Transaction-based Online Debug for
NoC-based Multiprocessor SoCs

- by Mehdi Dehbashi, Gorschwin Fey

Presented By
Xiangfei KONG, Chenxi LOU

11/17/2015

Outline

Background

m Overview of Transaction-based Debug

m [TDPSL (Transaction Debug Pattern Specification Language)

Transaction Based Online Debug
m Debug Method & Requirements
m Debug Infrastructure
m Approach Limitation

m Implementation

Outline

Background

m Overview of Transaction-based Debug

m [TDPSL (Transaction Debug Pattern Specification Language)

Transaction Based Online Debug
m Debug Method & Requirements
m Debug Infrastructure
m Approach Limitation

m Implementation

Transaction - Based Debug
» Why do we need transaction based debug in NoC based
multiprocessor SoCs ?
= Growing complexity of interconnects & |IP communication
= Monitoring transaction packets at SoC level is relatively easy
» Lots of research in the area !

= Transaction-based communication-centric debug
= Debug pattern detection with TDPSL

= Transaction back tracing using Bounded Model Checking

» Problems we currently have

= Online debug method that can debug & recover at run time

= An approach that is less intrusive to the NoC network

HGRANT2

m Master - Slave

HREQ2
HREQ1

HGRANT1
Pue YOOVH

Transaction - Based Debug

S - Example: ARM AMBA AHB Protocol

A
= A 4

| A
o113 pue

- Masters request, Slaves respond

HB SYSTEM WITH 2 MASTERS
ND 3 SLAVES

m [ransaction Elements

4 Basic Elements:

Start of Request (
End of Request (
Start of Response (
End of Response (

2 Additional Elements:

Request Error (ErrRq)
Response Error (ErrRq)

Outline

Background

m Overview of Transaction-based Debug

m TDPSL (Transaction Debug Pattern Specification Language)

Transaction Based Online Debug
m Debug Method & Requirements
m Debug Infrastructure
m Approach Limitation

m Implementation

TDPSL - Transaction Debug Pattern Specification Language

m Boolean Layer

trans_type (master slave type address
Prev Tran Curr Tran
Slave Addr Slave Addr

Slave Compare

SAME, SEQ,
OTHER

m Temporal Layer
- define transaction sequence properties

¢

concatenation (;) fusion(:) or(-) and (&) repetition ([6])

m Verification Layer

- Assertion

assert never

eg. EoTr(m2,s1,Wr,-) ; SoTr(m1,s1,Rd,-)
- Filter Expression

defines over masters, slaves & trans types
eg. Filter(*,*,*

Outline

Background

m Overview of Transaction-based Debug

m [TDPSL (Transaction Debug Pattern Specification Language)

Transaction Based Online Debug
m Debug Method & Requirements
m Debug Infrastructure
m Approach Limitation

m Implementation

Highlights v

A debugging infrastructure that ito NoC
= Finding & analyzing transaction-based patterns
Present antransaction ordering mechanism

= Online system recovery@ut stopping/interru@NoC

Outline

Background

m Overview of Transaction-based Debug

m [TDPSL (Transaction Debug Pattern Specification Language)

Transaction Based Online Debug
m Debug Method & Requirements
m Debug Infrastructure
m Approach Limitation

m Implementation

Debug Method

Continue ‘ ‘ Error

Send

Packet to
\o]®

Nodes

Recover

Debug Requirements

m Be able to collect transaction elements at run-time
m Be able to order transactions online

m Be able to assert debug patterns online

11

Outline

Background

m Overview of Transaction-based Debug

m [TDPSL (Transaction Debug Pattern Specification Language)

Transaction Based Online Debug
m Debug Method & Requirements
m Debug Infrastructure
m Approach Limitation

m Implementation

12

Debug Infrastructure

> DU <
Filter Master 1 Master 2 Filter
Monitor |« :: ! I > Monitor

=

R R R
NoC Hardware infrastructure
for a SoC with two
masters & two slaves

R R R

=
A A
v \ 4

DRI DRI
Slave 1 Slave 2

13

Debug Infrastructure

Filter

Monitor

Filter

Monitor

Filter

v

> DU <
Master 1 Master 2
A A
v \ 4 v
R R R
NoC

R R R

=]
A A
v \ 4

DRI DRI
Slave 1 Slave 2

Monitor

14

Monitor

- Observe master interconnects to extract packet elements

— master slave type axss

Master
Interconnect 0
] Timestamp
Filter
- Filter unrelated transaction, both in monitor & Debug Unit (DU)

FSM Input

‘ Filter Structure in

DU

Transaction

1'b1

Choose an always
different value

Don’t care

Transaction

Debug Infrastructure

Filter

Monitor

A

DU-based
Approach

Filter

v

Monitor

»I DU
DRI
Master 1 Master 2
A A
v \ 4 v
R R R
NoC
R R R
=
A A
v \ 4
DRI DRI F— |
Slave 1 Slave 2

Slave-based
— Approach

16

DRI (Debug Redundant Information)

- Extract and transfer element address of a transaction

1. Slave - based Approach

Master

[><] Address Symbol

Slave

2. DU - based Approach

Slave 1 Slave 2

DU

Slave N

i}

Slave Address
Observed

DRI in slave

Low transfer cost

Address info only in EoTr, wait to
receive EoTr from slave

DRI in DU

Non-Intrusive to SoC

More bandwidth needed to
transfer slave address
Larger memory storage in DU

17

Debug Infrastructure

Filter

v

> DU <
Filter Master 1 Master 2
. A A
Monitor |« | ! I
R| - R R
NoC

R - R R
=]

A A

v \ 4

DRI DRI
Slave 1 Slave 2

Monitor

18

DU (Debug Unit)

Filter \><: Transfer data observed to top level
Drop assertion unrelated transactions
/.

