
Automatic Concolic Test Generation
with Virtual Prototypes for Post-Silicon

Validation

Kai Cong, Fei Xie, Li Lei

Presented by: Jianchao Gao, Dike Zhou

Outline

Background

Concolic Test Generation

Implementation

Experimental Results

Conclusion

2

Outline

Background

Concolic Test Generation

Implementation

Experimental Results

Conclusion

3

Concolic: CONCrete

Concrete Execution: Executed by concrete values

if t > 75

turn

on AC

do not

turn

on AC

temperature t = 80

4

Concolic: symbOLIC

Symbolic Execution: Executed by symbolic values

KLEE: Symbolic execution engine

5

temperature high?

turn

on AC

do not

turn

on AC

temperature

Quiz: Symbolic or Concrete?

memReq(Req r, Addr a, Val& v) {

 case(LOAD):

loadFromMem(a, v)

 case(STORE):

storeToMem(a, v)

}

foo() {

Req r, Addr a, Val v

memReq(r, a, v)

}

Ans: Symbolic.
6

Virtual Prototypes

Virtual prototype: fast and fully-functional

software models of hardware system

4 fundamental portions

7

//device state

typedef struct E1000_st {

 …

} E1000State;

//Interface register function

static void write_reg (...) {

 …

}

//device transaction function, invoked by reg_func

static void start_xmit (E1000State *s) {

 …

}

//environment function

static size_t receive (...) {

 …

}

QEMU (Quick EMUlator): generic & open

source machine emulator and

virtualizer

Virtual devices have better observability

and traceability

Outline

Background

Concolic Test Generation

Implementation

Experimental Results

Conclusion

8

Motivation

Starting point: run symbolic execution from the reset state to explore all states

9

Issue?

How many states exist for a commercial used

network adapter chip?

How many symbolic requests are needed to reach a

specified state?

Combine concolic & symbolic tests together (concolic)

to generate test cases in order to avoid these issues

S0 S1

S2
S3

Sn

Concolic Test Generation

Apply concrete requests to generate a set

of reproducible states ({S0, …, Sn})

10

● Apply symbolic requests on each

states to reach more new states.

● Find the concrete requests that

correspond to each transaction.

● Cover all the states along the path

S0

S1

Sk

Sn

S’1,1

S’2,1

S’2,

2

S’k+1,1

S’n+1,1

S’n+1,2

Concolic Test Generation Algorithm

C: set of all computed symbolic executions

TC: set of all generated test cases

sv: temporary state

rv: temporary symbolic request

r: temporary concrete request

11

C = {}, TC = {}, Sv = Sut

rv = create_symbolic_request()

C.push(Sv, rv)

Looped all

c in C?

return TC

r = generate_conc_req(c)

tc = <seqk, r>

TC.push(tc)

N

Y

Transaction-Based Test Selection Strategy

Issues of the methodology:

12

Large numbers of states generated from concolic execution

Test cases that covers the same transactions

Transaction-Based Test Selection Strategy
Algorithm

SI: set of indices of all

selected states

T: all unique transactions

13

SI = {}, T = {}, i = 0, so = reset_device()

i < seq.size?

ri+1 = get_req(seq, i+1)

si+1 = comp_n_state(si, ri+1)

t = comp_transaction(si, ri+1)

t in T? T.push(t)

SI.push(i+1)

i++

return SI, T

Y

N

N

Y

Outline

Background

Concolic Test Generation

Implementation

Experimental Results

Conclusion

14

Framework

Symbolic Engine: Explore new states and create concrete test cases

15

Recorder: Captures concrete requests

Test Manager: Apply test cases to physical device and check for inconsistency

Operating System

Virtual Machine

Test Suite

Execution Harness

Symbolic Engine

Request

Sequence

Generated

Test Cases
Virtual

Prototype

Operating System

Physical Machine

Test

Manager

Virtual

Prototype

Symbolic Engine

Test

Manager

Recorder Recorder

Virtual

Prototype

Harness

4. Stub functions for virtual machine API functions invoked by

virtual devices

16

Harness: a driver for the virtual devices

Four components:

1. Declarations of the state variable and parameters of entry

functions

2. Code for making the state variable and parameters of entry

functions symbolic

3. Non-deterministic calls to virtual device entry functions

// Declarations of necessary variables
E1000State state; // Device state

target_phys_addr_t addr; // Address

…….

// Load the concrete state
load_state(&state);

…….

// Make parameters symbolic
make_symbolic(&addr);

…….

// Non-deterministic calls to entry functions
switch(memReq) {

case WRITE:

write_reg(&state,addr, val);

break;

case READ:

read_reg(&state, addr);

break;

…

}

…….

