GRASP: A Search Algorithm
for Propositional Satisfiability

Authors: JoaAo P. Marques-Silva, and Karem A. Sakallah

Presentors: Jing Ji, Qilu Guo

Introduction

* Boolean Formula
* Boolean Satisfiability Problem (SAT)
* Conjunctive normal form (CNF)

* DPLL (David-Putnam-Longemann-Loveland)
* Decision Tree

e Backtrack

* Boolean constraint propagation (BCP)

Introduction

* Boolean Formula

Boolean Functions can be represented by formulae defined as well-formed sequence of:
o Literals: a,a,b,b

» Boolean operators: OR (+),AND (), NOT (=)

» Parentheses: ()

Example:
f=ab+ab
« Literals: a,a,b,b
e Sum of Products (SoP): can intuitively think of it as disjunction of conjunctions of literals
* Product of Sum (PoS): can intuitively think of it as conjunction of disjunctions of literals
f=(a+b) (a+hb)

Introduction

* Boolean Satisfiability Problem (SAT)

The problem of determining if there exists an interpretation that satisfies a given Boolean formula

Definition:

* Given a Boolean formula f(a, b, ..), is there an assignment (a4, by, ...) such that f(a,b,..) = 1?
« If the answer is yes, then we say the formula is satisfiable

* Otherwise we say the formula is unsatisfiable

Examples:

* Is a- asatisfiable?

e Is(a+c) (b+c)-(na+ —b+ —c) satistiable?
* Is(a+b):(—a+ —b) - (—a+ b) satisfiable?

Introduction

* Conjunctive normal form (CNF)

A product-of-sums (PoS) representation of a Boolean function
* A sum term in a CNF is also called as a clause

* Clausal normal form: a conjunction of clauses

Unit Clause Rule:

A clause is a unit clause if it has exactly one unassigned literal

Example:
=@+ c)(b+c)(ma+ —b+ —c)
Suppose a and b are assigned to 1. Then
¢ = (1)(1)(=c)
The third clause is now alii@fitlclause, and it implies that ¢ must be set to 0 t6lh@see the formula
satisfied

Introduction

 DPLL (David-Putnam-Longemann-Loveland) a 0@ 1
E%ﬂﬁ%’: backtracking-based depth-first search algorithm
Decision Tree: f = =(=a+ —b)

2 NogdehaprasstNFRRIASof AND logic
* Edges represent decisions ’
* Assignments are associated with decisidn-Id&¥dlz) 2

* Ends either satisfiable (green) or unsatistiable (red)

Introduction

 DPLL (David-Putnam-Longemann-Loveland)

Example:

f==(=a+ -b)
* Is actually the CNF form of AND logic
Backtracking: If reaches an unsatisfiable conclusion

« Return back one decision level b=0 @ 2

e Redo the decision at that decision level

Introduction

* Boolean constraint propagation (BCP)

e The basic mechanism for deriving implications from a given
clause database

» Unit propagation: The procedure is based on unit clause

* The sequence of implications generated by BCP is captured by a

Example:

o =(@+c)(b+c)(ma+ b+ —c)
If a and b are both assigned to 1,

¢ = (1)(@)(=c)

Then c is implied to be 0.

a

bh—

[

0

Outline

* Search Algorithm Template
* Conflict Analysis Procedure
* Experimental Results

 Conclusion

GRASP — Search Algorithm Template

SAT/UNSAT=

* Search Algorithm Template
Decide()

CONFLICT

SUCCESS

(ese1q)
JoRIORG

CONFLICT

Diagnosis()

Conflict Analysis

10

GRASP — Search Algorithm Template

SAT/UNSAT=

* Decision Engine

.. . —> Decide() <
* Choose a decision assignment for one

78]

78

: 8

literal at each stage § CONFLICT

* Maximize the number of clauses that 2 - &
Deduce() gj 2
are directly satisfied by this assignment BCP & ?g
o,

CONFLICT

Diagnosis()
Conflict Analysis

1"

GRASP — Search Algorithm Template

SAT/UNSAT=

* Deduction Engine (BCP)

—p Decide —
* Implements BCP and (implicitly) maintains ecide()

78]
78
O
the resulting implication graph S CONFLICT
* Repeatedly applies the unit clause rule and 2 = &
Deduce() Y
check for unsatisfiable clauses BCP & ?g
o,

CONFLICT

Diagnosis()
Conflict Analysis

12

GRASP — Search Algorithm Template

X 0@3 .
* Deduction Engine (BCP)

w1 = (mx+x3) - w; = (x3)

