Architectural Core Salvagi

Ng 1N

a Multi-Core Processor -
Hard-Error Tolerance

‘or

Michael D. Powell, Arijit Biswas, Shantanu Gupta,

Shubhendu S. Mukherjee

Meghan Cowan Yilei Xu

Outline

* Motivation

* Existing Solutions

* High Level Overview

* Architectural Salvaging
* Hybrid Approach

* Results

Motivation

Transistor sizel Die Density I More susceptible to Hard Faults &
* Frequently happen
 Difficult to handle

Intel

R&D PIPELINE

2011 2013 2015+

22 nm 14 nm 10nm 7nm 5nm
e —
IN PRODUCTION IN DEVELOPMENT IN RESEARCH

Lithography = Materials = Interconnect
... and more

Innovating for the Next Decade of Computing

Scance: el -
37 INVESTOR MEETING 2012 (intel

Investing for the

FUTURE

Motivation

Array sparing, line sparing, etc.

Core Shared L3 Cache Core ,]
‘ Ineffective current solutions

G m—m““f" ° H | g h area cost

* High performance cost

L |
Queue Uncore I/O "f

R WWWW&W m-h mﬁm"{f‘v Qmﬁ'&ﬁ 1“; AR .g *;v d- h” T ..m..;.,.;.,....

Intel Haswell-E

Existing Solutions

Core Disabling

& 2\

Core Sparing

o /

Performancel

™

Area I

Existing Solutions

EECS
Core Salvaging Microarchitectural Salvaging

-- Exploit redundancy within a core

r 1 Core 2
-

-

S >
L{> ALU
\¢ /

EECS

Microarchitectural Salvaging Limitations

* Low Coverage
e CPUs are mostly combinational logic

* Many logic structures not redundant

Redundant
16%

Execution Area

* Complex
* Add artificial redundancy for coverage
* Requires unique salvaging methods

Non-
Redundant
84%

Key Idea

* CPU die can be ISA compliant while individual cores aren’t
* Cross-core redundancy: Other cores have the same resources

Use Architectural Salvaging to
borrow another core’s resources

Potential

* Efficiently cover lots of area without replication

* High percentage of area is non-critical structures
* Not needed for basic functionality

* Example Complex decoder
* Infrequently used
* Large and not replicated

Critical
17%

Non-Critical
83%

Execution Area

Architectural Salvaging

 Don’t require individual cores be fully functional
* At least support critical instructions (load, add, etc.)

* Track defects
* Migrate thread to another core when it can’t execute

Execution on faulty core Execution on defect free core

Un-executable

Instruction
Thread Swap

e

10

Implementation

* Minimal Core Changes
* Detect defective instructions

e Use existing thread migration
capability

* OS Transparency

* Make the APIC ID programmable
* Migrate the APIC ID with the thread

11

b

Optimizations

Temporarily fallback to Core Disabling
* Triggered when migrating too frequently

* Thread migration has a performance cost
e ~100s cycles + pipeline flush

Small Array Problem

* Examples: decode queues, RS, branch predictor
* Most of the area is dedicated to support logic

Array Salvaging Decode Queue Area

Redundant

* No natural redundancy 13%
No backups
e Often critical structures Non-
Redundant

: : 87%
Architectural Salvaging

b

Solution - Hybrid Approach

Architectural
Salvaging

Hybrid

Approach

Micro-
architectural
Salvaging

14

b

Hybrid Approach

e Add secondary structure
* Small compared to primary structure
* Minimal functionality

Simple bimodal Branch
Predictor Backup*

Complex Branch
Predictors

Infrequent Instruction Classes

Fraction of non-overlapping 100K instruction windows that do not contain
the instruction class

I spec int 2K f: specfp 2K 6: spec 2006
S: server m : multimedia

IT6sm

| I 1] | | 11 | |
fpdiv tpmul fprom Tmul Tdiv 1shuf sishiit islow

16

Expectations

Defect-Free
Performance

Infrequent
Instruction
defected

Frequent
Instruction
defected

Core Disabling
Performance

17

Throughput — 8 Core Die
On average 5-7% better throughput than core disabling

. specint2K f: spec fp 2K 6: spec 2006 s:server m: multimedia

—
N

Relative to defect-free g Relative to disabling 1 core

—
—

—
o
1

o
o)

Mean relative throughput
o
©

o
N

| 11 Il 11 11 1] 11 | | 1
fpdiv_fpmul fprom Tmul_ 1dv _ SI-Shift | Sow I,si-shuf aldiv _alip

1.5 5.1 2.1 2.5 0.0 2.2 0.3 6.2 6.9 34.7
"% of execution unit area covered

Hybrid Approach Throughput

Throughput using the secondary structure > Core disabling

Mean throughput

12 b 1 v T |
[Relative to 8 defect-free cores
Il Relative to 7 defect-free cores
0.8 L— : : . H :
] f 6 s m : Co :
Branch pred: Inst. decode q: Load/Store Buffer

bimodal-only 10 entries 4 entries

b

b

* Hard faults in the CPU are challenging to tolerate

Conclusion

* Microarchitectural salvaging has limitations:
* Complex
* Low coverage

* Architectural salvaging offers:
* Higher coverage for non-critical structures
* Minimal architecture changes by thread migration

* Hybrid Approach:

* Achieve coverage for critical structures

Questions?

b

Discussion Points

1. Can architectural core salvaging work with
multiple defective cores?

2. Are the results convincing that core salvaging is
worth the effort?