LDU [

DU

Synchronize Timer & Handle Error Cases
CDU P

" Investigate Assertion Online
FSM |~

‘ Synch. ‘

Transaction ordering
based on timestamps

LDU Structure CDU Structure

(Local Debug Unit) (Central Debug Unit)

> Synch Packet [Recovery Packet

DU Topology
<] Debug Packet
CDU
= Y * Low Error Detection Latency
=
 Large Number of DUs
NoC .
- L Tree Topology
i gError 4 4
Fitter | Timer | [Fitter | Timer | [Fitter [Timer | [Fitter | Timer_
Monitor Monitor Monitor Monitor

/m

CDuU

N

LDU <\|g
LDU

|
LDU

* Low hardware cost
* Need traffic balance approach
 Wait until all transactions arrive

* Transaction ordering challenge

Ring Topology

20

Debug FSM

- Programmable FSMs utilized to investigate assertions online

FSM Memory Overhead

Current State Input Next State Worst Case Transaction # =t
Start Tri A Worst Case State # = s
Start Other Start
Total Memory = ([log,s] +xt])2* [log,s]
<
Err - Err Total Memory = 21t0gz2s51+110gz2tl 4 [10 g,]

Tr Pattern| [trans l\p master t\p addr \1‘

Transaction
| a? %; ~§>
Tr21 B

Tr Pattern2 trans type master addr |\1|

N Transaction Pattern
B Encoding

»
»

.y

Tr Pattern3 trans_type master addr \1|

? = @ @

Tr Pattern4 trans_type ‘ master addr \1

Encoder Memory Input

HJ WI_W

21

Outline

Background

m Overview of Transaction-based Debug

m [TDPSL (Transaction Debug Pattern Specification Language)

Transaction Based Online Debug
m Debug Method & Requirements
m Debug Infrastructure
m Approach Limitation

m Implementation

Approach Limitations

m Only CDU has a comprehensive assertion checking for all masters

m Does not work for hardware faults

Software ‘ Detection ‘ Recovery
DeadLock

V/
Hardware . . ‘
‘ Detection ‘ Recover
DeadLock y \

m Does not detect deadlocks between different threads of a single core

23

Outline

Background

m Overview of Transaction-based Debug

m [TDPSL (Transaction Debug Pattern Specification Language)

Transaction Based Online Debug
m Debug Method & Requirements
m Debug Infrastructure
m Approach Limitation

4

m Implementation

Implementation

» Experiment Setup

Tool -
Network -
SoC Setup

Debug Pattern

> Assertion in TDPSL

Assert never {
SoTr(m1,s1,Wr,-);
SoTr(m2,s1,Wr,SAME);
EoTr(m1,s1,Wr, SAME)
} filter (*,*,%)

Nirgram NoC Simulator

3 x 3 mesh network

Four masters, Four Slaves
Race, Deadlock, Livelock

Assert never {

EoTr(m1,s1,Rd,-); EoTr(m1,s1,Wr,SAME);
EoTr(m2,s2,Rd,-); EoTr(m2,s2,Rd,SAME);
{EoTr(m1,s2,Rd,SAME); EoTr(m2,s1,Rd, SAME)
|EoTr(m2,s1,Rd,SAME); EoTr(m1,s2,Rd, SAME)
HA] filter(*,*,*)

Similar to
Deadlock

25

Simulation Results
» Area Overhead

Lookup Table Size (# of bits)
Debug Pattern #Tr Patterns
Address Data

Race Pattern 1 4 2
Race Pattern 2

Deadlock Pattern 1
Deadlock Pattern 2

Livelock Pattern 1

3
8
6
6
6
6

N~ N N o o
~ bW

Livelock Pattern 2

» Effect of Online Recovery

_ Without Recovery With Recovery

Eating 6 3276
Resolved Deadlock 0] 77

26

Conclusions

m An effective approach for NoC-based multiprocessor
SoC online debugging

m Non-intrusive way to investigate, debug & recover
from error states at run time

m Design tradeoffs & limitations

m Debug pattern exercise with Nirgram NoC simulator

27

Thank you for your listening !

Presentation By
Xiangfei KONG, Chenxi LOU

11/17/2015

28

Questions ?

29

\

1. Will judging the DU FIFO size be a design challenge when using
the proposed online debug approach ?

2. As the recovery algorithm does not work for hardware deadlock
faults & inner core multithread deadlocks, is it worth to use
when another approach is available ?

[22] A. Ghofrani, R. Parikh, S. Shamshiri, A. DeOrio, K,-T. Cheng, V. Bertacco,
Comprehensive online defect analysis in on-chip networks, in: VLSI Test Symp., 2012,
pp.661-666

30