/

1@6
*2 0 1@ ® 5 1@6

\./; Ny
N Sl

¥, - 1@s x5= 1@6

wy = (mx1+x3 +x9) — wy = (x3)

\

w3 = (mxy*+x3 + x4) o 1@

wy = (mx4+x5 + X10)

/

ws = (mX4+xg + X11)

we = (mx5+—x6)

\
\

xo— 0@1 @) x;;— 0@3 @9

13

GRASP — Search Algorithm Template

SAT/UNSA T«

* Diagnosis Engine

) — Decide G
* Identify the cause of conflict 0

N
(78]
. . S8
Conflict learning § CONFLICT
* Determine the backtrack level 7] o o
. . Deduce() B S
* Nonchronological backtracking BCP & 5
A ¢
o,

CONFLICT

Diagnosis()
Conflict Analysis

14

Outline

* Conflict Analysis Procedure

15

Conflict Analysis

* Conflict Analysis Procedure

* Identify the causes of conflict

*x;=1, x%=0, x;,0=0, x;; =0

* Create conflict-induced clause
* we(k) = (xy+x9+ x99+ xq4)

* Add o(x) to the clause database

* Determine a backtrack level

16

Conflict Analysis

* Backtracking

* Backtrack to the highest decision level Nonchronological 3

9:0@1. \\
\
I 5
%0~ 0@3 @ - 0@s & 0 @ |
conthet
|

7 /7
- level

X2 = 1@2.

17

Drawbacks of Conflict Diagnosis Engine

* Overhead due to conflict analysis:
* Outweighed by the performance gain

* Exponentially growth in the size of clause database:

* Selectively add the conflict-induced clause to the clause database
* Weigo = (X + X9 + %)
* Wego = (X F X9+ X9+ X)) X

* Reduce the size of the implicates
* Wege) = (X X+ x40+ Xqy) *
* Wey(K) = (2% + X9+ x4) & Wep(K) = (%, + x99 + X49)

Outline

* Experimental Results

Experimental Results

* CPU Time (s)
* Performs better at some cases
* Performs similar to those cases
POSIT performs better
* Other solvers only perform better

on certain cases

#M: number of class members

Berglgrsr;ark#MGRASP POSIT| SATO [TEGUS| DPL | GSAT
AIM-100 |24 1.8 12900 60390, 107.9] 585100 n/a
AIM-200 |24 10.8117991/150095 14059156196 n/a
BF 4 7.2 20037 35695 26654 400000 n/a
DUBOIS | 13| 34.4 77189 71528 90333| 96977 w/a
1132 17 7 650.1 10004 1231] 21520 83814
PRET 8l 18.2 40691 40430 42579 41429 n/a
SSA 8l 6.5 853 30092 20230 80000 n/a
AIM-50 240 04 04 127 220 107 na
118 14 234 23 04 11.8 84189 27647
INH sof 2130 08 11 6055 400 n/a
PARS o0 04 o1 02 1.5 0.8 50005
PAR16 10 9844 72.1| 10447 9983 11741100000
1116 10, 10311] 10120/ 85522 269.6 83933 11670
HANOI 2 14480 101174 20000/ 11.641] 20000 20000
HOLE 5| 12704 937.9 3622 21301 11404 n/a
G 4 40000/ 40000, 40000 40000/ 40000/ 20079

Experimental Results

- Statistics of Running GRASP

* Nonchronological backtracks are common

 The growth of the clause database is acceptable

#B: number of backtracks
#NCB: number of nonchronological backtracks
%Growth: the growth in size of the clause database

Benchmark #B |#NCB|%Growth
aim-200-2 0-yes1-2 109 50 152.63
aim-200-2 0-no-2 39 20 43.6
bf0432-007 335 124 47.99
bf1355-075 40 20 6.5
dubois50 485 175 631.92
dubois100 1438 639 1033.54
pret60 40 147 98 407.08
pret150 75 388 257 446.75
ssa0432-003 37 6 30.8
$sa2670-141 377 97 65.71
1116bl 88325/ 2588 131.94

21

Conclusion

* GRASP
* A faster search algorithm for solving SAT

* Conlflict learning to identify equivalent conflicting conditions

* Nonchronological backtracking

 Future research work

* Heuristic control of the rate of growth of the clause database

* Improve the deduction engine

Q&A

Debate

« Will it be beneficial to split one large clause into several smaller ones?

* When doing nonchronological backtracking, is it better to return to the closest
decision level, or to the level as far as possible?

