Runtime Validation of Memory Ordering 
Using Constraint Graph Checking

Kaiyu Chen, Sharad Malik and Priyadarsan Patra

Presented by:
Xiaoming Guo

Sijia He

1



Outline
 Motivation

 Background

 Key ideas

 Implementations

 Evaluation

 Related work

 Conclusion

 Discussion

2



Cores Are Getting Complicated…

https://www.techpowerup.com/215333/intel-skylake-die-layout-detailed.html

 Three levels of $$$

 “Hyper-threading”

 Aggressive re-ordering

 Interacting via shared memory

3



Difficulty in Verifying Memory Orderings
 Verifying memory consistency is NP-Complete!

 Formal method cannot be applied to runtime environment

 Simulation based verification is limited by speed

 Resort to runtime validation!

http://freecomputerbooks.com/Solving-NP-Complete-Problems.html

4



Outline
 Motivation

 Background

 Key ideas

 Implementations

 Evaluation

 Related work

 Conclusion

 Discussion

5



Constrained Graphs 101

 A -> B: A happens before B 

 Solid line: Consistency edges

 Dotted line: Dependence edges

ST A

ST B

LD D

LD C

ST A

LD A

ST B

ST C

P1 P2

Inter-processor edge

Intra-processor edge

Pop Quiz: Which consistency model best 
describes the ordering shown on the left?
A: SC
B: TSO
C: RMO
D: UFO

6



Cycles in Constrained Graphs

 Assume somethings wrong with ordering

 A cycle is formed in the graph

 Cycles indicate consistency violations

 Can be used to validate memory ordering 

ST A

LD B

LD A

ST A

ST B

P1 P2

LD A

LD B

Graph taken from EECS 578 lecture slides 10

7

P3



Outline
 Motivation

 Background

 Key ideas

 Implementations

 Evaluation

 Related work

 Conclusion

 Discussion

8



Key ideas
Solutions:

 Add hardware at each processor to capture share-memory operation orderings

 Perform online validation by checking for cycles in the constrained graphs

Problems:

 The size of a cycle may be unbounded

 Including all executed memory instructions is infeasible due to limited storage

9



Outline
 Motivation

 Background

 Key ideas

 Implementations

 Evaluation

 Related work

 Conclusion

 Discussion

10



Constrained Graph Reduction
Cannot store every executed MEM OP?

Store an equivalent but reduced graph!
1. Only capture inter-processor dependence edges

2. Build intra-processor edges according to consistency models

The proof is omitted.

ST A

ST B

LD D

LD C

ST A

LD A

ST B

ST C

P1 P2

11



Constrained Graph Reduction: 
An Example for SC

ST A

ST C

LD D

LD B

ST F

LD A

ST B

ST E

P1 P2

SC:

ST A

LD B

LD A

ST B

P1 P2

Inter-processor edges

ST A

LD B

LD A

ST B

P1 P2

Intra-processor edges

12



Constrained Graph Reduction: 
An Example for RMO

ST A

ST C

LD D

LD B

ST F

LD A

LD B

ST E

P1 P2

RMO:

ST A

LD B

LD A

ST B

P1 P2

Inter-processor edges

ST A

LD B

LD A

ST B

P1 P2

Intra-processor edges

MB MBMB

13



Microarchitecture
• Augment pipeline to assign each memory 

operation its own ID, called MID 

• Augment L1 $ to store local access history

• Local Observer captures inter-processer 
edges and stores them in cache controller

• Central Graph Checker builds intra-
processor edges and performs checking

• Augment L2 $ to store evicted memory 
access info from L1 $ (like victim cache)

14



Constrained Graph Edge Construction
Each inter-processor edge corresponds to different cache coherence events

ST A

LD A

RAW edge:
• Read miss
• Transfer modified data

from P1 to P2

P1 P2

ST A

ST A

WAW edge:
• Write miss
• Transfer modified data

from P1 to P2
• P2 upgrades to M state

P1 P2

LD A

ST A

WAR edge:
• Upgrade P2 to M
• Transfer clean data 

from P1 to P2 (if P2 is a 
write miss)

P1 P2

15



Constrained Graph Edge Construction:
An Example

1. <P2, 2> performs ST Y

2. <P2, 2> generates invalidation 
message and send to P1

3. P1 receives the info and 
construct dependence edge 
<P1, 4> -> <P2, 2>

4. <P2, 4> transfers data and 
“pass dirty” to <P1, 2>

5. Edge <P2,4> -> <P1, 2> can be 
constructed

Reduced graph is constructed 
by building intra-processor 
edges. A cycle is found.

16



Do We Really Have Unbounded Window?
 Actually, the cycle is not unbounded in practice.

 A cycle comes from re-ordering

 Only a limited window of re-ordering in hardware

 Can prune the sub-graph if it is not possible to contribute to a cycle

 Simplifies the hardware and reduce storage needed

17



Subgraph Pruning

To form a cycle:

Both incoming & outgoing edges

If we can ensure that A will not 
have incoming edge, we can take 
it away from checking the cycle.

A B

C D

18



Constrained Graph Edge Slicing
Key observation:

A retired instruction cannot have incoming 
edges from subsequent instructions

Forward Causality Frontier (FCF):

 No back-edge across the boundary

 Defined as the oldest retired instruction that 
is reachable from any unretired instruction

 Deallocate records for everything above FCF

Can we draw a FCF like that? No!!!

19



Outline
 Motivation

 Background

 Key ideas

 Implementations

 Evaluation

 Related work

 Conclusion

 Discussion

20



Max # of Vertices vs. Validation Interval

21



Max # of Edges vs. Validation Interval

22



Traffic Overhead

23



Hardware Overhead

Local access record at L1 cache 4 bytes/block * 1000 blocks 4 KB

Locally recorded edge list 8 bytes/entry * 128 entries 1 KB

Evicted access record at L2 cache 12 bytes/entry * 256 entries 3 KB

Central graph checker 4 KB

24



Outline
 Motivation

 Background

 Key ideas

 Implementations

 Evaluation

 Related work

 Conclusion

 Discussion

25



Related Work
Deterministic replay and race detection: 
Records dependency edges utilizing coherence hardware

Does not address issues such as storage overhead, unbounded window, etc.

Validating SC using indirect verification of system invariants:
 Only applies to SC

 Introduces false positive

26



Outline
 Motivation

 Background

 Key ideas

 Implementations

 Evaluation

 Related work

 Conclusion

 Discussion

27



Conclusion

 Validation of memory ordering is challenging

 Propose a runtime validation approach

 Use efficient hardware to construct constraint graph and perform cycle checking

 Use constraint graph reduction and constraint graph slicing to reduce overhead

28



Discussion
1. This paper only simulates a dual-core system. Does this approach 

have good scalability with increasing number of cores?

2. Facing the false positive problem caused by false sharing, is it 
better to augment the coherence message and cache line for finer 
granularity, or rely on the rollback mechanism and accept the 
performance penalty?

29


