Decoupling Dynamic Information Flow
Tracking with a Dedicated Coprocessor

Hari Kannan, Michael Dalton, Christos Kozyrakis

Presenter: Yue Zheng
Yulin Shi

Outline

* Motivation & Background
* Hardware DIFT overview
* DIFT Coprocessor Design
* Prototype System

* Evaluation

* Conclusion

* Discussion points

Outline

* Motivation & Background

Mhy is the pointer dere rence
potentially dangeroug

Motivation & Background

* Dynamic Information Flow Tracking (DIF
* Tag data from untrusted source
* Track tainted data propagation
* Check unsafe tainted data usage

R1 &tainted_input !\!H |iii ” ‘!I\ .

idx (tainted_input)

Vulnerable C Code
int idx = tainted_input; load R2 ~ M[R1] R2

. . &buffer
buffer[idx] = x; // memory corruption R3
addR4 RZ*RS &buffer + idx

R4
Tainted Pointer DereferenceW[M] R5 e X

Why is the pointer dereference potentially

dangerous? %
e Buffer Overflow Attack store M[R4] R5

Vulnerable C Code

char buf[126];
strcpy(buf,str);

< Stack grows this way

Motivation & Background

e Software DIFT

*Use Dynamic Binary Translation (DBT) to implement DIFT
* Avoid recompilation
* Introduce significant overheads

*Limitation
* Incompatible with self-modifying and multithreaded programs

Outline

e Hardware DIFT overview

Hardware DIFT overview

* In-core DIFT

lcache II~

|
L2 cache

DRAM
* Minimize runtime overhead
e Require significant modifications to processor structure

Hardware DIFT overview

* Offloading DIFT

Core 1 9 Farke Core 2
A _— , , {)—;» DIFT
(App) cache— >—— R cache .

compress . decompress analysis

DRAM

e Offer the flexibility of analysis in software

* Introduce significant overheads
* halve the throughput, double the power consumption

* Require pipeline changes

Hardware DIFT overview

e Off-core DIFT

Instructions
Exceptions L L
\ 4 [s e |
Mai , T |
e cache L2 Cache = - :
Core Pipeline |
DRAM DIFT Coprocessor

* DIFT synchronizes with main core only on system calls
* Eliminate the changes to processor
* Allow pairing with multiple processor designs

Outline

* DIFT Coprocessor Design

DIFT Coprocessor Design — Security Mode|

* Security Model

R1 &tainted input

load R2

M[R1]

add R4

R2 + R3

e .
Lo R

Tainted Pointer Dereference

7glion Instruction
Syne
v

Coprocessor

Exception

ommit

DIFT Coprocessor Design - Architecture

Main Core Processor VS Coprocessor

Main Core Processor

Coprocessor

* Handle data * Handle tag propagation and check
* 32 bits * 4 bits
* Complexity e Simple

DIFT Coprocessor Design - Architecture

*Four-stage pipelinelz Decode, Execution, TlagCheck, V\IlriteBack

Tag Reg File
Decoupling 128 Tag Check Writeback

Queue Securit Logic
IIII Decod;’ AL

Queue Stall

DIFT Coproc:essor

ﬁ

L2 Cache I

| .
|<— Decode —> Execution=—>»

<—TagCheck—>:<— WriteBack—»I

DIFT Coprocessor Design - Interface

* Coprocessor Setup
e Software control security policies

* Instruction Flow Information PC

* PC, Instruction Encoding and Memory Address [}

. ‘ = e INg Decode —>E<— Execute —>E<—TagMCheck—~i<—Wfit§B.§¢k—>E
. Decoug)lmcﬁ e
e Greater Of equal processing rate to avoid full queue

Decoupling

Queue

—HlEE—
—

Queue Stall

° SeﬁufJFYh@%QH@%pts and run in trusted mode

Outline

* Prototype System

Prototype

eHardware
* SPARC V8 Processor

* FPGA Board

eSoftware
* Gentoo Linux 2.6

*Design Statistics

e 7.64% area overhead

Outline

e Evaluation

Evaluation

e)
 Security Evaluation pEogEamming language

Program Attack Detected Vulnerability
Open tainted directory

ar Open tainted directory
Ctj)tr'm'non Tainted <script> tag
Hitl
s Htdig Tainted <script> tag
Servers Polymorph Buffer overflow Tainted code ptr dereference
Web apps .
Kernel code Buffer overflow Tainted data ptr dereference

Tainted pointer to
kernelspace

User/kernel pointer
dereference

Tainted ‘%n’ in syslog
WU_FTPD Format string bug Tainted ‘%n’ in vfprintf

Evaluation

 Performance Evaluation — Execution time

1.00%

o

o

~ 0.80%

©

[y}

Q

< 0.60%

o

2 » 512-byte tag cache

o 0:40% * 6-entry queue

E

T 0.20%

=

2 Runtime overhead < 1%
0.00%

gzip gap crafty parser vortex bZ|p2 twolf

Evaluation

* Performance Evaluation — Scaling the tag cache

25%: -

N
3
>

15%

5%

Runtime Overhead (%)

0%

Queue full Stalls

B Memory contention Stalls

10% -

16B 32B

64B 128B

2568B

Size of the Tag Cache

1K

Evaluation

* Performance Evaluation — Scaling the decoupling queue

1.2%
o Queue full Stalls
o 10%
N
T :
B 8% B Memory contention Stalls
£
o 6% -
3 O « 16-byte tag cache
QO 49 | I— [Tag miss T
E
shed
c 20/0 T —_— —
=
Sl B B

0 2 4

Size of the Queue
(no. of entries)

Evaluation

* Processor/Coprocessor Performance Ratio

1.2 - # gzip

T

8 [.~

=

g s |

2 1485 - « 16-entry queue

>

R A

o 0.

84 e Can be paired with
0.9 - various main cores

1 1.5 2

Ratio of main core's clock to
coprocessor's clock

Outline

* Conclusion

Conclusion
* DIFT: a promising security technique

* Proposed an off-core, decoupling coprocessor for DIFT
* Provide the same security features as in-core DIFT
* Reduce DIFT implementation cost drastically
* Has low area and performance overheads

* Developed a full-system prototype
* Protect real-world Linux applications

Questions?

Debate

* |s a wider-issue coprocessor better than a single-issue coprocessor
for 3-way superscalar processors?

* Is it worth to add a checkpoint scheme to DIFT to provide reliable
recovery? (A checkpoint scheme allows the system to rollback for
recovery)

