ArMOR: Defending Against Memory Consistency
Model Mismatches in Heterogeneous

Architectures

Zeyu Bu, Yao Jiang

11/3/2015

Review - Memory Consistency Model

* A Consistency Model is a contract between the software and
the memory

= [t states that the memory will work correctly but only if the software
obeys certain rules

» Sequential Consistency (SC), Total Store Order (TSO) and Relaxed
Memory Order (RMO).

fH |
Iy i
} W

Review - SC

* Sequential Consistency

* The result of any execution is the same as if the operations of
all the processors were executed in some sequential order

P,

Loads/Stores

P2 Pn

Loads/Stores

Switch

Loads/Stores

Single Port Memory

Sequential consistency is inefficient: we want to weaken the model

further

Review - TSO

e Total Store Order

* Loads can be performed before previous stores from the
same thread

2 I:,N

P, P
%l \\%J —Jgtores

Review - RMO

* Relaxed Memory Order
= Relaxes all order! (except for accesses to the same address)
» Provides explicit fence (barrier) instructions

= The mask bits determine what order to enforce

Dits: 32 519 Loadglzoad
earlier memop:ST LD ST LD

,I, l l Load after Store

later mem

If mmask = b0010, only Load Store

load after store is allowed Load o4 o

Store T /

Review - Atomicity and Cumulativity

* Store Atomicity

= Single-Copy Store Atomicity: Stores must become visible to all cores
in the system at a single time

= Multi-Copy Store Atomicity: A thread can read its own write early

* Fence Cumulativity:
= A property where a fence may order operations from other threads.
= Operations placed into two classes, A and B, relative to fence.

» A-cumulativity and B-cumulativity rules to determine which class
memory operations belong to.

Review - Cumulativity

* A-cumulativity (AC) requires that instructions (from any thread)
that have performed prior to an access in group A are also members
of group A.

* B-cumulativity (BC) requires that instructions (from any thread)
that perform after a load that returns the value of a store in group B
are also themselves in group B.

Core 0 Core 1 Core 2

(i) st[x], 1 (ii) r1=Id[x] (v) r2=1d[y]
(iii) sync (vi) st]y],3
(iv) st[y],2

[f the outcome is r1=1,r2=2:
Group A of (iii) = {(i),(ii)}
Group B of (111) = {(iv),(v),(vi)}

Contribution

Memory

heterogeneity

Challenges

Compile from Dynamically
Software Model to migrate code from
Hardware Model one ISA to another

—— Shim

* Translate code compiled for one memory model to
execute on hardware implementing a different model

ArMOR —

Memory Ordering Specification Tables
— (MOST)

 Algorithmically compare two consistency models

Memory model heterogeneity

Core O Cose 1 Core 2 ‘ Core 3

mov [x], 1mov‘ax, [x] mov $cx, [y]imov [y], 1

mov rbx,[y]mov rdx, [x]

e If this is Mult
rbx=0, rcx=1, rdx=0 possible?

Core 0 Core 1 Core 2 Core 3
stw [x], 1 lwzrl,[x] ([wzr3, [y] |stw [y], 1

lwsync lwsync

lwz r2,[y] |[lwzr4, [X]

« What if itis A and B Acumulative? Is outcome
r1=1, r2=0, r3=1, r4=0 possible?

Motivation

TRADITIONAL WAY TO DESCRIBE MEMORY

CONSISTENCY MODEL
Load Store Load Store
Load P g Load Vi v
Store - ~/ Store T \/

Multiple-copy Atomic

A and B Cumulative

Could you really tell the

difference by such
description?

y .

MOST - Objective

* MOST is used to define not just preserved program order, but also fences
or any other type of ordering enforcement mechanism.

Abb. Description Abb.| Description | |Abb.| Descrip.
v's | Single-copy atomic
v’ u | Multiple-copy atomic - Oclered v' | Ordered
v'N Non-atomic v'r |Locally ordered
- Unordered — Unordered — | Unordered

(a) Store—store (b) Store—load (c) Other

15 |

MOST - Multiple-Copy Atomic Store

* How to describe Multiple-Copy Atomic Store using MOST?

Load Store
Load v 5
Store — ~/

Stores are Multiple-Copy Atomic

Load Store
Load v e
Store —— \/M

MOST - Per-Address Orderings

Core 0 Core 1 Core 2
sEERlrL b st [y, 1 1d r3, [y]
ldcdix] Id r4, [x]
Id r2, [y]
TSO PPO

e [s outcome: r1=r3=1, r2=r4=0 allowed?

» According to the coherence, accesses from the same thread to the
same address generally must maintain the ordering specified by

program order.

