Accelerating Microprocessor Silicon Validation by Exposing ISA Diversity

Rong Xu Zixin Wang

Aggressive technology scaling and extreme chip integration significantly increase the complexity of microprocessor

• Infeasible to exhaustively test when simulation

Pressure on validation team to deliver correct design to market on time is higher than ever.

50% of microprocessor chips require extra unplanned tape-out

A billion-dollar mistake: Intel recalls a supporting chip for popular Sandy Bridge platform

DEAN TAKAHASHI JANUARY 31, 2011 8:26 AM

TAGS: COUGAR POINT, SANDY BRIDGE Intel made a big deal at the recent Consumer

Electronics Show about how its Sandy Bridge combination graphicsmicroprocessor chip has been one of its most successful in history. But it spoke too soon. Now the world's biggest chip maker said it has discovered a design flaw in the chip's companion chip set, forcing a production delay that will cost it \$1 billion in lost revenues and replacement costs.

The delay could derail the shipment schedules for more than 500 computers using the Sandy Bridge processor, which combines graphics and a microprocessor in a single piece of silicon. That's going to be bad for the PC industry, since Intel can't supply millions of new chips overnight. That could give an advantage to rival Advanced Micro Devices, which is shipping a rival combo processor under the Fusion platform name.

Intel said it will reduce its revenue target for the first guarter by \$300 million and incur repair and replacement costs of \$700 million. That's the biggest quality problem since the Pentium bug hit Intel in 1994, when Intel recalled a math-Number of Required Spins

Source: Wilson Research Group and Mentor Graphics, 2014 Functional Verification Study

www.mentor.com

Press Releases

Hydra Biosciences Hosts Pa Forum, Healthcare Leaders I Innovative Solutions f...

Kony and ORNL Federal Cre Union Deliver Innovative M Banking App Experience

Kony Launches New Mobile Banking Solution to Rapidly Mobilize Mid-sized Banks a Cre...

View more

Powered by Bus

Mara Fram VanturaDa

C Mentor Graphics Corp. Company Confidential

Prototype to Volume Production

Effective post-silicon validation needed to eliminate bugs before volume production

Random instruction tests(RIT) contribute tremendously to the detection of design bugs

ISA Diversity

Concept: Operations of an ISA can be performed equivalently in more than one different way.

Benefit: Same operation in different ways produce identical results but activate different logic paths

Application: Enable bug detection by comparing results of equivalent instructions (self-checking)

Statistics: In major ISAs, more than 75% instructions can be replaced with equivalent instructions

Example: MIPS ISA diversity

Original Instruction	Equivalent Sequence	Description
lw RA, addr(RB) Load word	IhuRA, addr(RB)IhuRC, (addr+2)(RB)sllRC, RC, 16orRA, RA, RC	Execute 2 load halfword unsigned instructions and places the second halfword to upper bytes.

Framework (contd)

Question1: Why replay?

Question2: What if equivalent instruction is the offending one?

Hardware Support

- store-addr: buffer to store PC of all k store instructions.
- estore-addr: buffer to store PC of all k estore instructions.
- mids-queue: store every mismatch id ($0 \sim k$).
- store counter: counts the number of stores for each run.
- bypass control: control PC to bypass buggy code.

Mismatch ids

Post-processing (triage)

Time Analysis

Experimental Environment

- PTLsim simulator:
- Bugs injected:
- Original RIT:
- Comparison:
- Test Size:

superscalar, OoO, single core x86-compatible

- 802 logic, 225 electrical, 1025 total
- 154 RITS, ~4K Inst each, 616K Inst total
- Reversi & QED
- 2.4M Instructions for Reversi
- 1.8M Instructions for QED
- 3.7M Instructions for Proposed

Injected Bugs Distribution

Pipeline Stage	Component	Logic bugs	Electrical bugs	Total bugs
E-4-1/	Branch Predictor	71	16	87
	Prefetcher	29	12	41
reicn/	Instruction Decoder	100	_	100
Decode	Microcode	62	_	62
	Instruction Buffer	_	18	18
Issue/ Execute	Integer Arithmetic	95	_	95
	FP Arithmetic	97	_	97
	Jump logic	46	_	46
	Load/Store logic	66	21	87
	Issue Queue	42	_	42
	Scheduler	32	_	32
	Register File	61	63	124
Retire	Reorder Buffer	101	41	142
Inst	truction & Data	_	52	52
Total		802	223	1025

Detected Bugs

Validation Times

Time (Sec)	Trad. RIT	Reversi	QED	Proposed
Generation	4.460	6.310	5.530	7.680
Simulation	51.000	-	-	-
Execution	0.027	0.110	0.071	0.176
Total	55.487	6.420	5.601	7.856

Upload time, Download time and Compare time are nearly zero so neglected, But should be included for large tests.

Conclusion

Enhanced RIT			Accelerate
Support major ISA	Hardware based repl	ay Log information	Validation!
rast sen-checking	Fully utilize bug detect capability of RITs	Exact information on offending Inst Help locate root cause	

Debate

- 1. Is it a good idea to apply this method to pre-silicon verification?
- 2. Can we replace ERIT instructions with RIT instructions when mismatch happens?