

Architectural Core Salvaging in a Multi-Core Processor for Hard-Error Tolerance

Michael D. Powell, Arijit Biswas, Shantanu Gupta, Shubhendu S. Mukherjee

Meghan Cowan Yilei Xu

Outline

- Motivation
- Existing Solutions
- High Level Overview
- Architectural Salvaging
- Hybrid Approach
- Results

Motivation

Transistor size Die Density

More susceptible to Hard Faults

- Frequently happen
- Difficult to handle

Motivation

Intel Haswell-E

Existing Solutions

Core Disabling

Performance ____

Core Sparing

Area 1

Existing Solutions

Core Salvaging

Microarchitectural Salvaging

-- Exploit redundancy within a core

Microarchitectural Salvaging Limitations

Low Coverage

- CPUs are mostly combinational logic
- Many logic structures not redundant

Complex

- Add artificial redundancy for coverage
- Requires unique salvaging methods

Key Idea

- CPU die can be ISA compliant while individual cores aren't
- Cross-core redundancy: Other cores have the same resources

Use **Architectural Salvaging** to borrow another core's resources

Potential

- Efficiently cover lots of area without replication
- High percentage of area is non-critical structures
 - Not needed for basic functionality
- Example Complex decoder
 - Infrequently used
 - Large and not replicated

Architectural Salvaging

- Don't require individual cores be fully functional
 - At least support critical instructions (load, add, etc.)
- Track defects
 - Migrate thread to another core when it can't execute

Implementation

- Minimal Core Changes
 - Detect defective instructions
 - Use existing thread migration capability
- Core
 H Core
 G Core
 E
 Core
 C Core
 C Core
 D

- OS Transparency
 - Make the APIC ID programmable
 - Migrate the APIC ID with the thread

Optimizations

Temporarily fallback to Core Disabling

- Triggered when migrating too frequently
- Thread migration has a performance cost
 - ~100s cycles + pipeline flush

Small Array Problem

- Examples: decode queues, RS, branch predictor
- Most of the area is dedicated to support logic

No natural redundancy

Often critical structures

Decode Queue Area

Solution - Hybrid Approach

Hybrid Approach

- Add secondary structure
 - Small compared to primary structure
 - Minimal functionality

Simple bimodal Branch Predictor Backup*

Infrequent Instruction Classes

Fraction of non-overlapping 100K instruction windows that do not contain the instruction class

Expectations

Throughput – 8 Core Die

On average 5-7% better throughput than core disabling

Hybrid Approach Throughput

Throughput using the secondary structure > Core disabling

Conclusion

- Hard faults in the CPU are challenging to tolerate
- Microarchitectural salvaging has limitations:
 - Complex
 - Low coverage
- Architectural salvaging offers:
 - Higher coverage for non-critical structures
 - Minimal architecture changes by thread migration
- Hybrid Approach:
 - Achieve coverage for critical structures

Questions?

Discussion Points

1. Can architectural core salvaging work with multiple defective cores?

2. Are the results convincing that core salvaging is worth the effort?