* However, the same store — load ordering may not need to be enforced
from the point of view of any remote observers.

13

MOST - Per-Address Orderings

Ld St
Ld v v
St - v

(a) TSO (partial)

* How to describe TSO PPO using MOST if the Per-Address Ordering is

specified?
Load to Load to
Diff. Same Store
Address | Address
Load v v v
Store — VI v M

14

MOST - Fence Cumulativity

* How to describe Power Iwsync and Power snc using MOST if the

A-cumulativity and B-cumulativity are specified?

Core 0 Core 1 Core 2
(ssER ol oy Tl =id X)L (v 2 s d Ty
(111) sync (vi) st[y],3
(iv) st[y],2
PO+ | PO+
SA | DA [BC|PO|BC POBC|PO BC
Ld | Ld |Ld| St | St Ld |Ld| St | St
AN] 7 A B R POLd| v |V |V |V
REWa v gl o ACId| v |V |V |V
POSt| v | — | — |V NIVN POSt| v | vV |[Vs|Vs
ACSt| — | — [— |V NIVN ACSt | v |V |Vs|Vs
Power lwsync Power sync

15

Comparing and Manipulating MOSTs

PO+ | PO+
PO+| PO+ SA | DA |BC|PO [BC
SA | DA | PO Refine: Step 1 ILd | Ld |[Ld| St | St
Ld | Ld | St POLd| v V| o o e
POLd| v VaRe N4 ACLd| ? gl o s
POSt| v | — |Vm POSCLVE | mri o2l vine
ACSt| ? ? ol IS
 Step 1:
The first is to find the set of categories that should be)
) efine: Step 2
used as the row and/or the column headings for the
» Step 2:
PO+ | PO+
The second step is to fill in the cells of the newly- | SA | DA | BC | PO | BC
refined MOST. ta | La | Ll st at
POLd | v v Vil Y v
ACLd | v v v v v
PO St VL — v. i vl v
AC St v v V | VM| VM

Comparing and Manipulating MOSTs

PO+ | PO+
SA DA | BC PO BC
Ld Ld Ld St St
PO Ld - — — — —
ACLd — — — — —
PO St — — v VM=N | YM=N
AC St v v v VM=N | Y M=N

Subtracting Power lwsync from (a properly refined) TSO PPO.

* Once two MOSTs have been refined (if necessary) into the same
layout of rows and columns, then a comparison of the two can be
defined by comparing each pair of corresponding cells.

Shim

e Shim is an FSM that translate code compiled for one memory
model to execute on hardware implementing a different model

love to next st

downstream operation

upstream
and inserted MORs

State
(Pending Ordering Table)

operation

18

Experimeht Setup

Software Shim _ Pintool Experiment
on Real System

Hardware Shim ‘

Gemb5 Simulation

49

Overhead

shim M instrumentation M hative
10
0 10.40 12.53 13.58 10.39 14.34 i 1817 12057
E 8
O
=) (&
(18
i O
Pintool S 4
~N
Experiment 5 2 I“
=, NEL HEE amn ARR mE WNE NRE NER monm RER REE REG
Pz : o o £ 4= - Q @ : '(:'_ %) (=

bodytr
cannea
dedu
ferre
fluidan
vip

blacksch. ==
GMea

facesi
freqmin
raytrac
treamcl
swa

(%]

From left to right, the three bars represent the stateless, stateful, and ISA-assisted

stateful cases, respectively.
3 — L -

(o
4 ,5 | HMRWO EPLO M PSO/Stateless
.‘3 ; % PSO/Stateful TSO/Stateless TSO/Stateful
S
Hardware Ep@is - 2 g : 7 7
E : - Z % Z % 7
Simulation £85 , g g 7 . . é
: ¢ ¢ z z % 4
Rl | || z é z /
2 0 A Y A 7 Z ZR7 7
blacksch. bodytr. canneal fluidan. swapt. x264

Simulated performance with x86-SC software and varying hardware models, normalized
to x86-TSO software on x86-TSO hardware as described in the text.

20

Takeaway

* Architectures should provide a way to
optionally make stores multiple-copy atomic.

* The more downstream MORs are available,
the more intelligent the translation can be.

* [SAs and intermediate representations
should maintain consistency metadata even
if it is redundant with respect to preserved
program order.

* Non-multiple-copy-atomic architectures
cannot ignore cumulativity.

2k

Questions?

22

DEBATES TOPIC

e [s it worthwhile to use ArMOR in Inter-MCM Translation?

e Other than Inter-MCM Translation, is ArMOR useful for
other application area related to Memory Consistency.

23

Thank you for your
listening !

Zeyu Bu, Yao Jiang

University of Michigan
Department of EECS
11/3/2015

24

