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GOAL

Architect arbitrarily large flat protocols such that they can be verified using a
mostly-automated methodology
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Coherence Protocols

Two Primary Categories: Snooping & Directory-based

(ex. M3, MESI, MOESI, MESIF)
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State Space Exploration

(with Murphi)



GOAL

Architect arbitrarily large flat protocols such that they can be verified using a
mostly-automated methodology
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Model Protocol in Murphi
Check invariants
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Model Protocol in Murphi
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Murphi Processor Node State
Definition

Input messages
transition/messages




MOESI protocol

Processor
Cache Controller
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Check invariants
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Check invariants

Permission Invariant: Single-Writer, Multiple-Reader
2. Data Invariant: Read returns value of last write
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Permission Invariant: Single-Writer, Multiple-Reader
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Cache Line

SINGLE Writer
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2. Data Invariant: Read returns value of last write
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PARAMETRIC VERIFICATION (PV)

Treat number of modes as a parameter (using Abster tool)
Prove properties of design agnostic to parameter size

This process scales to many nodes and is almost fully automatic
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Simple-PV Process Fow

How to design a readily verifiable Coherence Protocol
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Automatically Create Parametric Model

Create parametric model from non-parametric model
e N concrete nodes -> 2 concrete nodes + “0ther Node" (N-2)
e  Abster automatic abstraction tool

Abster over-approximates the behavior of the N-Z nodes

It Abster fails, modify protocol until it is compatible
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Create model w/ small # . Make Param. Model Fail »[ NOT
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Automatically Model Check the model
(MURPHI)
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Manually Refine the Model

Uver-approximation eads to spurious invariant violations
Must modify behavior of “Other node”

KEY: Add constraint and check their validity

e  Addinvariant (/emma) - must be true for non-abstracted model
e  [heck on the concrete nodes
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System Architecture
for PVCoherence

31



Inclusive L2 $

Network on Chip




LD Miss =—>  [LetS/GetE
ST Miss  =——»  [etM

PutM
Eviction Put(

PutE



Network on Chip

/—M

o

Ve
V2




Objective

during protocol design
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Guidelines
for Simple-PV compliance
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Guidelines
tor Simple-PV compliance

#1: |dentical Nodes

#2: No variables must depend on number of Nodes

#3: No ordering over list/queue sized by number
of nodes

#4: Should not parameterize buffers/queues in
mare than |-dim.
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|dentical Nodes
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Guidelines
tor Simple-PV compliance

#1: |dentical Nodes

#2: No variables must depend on number of Nodes
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N-1 Nodes to track
(N not known)

STATE DATA
Count
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N-1 Nodes to track
(N not known)

Cannot compare with
parameterized value or carry out
math operations




N-1 Nodes to track
(N not known)

Shaifr
i

Replace with sharer set
(bit vectar)




Guidelines
tor Simple-PV compliance

#1: |dentical Nodes
#2: No variables must depend on number of Nodes

#3: No ordering over list/queue sized by number
of nodes
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Guidelines

#1: |dentical Nodes

#2: No variables must depend on number of Nodes

#3: No ordering over list/queue sized by number
of nodes

#4: Should not parameterize buffers/queues in
mare than |-dim.
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NO Bufter[N][N]

Practical limitation




L2 (Directory) collects all

invalidation Acks
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L2 Sends aggregate Ack to
Core 0

1
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Optimizations
(OP-MOESI)
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Optimization Compatible with Impact

SimplePV?
Adding Exclusive State Y NO IMPACT
Adding Dwned state Y Add 2 lemmas
Adding Self-Upgrade Y Add [emma
Adding Silent Evictions Y Add lemma
Removing the completion messages for GetS when data Y Add lemma

response comes from L2§

Remaving the completion messages for GetM




OP-MOESI to PV-MOESI

e To ensure successful abstraction by Abster..

* For GetM
* Replace response counter with sharer set
e Let L2 collect Acks and send aggregated Ack to requesting LI

e Remove point-to-point ordering in all VCs and avoid races by adding extra messages or
transient states but without blocking LI
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OP-MOESI to PV-MOESI

e To ensure successful verification by Murphi...

* Problem: multiple in-flight GetM requests without ordering

* Solution: L2 blocks other subsequent requests whenever it
receives a GetM request until it receives a Completion message
from the requesting L1

* Impact: performance decrease due to blocking at L2
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Evaluation:

OP-MOESI vs. PV-MOESI
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Network Traffic Normalized

to OP-MOESI

Network Traffic Overhead

® OP-MOESI
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Runtime of Blackscholes

Performance Scalability

B OP-MOESI

"

4 PV-MOESI

4core 8core 16core 32core

Scalable in both directions (up & down) "



Storage Overhead

I.IS TAG STATE DATA SHARER SHARER
SET COENTER
TAG STATE DATA SHARER
s R oo

Uverhead is generally negligible



CONCLUSION

« [esign of parametrically verifiable coherence protocols is possible given
that the quidelines introduced here are adhered to

o There is no significant performance drawbacks or storage overheads

* Automation is key



Debate

e |s it necessary for a protocol to be parametrically verifiable? There are a few design corners that are
cut to make such PV-compliant protocols work. Is this worth it?
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