
EECS 578 Final Project Report

1

Abstract—For many-core chip multiprocessors (CMPs),

Network-on-chip (NoC) provide high performance on chip

communication and great scalability while the choice of routing

algorithm plays a vital role in the performance of on-chip

interconnection networks. In general, adaptive routing utilize

information about the network state to select among alternative

path options and offer better performance in term of the latency

and throughout. However, recently published adaptive routing

algorithm don’t equip with a well-designed fault tolerant

mechanism to handle potential link failures in the network, which

induced by rapidly incensement of the circuit density as well as the

extreme transistor scaling.

Thus in our project, we propose and implement an adaptive

routing algorithm using global congestion information and a

runtime fault tolerant algorithm to solve multiple permanent link

errors in the network. Escaped virtual channels and Up/Down

restriction are applied for deadlock free.

Index Terms— NoC, Adaptive routing algorithm, global

congestion, fault tolerance, deadlock-free

I. INTRODUCTION

Network-on-Chip (NoC) has become the most significant

communication fabric for many-core chip multiprocessors

(CMPs). Also, the routing algorithms used in these networks

play a vital role in determining processor performance.

Meanwhile, On-chip circuits are vulnerable to errors due to

transistor geometric shrinking and performance improvement,

leading to serious reliability issues.

Considering the problem above, some good fault-tolerant

routing algorithms have been proposed while they didn’t quite

consider the loading balance of network [6], leading to longer

packet latencies and potential performance loss. While for

routing algorithms like regional Congestion Awareness (RCA)

[3] and Destination-based adaptive routing (DAR) [4], they

gain good improvements on network loading balance and

packet latencies by applying congestion information. However

they don’t equipped with a fault tolerance mechanism. Upon

any link failure occurring, such routing algorithms may induce

huge performance overhead and even lead the whole system to

error states. Thus based on this situation, we hope to design a

routing algorithm which will not only be fault tolerant, but also

consider the network congestion state to improve the routing

performance by adaptive path selection.

In our project, we proposed and implemented a congestion-

aware adaptive routing algorithm based on the network spatial

information while deadlock-free and fault-tolerant features are

also ensured. The proposed routing algorithm collect the global

congestion information for each node in the network and adjust

path selection according to the downstream link delay. A better

network balance and shorter packet latency can be achieved by

applying our routing algorithm. Besides, we also add a runtime

on-chip fault-tolerant mechanism to handle permanent link

failures in the network by deploying routing tables and logic

that are updated upon each fault occurrence. Moreover, our

routing algorithm also ensure a deadlock-free configuration by

using escape Virtual Channels. Finally, our project is verified

and analyzed on BookSim simulator.

II. PROPOSED ROUTING ALGORITHM

Modern Network-on-chip routing algorithm could be

classified into deterministic routing and adaptive routing.

Different from deterministic routing where packets from a

source to a destination follow the same and fixed path, the

adaptive routing utilize information about network state to

select among alternative path options. By utilizing these

information, a good selection function is able to spread the

traffic and make network load more balanced.

In our project, we focus on adaptive routing using only

minimal paths in a 2D mesh topology because of its simplicity

and lower latency. The congestion information generation,

fault-tolerant reconfiguration and the implementation of

deadlock avoidance are discussed in details below.

2.1 Global-Congestion Adaptive Routing

Traditional adaptive routing algorithms relied on local or

regional congestion state to adjust the path selection function.

However, such methods still face a difficult challenge of

balancing remote and local congestion state and may not always

accurately reflect the load on the actual paths a packet can take

to its destination.

Thus we implement a Global-Congestion adaptive routing so

that every node in the network measures and maintains per-

destination congestion state in the form of average delays to all

other destination nodes through the possible output ports which

are allowed by the minimal routing. Besides, the measured

delays propagate from the destination to the source to update

every node through permitted paths and thus more accurately

estimating the congestion along paths. Then for every node, a

set of traffic spilt ratios in which traffic for a specific destination

is calculated based on combing the measured delays propagated

from downstream routers and its local delay. The selection

function of our routing algorithm use these ratios to decide

which path to follow for a specific destination when a packet

arrive at this node

Fault-Tolerant Adaptive Routing Algorithm for

Network-on-Chip

Tan Bie, Yang Jiao, Zixin Wang and Rong xu

EECS 578 Final Project Report

2

Here we assume that:

1. A router only decides the distribution of traffic to its

next-hop routers.

