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Motivation

Array sparing, line sparing, etc.
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Existing Solutions

Core Disabling
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Existing Solutions

EECS
Core Salvaging Microarchitectural Salvaging

-- Exploit redundancy within a core
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EECS

Microarchitectural Salvaging Limitations

* Low Coverage
e CPUs are mostly combinational logic

* Many logic structures not redundant

Redundant
16%

Execution Area

* Complex
* Add artificial redundancy for coverage
* Requires unique salvaging methods

Non-
Redundant
84%



Key Idea

* CPU die can be ISA compliant while individual cores aren’t
* Cross-core redundancy: Other cores have the same resources

Use Architectural Salvaging to
borrow another core’s resources




Potential

* Efficiently cover lots of area without replication

* High percentage of area is non-critical structures
* Not needed for basic functionality

* Example Complex decoder
* Infrequently used
* Large and not replicated

Critical
17%

Non-Critical
83%

Execution Area



Architectural Salvaging

 Don’t require individual cores be fully functional
* At least support critical instructions (load, add, etc.)

* Track defects
* Migrate thread to another core when it can’t execute

Execution on faulty core Execution on defect free core

Un-executable

Instruction
Thread Swap

e
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Implementation

* Minimal Core Changes
* Detect defective instructions

e Use existing thread migration
capability

* OS Transparency

* Make the APIC ID programmable
* Migrate the APIC ID with the thread
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Optimizations

Temporarily fallback to Core Disabling
* Triggered when migrating too frequently

* Thread migration has a performance cost
e ~100s cycles + pipeline flush



Small Array Problem

* Examples: decode queues, RS, branch predictor
* Most of the area is dedicated to support logic

Array Salvaging Decode Queue Area

Redundant

* No natural redundancy 13%
No backups
e Often critical structures Non-
Redundant

: : 87%
Architectural Salvaging
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Solution - Hybrid Approach

Architectural
Salvaging

Hybrid

Approach

Micro-
architectural
Salvaging
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Hybrid Approach

e Add secondary structure
* Small compared to primary structure
* Minimal functionality

Simple bimodal Branch
Predictor Backup*

Complex Branch
Predictors



Infrequent Instruction Classes

Fraction of non-overlapping 100K instruction windows that do not contain
the instruction class
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Expectations

Defect-Free
Performance

Infrequent
Instruction
defected

Frequent
Instruction
defected

Core Disabling
Performance
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Throughput — 8 Core Die
On average 5-7% better throughput than core disabling
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Hybrid Approach Throughput

Throughput using the secondary structure > Core disabling

Mean throughput
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* Hard faults in the CPU are challenging to tolerate

Conclusion

* Microarchitectural salvaging has limitations:
* Complex
* Low coverage

* Architectural salvaging offers:
* Higher coverage for non-critical structures
* Minimal architecture changes by thread migration

* Hybrid Approach:

* Achieve coverage for critical structures



Questions?
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Discussion Points

1. Can architectural core salvaging work with
multiple defective cores?

2. Are the results convincing that core salvaging is
worth the effort?



