H\oherence

[hang, Bringham, Erickson, & Sorin

Amlan Nayak & Jay Zhang

Overview

* Motivation

e Background

e Parametric Verification
e Design buidelines

o PV-MOESI vs OP-MOESI
e Results

e Conclusion

Issue with Coherence Protocols

]

L
T

Tl = Difficult to automatically verify for many
i g ||] | 5= core systems
e = = W =
s 5|~ Mem@- = | Better performance
wel == = Complex protocols —Difficult to
w =~ 3= formally verify

GOAL

Architect arbitrarily large flat protocols such that they can be verified using a
mostly-automated methodology

Overview

* Motivation

e Background

e Parametric Verification
e Design buidelines

o PV-MOESI vs OP-MOESI
e Results

e Conclusion

Coherence Protocols

Two Primary Categories: Snooping & Directory-based

(ex. M3, MESI, MOESI, MESIF)

Directory
Controller

Network on Chip

Formally \/Seti?ltl}3 SHEl[:E E%&%@ce protocol

State Space Exploration

(with Murphi)

GOAL

Architect arbitrarily large flat protocols such that they can be verified using a
mostly-automated methodology

i

GOAL

mostly-automated methodology

verified using a

I

Model Protocol in Murphi
Check invariants

12

Model Protocol in Murphi

13

Murphi Processor Node State
Definition

Input messages
transition/messages

MOESI protocol

Processor
Cache Controller

]

MOESI protocol

Processor
Cache Controller

|5

MOESI protocol

Processor
Cache Controller

ISD

|7

MOESI protocaol

Processor
Cache Controller

13

MOESI protocol @

Processor '\‘
Cache Controller \

.

|3

Check invariants

Al

Check invariants

Permission Invariant: Single-Writer, Multiple-Reader
2. Data Invariant: Read returns value of last write

/I

Permission Invariant: Single-Writer, Multiple-Reader

71

Cache Line

SINGLE Writer

LD LD LD
SHARER SHARER SHARER

Multiple Reader

2. Data Invariant: Read returns value of last write

24

Overview

* Motivation

e Background

* Parametric Verification
e Design buidelines

o PV-MOESI vs OP-MOESI

e Results

e Conclusion

PARAMETRIC VERIFICATION (PV)

Treat number of modes as a parameter (using Abster tool)
Prove properties of design agnostic to parameter size

This process scales to many nodes and is almost fully automatic

21

Simple-PV Process Fow

How to design a readily verifiable Coherence Protocol

JAi

Create model w/ small # { . Make Param. Model }1 Fail »[NOT]

nodes (Abster) VERIFIABLE!
l Success
2. Model Check (using W Success »[Verification]
Murphi) J Success
| i
Counter Exampl State Space
Y Explosion
| Fix BS Bug in NOT
Bug N Protocol? [VERIFIABLE!]
. l No
3. Refine Model Yes No
(Manual) < Refinable?

Simple-PV o

Create model w/ small #

nodes
Fix Yes
Bug
3. Refine Model Yes
(Manual)

. Make Param. Model
(Abster)

2. Model Check (using
Murphi)

| i

Fail

Counter ExampII

Bug in
Protocal?

[\

Refinable?

No

|

NOT
VERIFIABLE!

»[NOT
VERIFIABLE!

Verification
Success

State Space
Explosion

Simple-PV

3

Automatically Create Parametric Model

Create parametric model from non-parametric model
e N concrete nodes -> 2 concrete nodes + “0ther Node" (N-2)
e Abster automatic abstraction tool

Abster over-approximates the behavior of the N-Z nodes

It Abster fails, modify protocol until it is compatible

l

To Memory

N i 2 Directory

/ Controll
parameterized nodes ontroller

Network on Chip

!
W

Create model w/ small # . Make Param. Model Fail »[NOT
nodes (Abster) VERIFIABLE!

2. Model Check (using Verification
Murphi) SUCCESS
| i
Counter Exampl State Space
Explosion
Fix Yes Bug in NOT
Bug Protocol? VERIFIABLE!
l No
3. Refine Model Yes No
(Manual) Refinable?

Simple-PV
imple .

Automatically Model Check the model
(MURPHI)

34

Create model w/ small # . Make Param. Model Fail »[NOT
nodes (Abster) VERIFIABLE!

2. Model Check (using Verification
Murphi) Success
| i
Counter Exampl State Space
Explosion
Fix Yes Bug in il
Bug Protocol? VERIFIABLE!
l No
3. Refine Model Yes No
(Manual) Refinable?

Simple-PV
imple .

