
ArMOR:	Defending	Against	Memory	Consistency	

Model	Mismatches	in	Heterogeneous	

Architectures

Zeyu Bu, Yao Jiang

11/3/2015



2

Review	– Memory	Consistency	Model
• A	Consistency	Model	is	a	contract	between	the	software	and	
the	memory
 It	states	that	the	memory	will	work	correctly	but	only	if	the	software	
obeys	certain	rules
 Sequential	Consistency	(SC),	Total	Store	Order	(TSO)	and	Relaxed	
Memory	Order	(RMO).



• Sequential	Consistency	
 The	result	of	any	execution	is	the	same	as	if	the	operations	of	
all	the	processors	were	executed	in	some	sequential	order

3

Review	‐ SC

Sequential	consistency	is	inefficient:	we	want	to	weaken the	model	
further



• Total	Store	Order
 Loads	can	be	performed	before previous	stores from	the	
same	thread

4

Review	‐ TSO



• Relaxed	Memory	Order
 Relaxes	all	order!	(except	for	accesses	to	the	same	address)
 Provides	explicit	fence	(barrier)	instructions
 The	mask	bits	determine	what	order	to	enforce

5

Review	‐ RMO

Load Store
Load
Store

If	mmask =	b0010,	only	
load	after	store	is	allowed

Load	after	Load Store after	Load

Load	after	Store Store	after	Store



• Store	Atomicity
 Single‐Copy	Store	Atomicity:	Stores	must	become	visible	to	all	cores	
in	the	system	at	a	single	time
 Multi‐Copy	Store	Atomicity:	A	thread	can	read	its	own	write	early

• Fence	Cumulativity:	
 A	property	where	a	fence	may	order	operations	from	other	threads.	
 Operations	placed	into	two	classes,	A and	B,	relative	to	fence.	
 A‐cumulativity and	B‐cumulativity rules	to	determine	which	class	
memory	operations	belong	to.

6

Review	– Atomicity	and	Cumulativity



• A‐cumulativity (AC)	requires	that	instructions	(from	any	thread)	
that	have	performed	prior	to	an	access	in	group	A	are	also	members	
of	group	A.	

• B‐cumulativity (BC)	requires	that	instructions	(from	any	thread)	
that	perform	after a	load	that	returns	the	value	of	a	store	in	group	B	
are	also	themselves	in	group	B.

7

Review	‐ Cumulativity

Core	0 Core	1 Core	2
(i)	st[x],	1 (ii)	r1=ld[x] (v)	r2=ld[y]

(iii)	sync (vi)	st[y],3
(iv)	st[y],2

If	the	outcome	is	r1=1,r2=2:
Group	A	of	(iii)	=	{(i),(ii)}

Group	B	of	(111)	=	{(iv),(v),(vi)}



Contribution
Memory	

heterogeneity
Challenges

Compile	from	
Software	Model	to	
Hardware	Model

Dynamically	
migrate	code	from	
one	ISA	to	another

• Translate	code	compiled	for	one	memory	model	to	
execute	on	hardware	implementing	a	different	model

Memory	Ordering	Specification	Tables	
(MOST)	

Shim

• Algorithmically	compare	two	consistency	models

ArMOR

8



• If	this	is	Multiple‐copy	Atomic,	is	outcome	rax=1,	
rbx=0,	rcx=1,	rdx=0	possible?

9

• What	if	it	is	A	and	B	Acumulative?	Is	outcome	
r1=1,	r2=0,	r3=1,	r4=0	possible?

Memory	model	heterogeneity

Core	0 Core	1 Core	2 Core	3
mov [x],	1mov rax,[x] mov rcx,	[y]mov [y],	1

mov rbx,[y]mov rdx,	[x]

NO

YES

Core	0 Core	1 Core	2 Core	3
stw [x],	1 lwz r1,[x] lwz r3,	[y] stw [y],	1

lwsync lwsync
lwz r2,[y] lwz r4,	[x]



Motivation
TRADITIONAL	WAY	TO	DESCRIBE	MEMORY	
CONSISTENCY	MODEL	

10

Could	you	really	tell	the	
difference	by	such	
description?