// Stub functions
uint16_t net_checksum(uint32_t sum){

…….
}

Symbolic Execution Issues

Two problems

Path explosion problem

 Number of path grows exponentially...

17

Environment interaction problem

 API functions resulting in unknown values from environments...

Proposed Solutions

Path Explosion Problem

Loop bound: applied on each loop whose loop condition is a symbolic

expression

Time bound: symbolic execution will terminate in some finite time

Environment Interaction Problem

If API function calls will affect states in virtual device, implement a stub

function

If not, just tell KLEE to ignore it

18

Quiz: Coverage

By applying symbolic execution, can we achieve 100% state coverage?

By applying symbolic execution proposed in this paper, can we achieve 100%

state coverage?

19

Test with Generated Test Cases

Application of test cases

1. Reset both real and virtual devices to

desired state

2. Apply test cases to both devices and

capture their concrete next-states

3. Check for any inconsistency

20

Y

(SR,0,SV,0)=

Reset_Device()

(SR,i+1,SV,i+1)= Compute_Next_State(SR,i,SV,i,ri+1)

Check_State(SR,i+1,SV,i+1)

Traversed all tc’s in TC?

ri+1=Get_Request(tc,

i+1)

Processed all r’s in tc?

Y

N

N

Test Case Replay

Upon the detection of an inconsistency, the

triggering test case can be replayed on the

virtual device

Better observability and controllability of

transactions

Mismatch!

21

Outline

Background

Concolic Test Generation

Implementation

Experimental Results

Conclusion

22

Compare Transaction-Based Strategy with
Random Strategy

Proposed selection strategy

can generate many more

tests than random strategy

23

Requests

in Trace

Transaction Strategy Random Strategy

States Tests States Tests States Tests

E1000 64836 60 774 60 48 180 60

Tigon3 19157 52 175 52 46 156 54

EEPro100 41849 54 357 54 116 162 116

Time Usage

Proposed selection strategies takes reasonable amount of time

Only two more new tests found on 6000 states while taking one day of work.

Not cost-effective to capture all states

Proposed selection strategy is efficient enough
24

States
Time(Min)

Selection Generation Overall

E1000 60 3.5 26.5 30

Tigon 3 52 2 17 19

EE Pro 100 54 2 91 93

Time usage of transaction-based selection strategy

Test Case Redundancy Elimination

Number of test cases is reduced

by one order of magnitude

25

Coverage Improvement

Coverage improved in all cases

For E1000 and Tigon3, function coverage can achieve 100%

For Tigon3, branch coverage can be improved by more than 30%
26

Virtual

Prototype

Statement Block Function Branch

Test Suite

Generated

Tests #
Test Suite

Generated

Tests #
Test Suite

Generated

Tests #
Test Suite

Generated

Tests

% # % # % # % # % # % # % # %

E1000 3256 2602
79.91

%
2835 87.01% 298 214

71.81

%
252 84.56% 42 39

92.86

%
42 100% 264 165

62.50

%
210 79.55%

Tigon3 1791 1496
83.53

%
1689 94.30% 138 104

75.36

%
128 92.75% 25 23 92% 25 100% 120 70

46.67

%
97 80.83%

EEPro100 2369 1767
74.59

%
2089 88.18% 266 170

63.91

%
222 83.46% 44 42

88.64

%
42 95% 150 77

51.33

%
115 76.67%

Coverage Improvement

Inconsistencies

Two types of inconsistencies:

 Devices are not initialized correctly

 Devices update reserved registers

27

Outline

Background

Concolic Test Generation

Implementation

Experimental Results

Conclusion

28

Conclusion

ACTG with virtual prototypes can leverage observability and traceability of

virtual prototypes

This approach can generate effective test cases in a modest amount of time

using transaction-based test selection strategy, and improve coverage as well

Several inconsistencies found by tests generated under proposed approach

29

Questions?

30

Debate:

1. The proposed method requires a virtual device which should be exactly the

same in transactions in order to generate a valuable feedback in replay.

This can be very effort consuming. Worth it?

1. Can the proposed method replace ordinary test case selection methods,

even though the proposed method cannot cover all possible transactions?

31

Experiment Setup

Lightweight harnesses: <100 lines of

code

32

Virtual Prototype Harness

Lines Functions Lines
Entry

Functions

E1000 2099 53 74 4

Tigon3 4648 34 80 4

EEPro100 2178 70 85 7

Category Commands Descriptions

Basic Programs

ifup Bring a network interface up

ifdown Take a network interface down

ifconfig Configure a network interface

ping Send ICMP ECHO_REQUEST

scp Copy files between network hosts

Capture this test suite from concrete

executions of virtual devices in QEMU

Summary of three virtual prototypes Summary of test suite