Manually Refine the Model

Uver-approximation eads to spurious invariant violations
Must modify behavior of “Other node”

KEY: Add constraint and check their validity

e Addinvariant (/emma) - must be true for non-abstracted model
e [heck on the concrete nodes

3b

System Architecture
for PVCoherence

31

Inclusive L2 $

Network on Chip

LD Miss =—> [LetS/GetE
ST Miss =——» [etM

PutM
Eviction Put(

PutE

Network on Chip

/—M

o

Ve
V2

Objective

during protocol design

4

Overview

* Motivation

e Background

e Parametric Verification
* Design Guidelines

o PV-MOESI vs OP-MOESI
e Results

e Conclusion

Guidelines
for Simple-PV compliance

43

Guidelines
tor Simple-PV compliance

#1: |dentical Nodes

#2: No variables must depend on number of Nodes

#3: No ordering over list/queue sized by number
of nodes

#4: Should not parameterize buffers/queues in
mare than |-dim.

44

|dentical Nodes

Inclusive

Inclusive L2 $ Directory $

Network on Chip

Heterogeneous

Nodes

Guidelines
tor Simple-PV compliance

#1: |dentical Nodes

#2: No variables must depend on number of Nodes

47

N-1 Nodes to track
(N not known)

STATE DATA
Count

Cache Line

N-1 Nodes to track
(N not known)

Cannot compare with
parameterized value or carry out
math operations

N-1 Nodes to track
(N not known)

Shaifr
i

Replace with sharer set
(bit vectar)

Guidelines
tor Simple-PV compliance

#1: |dentical Nodes
#2: No variables must depend on number of Nodes

#3: No ordering over list/queue sized by number
of nodes

al

Inclusive
Directory $

Network on Chip

Inclusive L2 S

Independent FIFD Request Bueue
|s permitted by this method

T A 0

Inclusive L2 $ u::;:;sn:’: g

Network on Chip
-

N
-

Shared B
Request

HILIT: LINDRDERED

Guidelines

#1: |dentical Nodes

#2: No variables must depend on number of Nodes

#3: No ordering over list/queue sized by number
of nodes

#4: Should not parameterize buffers/queues in
mare than |-dim.

a4

NO Bufter[N][N]

Practical limitation

L2 (Directory) collects all

invalidation Acks

Inclusive
Directory S

Inclusive L2 $

!

Network on Chip

I Ack

S ﬁﬁﬁﬁﬁ.&i

$

i
Ll
e

s AR
N
U g
i
nlmna
paan

ﬂl

e d
SEHERRREEE

L2 Sends aggregate Ack to
Core 0

1

Inclusive
Directory S

Inclusive L2 $

$

Network on Chip

Ack + data

Overview

* Motivation

e Background

e Parametric Verification
e Design buidelines

« PV-MOESI vs OP-MOESI
e Results

e Conclusion

Optimizations
(OP-MOESI)

ik

Optimization Compatible with Impact

SimplePV?
Adding Exclusive State Y NO IMPACT
Adding Dwned state Y Add 2 lemmas
Adding Self-Upgrade Y Add [emma
Adding Silent Evictions Y Add lemma
Removing the completion messages for GetS when data Y Add lemma

response comes from L2§

Remaving the completion messages for GetM

OP-MOESI to PV-MOESI

e To ensure successful abstraction by Abster..

* For GetM
* Replace response counter with sharer set
e Let L2 collect Acks and send aggregated Ack to requesting LI

e Remove point-to-point ordering in all VCs and avoid races by adding extra messages or
transient states but without blocking LI

bl

OP-MOESI to PV-MOESI

e To ensure successful verification by Murphi...

* Problem: multiple in-flight GetM requests without ordering

* Solution: L2 blocks other subsequent requests whenever it
receives a GetM request until it receives a Completion message
from the requesting L1

* Impact: performance decrease due to blocking at L2

bZ

Evaluation:

OP-MOESI vs. PV-MOESI

b3

B OP-MOESI
7 PV-MOESI

s

////////////////////////ﬁ/////////////

Runtime

|
.//////////////////////////////ﬁ/////

|
////////////////ﬁ/////////////////////

| |
..%V///////////////////////////F///////

| |

|
r.//////////////////////ﬁ//////////////

| | |

< aQ © « o

o o o o
ISION-dO 0}

pazijewJoN awniuny

1.2

< 1% overhead for all benchmarks

b4

Network Traffic Normalized

to OP-MOESI

Network Traffic Overhead

® OP-MOESI
4 PV-MOESI

Runtime of Blackscholes

Performance Scalability

B OP-MOESI

"

4 PV-MOESI

4core 8core 16core 32core

Scalable in both directions (up & down) "

Storage Overhead

I.IS TAG STATE DATA SHARER SHARER
SET COENTER
TAG STATE DATA SHARER
s R oo

Uverhead is generally negligible

CONCLUSION

« [esign of parametrically verifiable coherence protocols is possible given
that the quidelines introduced here are adhered to

o There is no significant performance drawbacks or storage overheads

* Automation is key

Debate

e |s it necessary for a protocol to be parametrically verifiable? There are a few design corners that are
cut to make such PV-compliant protocols work. Is this worth it?

bd