Load Store
Load
Store

Multiple‐copy	Atomic

Load Store
Load
Store

A	and	B	Cumulative



• MOST	is	used	to	define	not	just	preserved	program	order,	but	also	fences
or	any	other	type	of	ordering	enforcement	mechanism.

11

MOST	‐ Objective



• How	to	describe	Multiple‐Copy	Atomic	Store	using	MOST?

12

MOST	– Multiple‐Copy	Atomic	Store				

Load Store
Load
Store

Stores	are	Multiple‐Copy	Atomic

Load Store
Load
Store M



13

• Is	outcome:	r1=r3=1,	r2=r4=0	allowed?	

• According	to	the	coherence,	accesses	from	the	same	thread to	the	
same	address	generally	must	maintain	the	ordering	specified	by	
program	order.

• However,	the	same	store	→	load	ordering	may	not	need	to	be	enforced	
from	the	point	of	view	of	any	remote	observers.

YesTSO	PPO

MOST	– Per‐Address	Orderings



• How	to	describe	TSO	PPO	using	MOST	if	the	Per‐Address	Ordering	is	
specified?

14

MOST	– Per‐Address	Orderings



15

• How	to	describe	Power	lwsync and	Power	snc using	MOST	if	the	
A‐cumulativity and	B‐cumulativity are	specified?

Power	lwsync Power	sync

MOST	– Fence	Cumulativity



16

Comparing	and	Manipulating	MOSTs

Refine:	Step	1

Refine:	Step	2

• Step	1:	

The	first	is	to	find	the	set	of	categories	that	should	be	
used	as	the	row	and/or	the	column	headings	for	the

• Step	2:	

The	second	step	is	to	fill	in	the	cells	of	the	newly‐
refined	MOST.



17

Comparing	and	Manipulating	MOSTs

• Once	two	MOSTs	have	been	refined	(if	necessary)	into	the	same	
layout	of	rows	and	columns,	then	a	comparison	of	the	two	can	be	
defined	by	comparing	each	pair	of	corresponding	cells.

Subtracting	Power	lwsync from	(a	properly	refined)	TSO	PPO.	



18

Shim
• Shim	is	an FSM	that translate	code	compiled	for	one	memory	
model	to	execute	on	hardware	implementing	a	different	model

State
(Pending	Ordering	Table)

upstream	
operation

downstream	operation
and	inserted	MORs

Move	to	next	state



Experiment	Setup

Software	Shim Pintool Experiment	
on	Real	System

Hardware	Shim Gem5	Simulation

19



Overhead

From	left	to	right,	the	three	bars	represent	the	stateless,	stateful,	and	ISA‐assisted	
stateful cases,	respectively.

Simulated	performance	with	x86‐SC	software	and	varying	hardware	models,	normalized	
to	x86‐TSO	software	on	x86‐TSO	hardware	as	described	in	the	text.

20

Pintool
Experiment

Hardware
Simulation



Takeaway

21

• Architectures	should	provide	a	way	to	
optionally	make	stores	multiple‐copy	atomic.

• The	more	downstream	MORs	are	available,	
the	more	intelligent	the	translation	can	be.

• ISAs	and	intermediate	representations	
should	maintain	consistency	metadata	even	
if	it	is	redundant	with	respect	to	preserved	
program	order.

• Non‐multiple‐copy‐atomic	architectures	
cannot	ignore	cumulativity.



Questions?

22



DEBATES	TOPIC

• Is	it	worthwhile	to	use	ArMOR in	Inter‐MCM	Translation?
• Other	than	Inter‐MCM	Translation,	is	ArMOR useful	for	
other	application	area	related	to	Memory	Consistency.	

23



Thank you for your 
listening !

Zeyu Bu, Yao Jiang

University of Michigan
Department of EECS

11/3/2015

24


