
Decoupling Dynamic Information Flow 
Tracking with a Dedicated Coprocessor

Hari Kannan, Michael Dalton, Christos Kozyrakis

Presenter: Yue Zheng    
                  Yulin Shi

1



2

Outline

• Motivation & Background
• Hardware DIFT overview
• DIFT Coprocessor Design
• Prototype System
• Evaluation
• Conclusion
• Discussion points 

2



3

Outline

• Motivation & Background
• Hardware DIFT overview
• DIFT Coprocessor Design
• Prototype System
• Evaluation
• Conclusion
• Discussion points 

3



4

Motivation & Background

• Dynamic Information Flow Tracking (DIFT)
• Tag data from untrusted source
• Track tainted data propagation
• Check unsafe tainted data usage

int idx = tainted_input;
buffer[idx] = x; // memory corruption

Vulnerable C Code

#Re
g

Data Tag

R1

R2 

R3 

R4

R5

R1  &tainted_input

load R2  M[R1]

store M[R4]  R5

add R4  R2 + R3

&tainted_input  

idx (tainted_input)  

&buffer  

&buffer + idx  

x  TRAPTainted Pointer Dereference

Why is the pointer dereference  
potentially dangerous 

?

4



5

Why is the pointer dereference potentially 
dangerous?
• Buffer Overflow Attack store M[R4]  R5

TRAP

char buf[126]; 
strcpy(buf,str); 

Vulnerable C Code

5



6

Motivation & Background

• Software DIFT

•Use Dynamic Binary Translation (DBT) to implement DIFT
• Avoid recompilation
• Introduce significant overheads

•Limitation
• Incompatible with self-modifying and multithreaded programs

6



7

Outline

• Motivation & Background
• Hardware DIFT overview
• DIFT Coprocessor Design
• Prototype System
• Evaluation
• Conclusion
• Discussion points 

7



8

Hardware DIFT overview

• In-core DIFT

• Minimize runtime overhead
• Require significant modifications to processor structure

8



9

Hardware DIFT overview

• Offloading DIFT

• Offer the flexibility of analysis in software
• Introduce significant overheads 

• halve the throughput, double the power consumption
• Require pipeline changes

9



10

Hardware DIFT overview

• Off-core DIFT

• DIFT synchronizes with main core only on system calls
• Eliminate the changes to processor
• Allow pairing with multiple processor designs

10



11

Outline

• Motivation & Background
• Hardware DIFT overview
• DIFT Coprocessor Design
• Prototype System
• Evaluation
• Conclusion
• Discussion points 

11



12

DIFT Coprocessor Design – Security Model
• Security Model

    
IF

ID RE
N

R O B

Coprocessor

Commit

   EX   EX

R1  &tainted_input

load R2  M[R1]

store M[R4]  R5

add R4  R2 + R3

TRAP

Tainted Pointer Dereference
TRAP

System
Call

Instruction Exception

Main Core

Synchronization

12



13

DIFT Coprocessor Design - Architecture
      Main Core Processor     VS     Coprocessor  

Main Core Processor

Coprocessor

• Handle data
• 32 bits
• Complexity

• Handle tag propagation and check
• 4 bits
• Simple

13



14

DIFT Coprocessor Design - Architecture
•Four-stage pipeline: Decode, Execution, TagCheck, WriteBack

Main
Core

Queue Stall

Decoupling
Queue

Security
Decode

Tag Reg File

Tag Cache

Tag

ALU

Tag Check
Logic Writeback

L2 Cache

DRAM Tag
s

 WriteBackTagCheckExecutionDecode

14

DIFT Coprocessor



15

DIFT Coprocessor Design - Interface
• Coprocessor Setup

• Instruction Flow Information

• Decoupling

• Security Exceptions

• Software control security policies

• PC, Instruction Encoding and Memory Address

• Greater or equal processing rate to avoid full queue

• Asynchronous interrupts and run in trusted mode

15

Security
Decode

PC, Inst Encoding, Mem Addr



16

Outline

• Motivation & Background
• Hardware DIFT overview
• DIFT Coprocessor Design
• Prototype System
• Evaluation
• Conclusion
• Discussion points 

16



17

Prototype
•Hardware

•Software

•Design Statistics

• SPARC V8 Processor

• FPGA Board

• Gentoo Linux 2.6

• 7.64% area overhead

17



18

Outline

• Motivation & Background
• Hardware DIFT overview
• DIFT Coprocessor Architecture
• Prototype System
• Evaluation
• Conclusion
• Discussion points 

18



19

Evaluation

• Security Evaluation
Program Lan

g.
Attack Detected Vulnerability

Gzip C Directory traversal Open tainted directory
Tar C Directory traversal Open tainted directory
Scry PHP Cross-site scripting Tainted <script> tag
Htdig C++ Cross-site scripting Tainted <script> tag

Polymorph C Buffer overflow Tainted code ptr dereference
Sendmail C Buffer overflow Tainted data ptr dereference

Quotactl syscall C User/kernel pointer 
dereference

Tainted pointer to 
kernelspace

SUS C Format string bug Tainted ‘%n’ in syslog
WU_FTPD C Format string bug Tainted ‘%n’ in vfprintf

Independent of programming languageWide workload range

Common
Utilities
Servers

Web apps
Kernel code

High level attacksLow level attacks

19



20

Evaluation

• Performance Evaluation – Execution time

• 512-byte tag cache
• 6-entry queue

Runtime overhead < 1%

20



21

Evaluation

• Performance Evaluation – Scaling the tag cache

21



22

Evaluation

• Performance Evaluation – Scaling the decoupling queue

• 16-byte tag cache
• Tag miss ↑

22



23

Evaluation

• Processor/Coprocessor Performance Ratio

• 16-entry queue3.8%

11.7%

Can be paired with 
various main cores

23



24

Outline

• Motivation & Background
• Hardware DIFT overview
• DIFT Coprocessor Architecture
• Prototype System
• Evaluation
• Conclusion
• Discussion points 

24



25

Conclusion

• DIFT: a promising security technique

• Proposed an off-core, decoupling coprocessor for DIFT
• Provide the same security features as in-core DIFT
• Reduce DIFT implementation cost drastically
• Has low area and performance overheads

• Developed a full-system prototype
• Protect real-world Linux applications

25



26

Questions?

26



Debate

• Is a wider-issue coprocessor better than a single-issue coprocessor 
for 3-way superscalar processors?

• Is it worth to add a checkpoint scheme to DIFT to provide reliable 
recovery? ( A checkpoint scheme allows the system to rollback for 
recovery)

27


