
Raccoon:	Closing	Side-Channels	
through	Obfuscated	Execution

Presentation	by	Arjun	Khurana and	Timothy	Wong

by	Ashay Rane,	Calvin	Lin,	Mohit Tiwari



Outline

• Background
• Raccoon	Design
• Evaluation
• Conclusion
• Questions
• Debate

2



Security	Is	Everywhere

3



Side-Channel	Attacks

Any	attack	based	on	information	gained	from	the	physical	implementation
• Timing
• Power	Consumption
• Cache	Usage
• Sound
• Data	Size
• Electromagnetic	Leaks

4

Which	of	these	are	digital
side-channels?



Square	and	Multiply

5

if (secret_bit == 1) {
z = (m*z*z) mod n;

}
else {

z = (z*z) mod n;
}



Threat	Model

• Hardware	Assumptions:
• Adversary	can	monitor	and	tamper	with	digital	signals	on	processor’s	I/O	pins
• The	processor	is	a	sealed	chip

• Software	Assumptions:
• Adversary	can	run	malicious	applications	on	victim’s	OS
• Malicious	applications	can	probe	run-time	statistics
• Input	program	is	error-free
• Adversary	has	access	to	transformed	binary	code

6



System	Guarantees

• Adversary	cannot	differentiate	between	real	path	and	decoy	path
• Same	final	program	output	as	original	program
• Obfuscation	does	not	introduce	new	info	leaks
• Respects	the	original	program’s	control	and	data	dependences

7



Outline

• Background
• Raccoon
• Evaluation
• Conclusion
• Questions
• Debate

8



Why	Raccoon?

9



Key	Properties

1. Both	real	and	decoy	paths	execute	actual	program	instructions
• e.g.	square	and	multiply	function	in	our	mini-project...

10



Key	Properties

1. Both	real	and	decoy	paths	execute	actual	program	instructions
• e.g.	square	and	multiply	function	in	our	mini-project...

2. Both	real	and	decoy	paths	are	allowed	to	update	memory
• e.g.	This	code…

11



Components

12



Taint	Analysis

• User	annotates	secret	variables	using		__attribute__ construct
• Raccoon	identifies	branches	and	data	accesses	that	require	
obfuscation
• Result:	a	list	of	memory	and	branch	instructions

13



Transaction	Management

• Uses	both	transactional	buffer	and	non-transactional	memory
• Real	path:	write	value	to	DRAM	using	oblivious	store	operation
• Decoy	path:	use	oblivious	store	operation	to	read	existing	value	and	
write	back

14



Control-Flow	Obfuscation

• 3	key	facilities:	
• obfuscate()	– forces	sequential	execution	of	both	paths
• epilog()	– transfer	control-flow	between	if-statements
• oblivious	store	operation	– ensure	decoy	path	does	not	mess	up	memory

15



Path	ORAM

• Cannot	directly	index	into	arrays
• Streams	over	arrays;	selectively	read/update	using	oblivious	store
• Can	be	implemented	recursive	or	non-recursive

16



A	Precaution…

• Limiting	Termination	Channel	
Leaks
• e.g.	This	statement…

17

if (y != 0) 
{

z = x / y;
}



A	Precaution…

• Limiting	Termination	Channel	
Leaks
• e.g.	This	statement…

If	y=0,	and	Raccoon	executes	decoy	path...

Since	Raccoon	assumes	original	input	program	
is	error-free…
=>	occurrence	of	crash	reveals	the	decoy	path!

18

if (y != 0) 
{

z = x / y;
}



A	Precaution…

• Limiting	Termination	Channel	
Leaks
• e.g.	This	statement…

If	y=0,	and	Raccoon	executes	decoy	path...

Since	Raccoon	assumes	original	input	program	
is	error-free…
=>	occurrence	of	crash	reveals	the	decoy	path!

19

if (y != 0) 
{

z = x / y;
}

Raccoon	prevents	the	program	from	terminating	abnormally	due	to	exceptions
=>	for	integer	division,	obliviously	replaces	divisor	with	non-zero	value



Outline

• Background
• Raccoon
• Evaluation
• Conclusion
• Questions
• Debate

20



Security	Evaluation

• Correctness	of	obfuscated	code
• Security	of	obfuscation	code
• Defense	against	Side-Channel	Attacks

21



Performance

22



Outline

• Background
• Raccoon	Design
• Evaluation
• Conclusion
• Questions
• Debate

23



Conclusion

• Raccoon	is	a	more	well-rounded	solution	for	side-channel	attacks
• Raccoon	adjusts	program	on	instruction	level
• Raccoon	disguises	the	secret	value	by	using	decoy	paths

24



Thank	you	for	listening!

Questions?

25



Debate!!!

Considering	security	vs.	performance	overhead,	is	it	worth	it	to	
implement	Raccoon	on	current	hardware?

Is	streaming	through	the	entire	array	using	ORAM	the	best	method	to	
access	data	in	Raccoon?

26