2. The ratios are per-destination basis, i.e., for a given

node, all arrived packets destined for the same node use

same ratio while packets using the same output ports but

going to different destinations will be distributed

independently by different ratio.

3. Minimal routing is used in our algorithm, thus for every

node, there are at most two ports to a destination and the

sum of port ratios for a destination equals to one and if

there is only one permitted output port, all traffic is

forced to be routed on that port.

A. Distributed delay measurement and propagation

Next, we illustrate the measurement and the propagation of

the global delay information using an example in a 4x4 mesh

topology in Figure 1 (a). Assume all nodes in the network need

to measure the delay to node 9.

Firstly, each node periodically estimates the local waiting

time in the input queues for all five output ports. For every

output port, this time is considered as the local queuing delay

l[p] through port p and is approximated by counting the number

of flits in the input buffers which have already requested a

virtual channel to the next-hop router.

Then at the 1st clock cycle, delay from node 9 to itself is just

the queuing delay on the ejection port of node 9. 𝐴𝑣𝑔9[9] stands

for the average delay from node 0 to itself and equal to:

𝐴𝑣𝑔9[9] = 𝑙[𝐸𝑗] (1)

This delay information 𝐴𝑣𝑔9[9] is then propagate to all

neighbors of node 9 at 2nd clock cycle. Node 8, 10, 5 and 13

receive 𝐴𝑣𝑔9[9] through their east (E), west (W), south (S) and

north (N) ports respectively, as shown in Figure 1 (b). Each of

these nodes estimate their delay to node 9 by adding 𝐴𝑣𝑔9[9]
with their locally measured delays on the port leading to node

9. For instances, at node 10, only west port could go to node 9

and the average delay from node 10 to node 9 is given as:

 𝐴𝑣𝑔10[9] = 𝑙[𝑊] + 𝐴𝑣𝑔9[9] (2)

Upon all one-hop routers finished the measurements of path

delay, at 3rd clock cycle all two-hop routers 12, 14, 11, 4, 6 and

1 receive updates for the delay to node 9. For instances, node 6

receives updates about the average delay to node 9 from nodes

5 and 10 connected to the north and west port respectively. Then

node 6 could estimate its average delay by computing a

weighted mean of the delays through the north and west ports,

the weights given by the traffic split ratio along these ports at

node 6.

𝐴[𝑁][9] = 𝐴𝑣𝑔10[9] + 𝑙[𝑁] (3)

𝐴[𝑊][9] = 𝐴𝑣𝑔5[9] + 𝑙[𝑊] (4)

𝐴𝑣𝑔6[9] = 𝑊[𝑁] ∗ 𝐴𝑣𝑔10[9] + 𝑊[𝑊]𝐴𝑣𝑔5[9] (5)

Here, 𝐴[𝑁][9] and 𝐴[𝑊][9] represent the delay through

north and west ports respectively and W[N] and W[W] stand

for the traffic split ratio at node 6 to destination node 9.

Carrying on in this manner, after some clock cycles all nodes

in the network are able to measure their delay to node 9 through

candidate output ports permitted by the minimal routing. This

process will repeat periodically to ensure that the global

congestion information stored in nodes are always up-to-date.

 (a) 1st step (b) 2nd step

 (c) 3rd step (d) 4th step

Figure 1 Example of the Distributed delay propagation

B. Adaption of traffic split ratio

The purpose of the traffic split ratio is to use the global

congestion information, which are measured and propagated to

each node, to uniformly balance the traffic load in the whole

network. For each node in the network, the adaption process of

the per destination traffic split ratios will be triggered upon the

delay information from valid downstream routers is received by

the current node. The same adaption algorithm will be repeated

for all nodes in the network.

