
Accelerating Microprocessor 
Silicon Validation by Exposing 
ISA Diversity
Rong Xu
Zixin Wang

1



Background

2



Aggressive technology scaling and 
extreme chip integration significantly 
increase the complexity of microprocessor
• Infeasible to exhaustively test when simulation

Pressure on validation team to deliver 
correct design to market on time is higher 
than ever.
• 50% of microprocessor chips require extra unplanned 

tape-out

3



4



Effective post-silicon 
validation needed to 
eliminate bugs before 
volume production

Random instruction 
tests(RIT) contribute 
tremendously to the 
detection of design bugs

5

Prototype to Volume Production



Challenges

Expected 
Responses

Actual 
Responses co

m
pa

ra
to

r

Bug 
detected

Host Machine

Prototype

Actual 
Responses RIT

Simulation Limitations

Post-Processing (Triaging)

Blocking Bugs

6

Simulator



ISA Diversity
Concept: Operations of an ISA can be performed equivalently in more than one different way.

7

Benefit: Same operation in different ways produce identical results but activate different logic paths

Application: Enable bug detection by comparing results of equivalent instructions (self-checking)

Statistics: In major ISAs, more than 75% instructions can be replaced with equivalent instructions



Example: MIPS ISA diversity

Original Instruction Equivalent Sequence Description

lw RA, addr(RB)
Load word

lhu RA, addr(RB)
lhu RC, (addr+2)(RB)
sll RC, RC, 16
or     RA, RA, RC

Execute 2 load halfword 
unsigned instructions and 
places the second 
halfword to upper bytes.

8



Statistics

8%

15%

77%

ARM

11%

10%

79%

MIPS

8%

14%

78%

POWERPC

20%

6%

74%

X86

9

Full Equivalence

Partial Equivalence

No Equivalence



New Validation Method

ISA 
Diversity 
Database

Enhanced 
RIT

Hardware 
Replay 

Mechanism

Post-
processing 

(triage)

New 
Validation 
Method

10

Contain equivalent 
Instructions for 
each instruction

RIT + ERIT 
(Equivalent RIT)
+ checking code

Replace mismatch 
Instructions in RIT with 
Counterparts in ERIT 

then replay

Data provided by 
HRM help 

clustering of 
failure modes



Framework

Test Scenario

Random
Instruction Test

Random
Instruction Test 

Generator

Enhanced Random
Instruction Test 

Generator
Prototype Triage

Debug

ISA Diversity
Database

Enhanced 
log file

Hardware
Replay

Mechanism

11



12

Framework (contd)

RIT

ERIT

Checker
Bug 

Detected

Prototype

Host machine

RIT
Question1:
Why replay?

Question2:
What if equivalent instruction is the offending one?



13

Enhanced RIT (Check Point)

Instruction
Section 1
store[1]

Instruction
Section 2
store[2]

……

store[k]

Instruction
Section k

Equivalent
Instruction
Section 1
estore[1]

Equivalent
Instruction
Section 2
estore[2]

……

estore[k]

Equivalent 
Instruction
Section k

Checking
Code

RIT ERIT

Mismatch? Check Point



14

Hardware Support

store-addr: buffer to store PC of all k store 
instructions.

estore-addr: buffer to store PC of all k estore 
instructions.

mids-queue: store every mismatch id ( 0~k ).

store counter: counts the number of stores for each 
run.

bypass control: control PC to bypass buggy code.

St
or

e-
ad

dr
st

or
e-

ad
dr

es
to

re
-a

dd
r

es
to

re
-a

dd
r

bypass controlbypass control

store counterstore counter

hit

10

mids-queue

Mids from checking 
code (from a register)

monitor

25

130

0

Mismatch ids



15

Bypass Control

Run RIT
SC:0 -> mid-1 PC point to

Next inst of
estore[mid-1]

Until estore[mid] 
finish PC point to

store[mid]

“buggy” code in RIT
is bypassed

Remaining test still useful



16

Test Flow

Execute RIT, ERIT,
Checking code

Update mids-queue

Mid == 0? N Mid > 0?

sc=0

replay(RIT,ERIT)

Y

sc==mid-1?

Y

PC=estore[mid-1]+4

Execute equivalent ops

PC=store[mid]

Execute checking code

Update mids-queue

Test Passed
Y N

Start
For all RITs:



17

Post-processing (triage)

Our Method
Mismatch identifiers

stores’ address
Debug Engineer

Debug faster

Log information

Bypass buggy instructions

More bugs detected
with each RIT 



Time Analysis

21

VS

Simulation time is too long!



• PTLsim simulator: superscalar, OoO, single core x86-compatible
• Bugs injected: 802 logic, 225 electrical, 1025 total
• Original RIT: 154 RITS, ~4K Inst each, 616K Inst total
• Comparison: Reversi & QED
• Test Size: 2.4M Instructions for Reversi 

1.8M Instructions for QED
3.7M Instructions for Proposed

Experimental Environment

17



18

Injected Bugs Distribution

30%

52%

14%

4%

BUGS DISTRIBUTION
Fetch/Decode Issue/Execute Retire Instruction&Data



Detected Bugs

19

0

200

400

600

800

1000

1200

Traditional RIT Reversi QED Proposed

detected bugs number

90.54% 88.10%

20.49%

100%



20

Validation Times

Time (Sec) Trad. RIT Reversi QED Proposed
Generation 4.460 6.310 5.530 7.680
Simulation 51.000 - - -
Execution 0.027 0.110 0.071 0.176

Total 55.487 6.420 5.601 7.856

Upload time, Download time and Compare time are nearly zero so neglected, But should be 
included for large tests.



Conclusion

Enhanced RIT

Support major ISA 
Fast self-checking

Hardware based replay

Bypass buggy Inst
Fully utilize bug 
detect capability of 
RITs

Log information

Exact information 
on offending Inst
Help locate root 
cause

Accelerate
Post-silicon
Validation!

22



24

Q&A



Debate

23

1. Is it a good idea to apply this method to pre-silicon verification? 

2. Can we replace ERIT instructions with RIT instructions when mismatch happens?


