
Fault-tolerant & Adaptive Stochastic Routing Algorithm

for Network-on-Chip

Team CoheVer:

Zixin Wang, Rong Xu, Yang Jiao, Tan Bie

Idea & solution to be investigated by the project

There are some options available for the implementation of stochastic routing algorithm,
including probabilistic flood, directed flood, random walk, etc. Firstly, we need to
analyze the algorithm essence and choose one of them that can be suitably adapted into
the NoC system. In order to accommodate adaptive features, the basic stochastic routing
algorithm cannot be too complex, otherwise large area or power overhead will emerge.
Thus, at current stage, we prefer to utilize random walk based stochastic algorithm due
to its advantage in low complexity and relatively small area overhead.

Even though stochastic routing algorithm gains advantage in fault-tolerance, its
inherent drawback in performance (due to its oblivious routing strategy) restricts its
popularity in NoC system. So we plan to add some adaptive features to our
implementation of stochastic routing algorithm for high performance. Specifically,
some modules that are responsible for collecting and analyzing real-time data of NoC
will be added, by comparing probability of each route, the optimal route can be
determined. Of course, adaptive features cannot do harm to fault-tolerance, some
evaluations will be conducted not only for the performance improvement, but for its
reliability.

In all, we plan to develop a fault-tolerant & adaptive stochastic routing algorithm for
NoC in our project.

Progress so far:
1. A basic random-walk routing algorithm has been implemented in C++ and added

into the ‘routefunc.cpp’ in Booksim.
Ø For the routing algorithm we designed, dimension-order will be used if there

is no fault in the network to achieve a smaller latency. While a packet enters
a router with faulty links, the router will change to use random-walk routing
and randomly chose other ports to avoid faulty links.

2. Inserting fault tables into the Booksim to simulate a network with permanent link
faults. So we could verify our routing algorithm in a faulty environment.

Here we use a 2D vector to construct a faulty network
and import to Booksim

3. Based on the simulation results, we found that the average latency of this random-
walk routing was too long and the performance wasn’t satisfying. After the
discussion with GSI, we decided to modified our baseline design.

4. An adaptive feature has been added:
Ø we implemented a global congestion table to store the estimated delay from

each node to every possible destination in the network. The global congestion
table is destination-based and upgraded periodically.

Ø Then by using this table, we could generate port-selection ratio based on
destinations for each router, which indicate the corresponding path delays.
And all packets destined for the same destination are distributed in the same
ratio to the downstream routers so that balancing the network congestion and
achieving a smaller overall transmission latency.

Ø The delay measurement and propagation is shown below.

Ø And here is a part of the pseudo-code we implemented.

foreach i = 1:gNodes; //Destination
 foreach j = 1:2(gK-1);
 foreach k = 1:gNodes; //Source
 if(abs(node[i].x-node[k].x)+abs(node[i].y-node[k].y) == j)
 update_average[k];
 update_w[k];
 endif
 end
 end
end

Issues/showstoppers:
1. Right now, our global congestion table will update immediately, which don’t stand
for the real situation in the hardware execution and we are studying how to update the
estimated delay information by clock cycles inside Booksim because the timing
mechanism of Booksim is still unclear.
2. Due to the limitation of Booksim, a head flit is unable to send separately in order
to generate probability information, which bring some difficulties for a stochastic
design. Thus a more efficient fault-tolerant routing feature are still under implementing
and we are also still discussing a proper method to combine it with the current adaptive
feature.
3. Deadlock recovery mechanism are still under studying.

Further Works:
1. Implement an efficient fault-tolerant feature and combine with the current adaptive
routing algorithm
2. Verify the routing algorithm with/without link fault in the network to evaluate the
performance in latency & fault-tolerance.
3. Further analysis of the proposed design such as power consumptions.