Suppose at node i, there are two output ports 𝑝𝑥 and 𝑝𝑦

connected to the destination j along paths which are permitted

by the minimal routing. As we discussed at part A, A[x][j] and

A[y][j], which are the delay to node j through ports 𝑝𝑥 and 𝑝𝑥

respectively, could be estimated by the current node. Here, we

assume that the delay from x port is higher that from y port,

which means that

𝐴[𝑥][𝑗] > 𝐴[𝑦][𝑗]
Then we use these information to update our traffic spilt ratio

with the below equations.

 ∆= min⁡(0.25 ∗ (
𝐴[𝑥][𝑗]−𝐴[𝑦][𝑗]

𝐴[𝑥][𝑗]
) ,𝑊[𝑥][𝑗]) (6)

𝑊[𝑥][𝑗]𝑛𝑒𝑤 = 𝑊[𝑥][𝑗] − ∆;𝑊[𝑥][𝑗]𝑛𝑒𝑤 = 𝑊[𝑥][𝑗] + ∆ (7)

 The basic idea of the above equation is to increase the traffic

split ratio of the port with lower downstream delay and decrease

the ratio of the ports with higher delay. To avoid ratios

becoming negative, we chose the minimal value between the

ratio difference and current higher ratio.

2.2 Runtime Fault tolerant mechanism

The mechanism to handle with soft/permanent faults in the

network during the runtime is necessary for modern routing

algorithm to deal with potential hard errors in the lifetime. And

in our project, we propose and implement a runtime mechanism

to cope with the potential permanent link failures.

Since the broken links always mean a topology change, the

original routing table may lead to error state and reconfiguration

is necessary to ensure the complete reachability for all surviving

nodes. In general, there are two families based on their method

of the reconfiguration. One is deploying the routing tables and

logic that are updated upon each fault occurrence in the runtime.

EECS 578 Final Project Report

3

The second solution based on the offline software to complete

the reconfiguration upon any fault link detected and then

communicate with surviving topology with a central node. Our

solution is built based on the first family while combing with

the global congestion information forwarding. And we assume

that when a link failure occurs, the node connected with that

link will detect this fault and stop the new packet/flit injection

until the reconfiguration is finished. The routing table

reconfiguration works as follows:

Firstly, if a link error is detected, every node in the network

works as a root node, starting to broadcast a reconfiguration flag

to all other nodes in the network only through the healthy links

hop-by-hop. Meanwhile the delay measurement and

propagation process as we discussed in 2.1 is also initialed at

this node so the delay information Avg[i] are also transmitted.

Then, for each node received the reconfiguration flag:

 Stall the router pipeline. If receiving a reconfiguration

flag, that node should stop the pipeline and freeze the

virtual channel allocation & switch allocation until the

reconfiguration complete for all nodes.

 Update the routing table. For ports receiving the flag,

calculate and store the new traffic split ratio W[x][i]

based on the propagated delay information from

downstream nodes. For ports not receiving the flag,

invalid current split ratio and set to zero. Then

calculate the average delay from current node to the

root node. This step provides the safe paths as well as

the global congestion information for the current node.

This step is illustrated in Table 1.

 Flag forwarding. Nodes send the reconfiguration flag

to its neighbors only through those ports which didn’t

receive a flag or connect to a faulty link.

For nodes detecting a permanent link error, repeat the above

process to obtain an updated routing table with safe paths from

other nodes to this faulty node as well as the network congestion

information, which is used to select these safe paths adaptively.

This reconfiguration algorithm makes use of some ideas of

our global congestion propagation process, both transmitting

information from one destination to every possible source. Thus

if any link error occurs, the reconfiguration process co-work

with distributed delay propagation to obtain fully reachability

to all surviving as well as the global congestion states. Figure

2 illustrates an example while one link break in a 4x4 mesh

topology network.

Table 1 Traffic split ratio update based on the flag signal and delay

information during reconfigurations

 (a) 1st step (b) 2nd step

 (c) 3rd step (d) 4th step

Figure 2 Example of the reconfiguration process

III. DEADLOCK RECOVERY MECHANISM

We use the escape virtual channel to realize the deadlock-

free feature in GCA. The key idea for it is to provide an escape

path (escape virtual channel) for every deadlock packet. The

routing algorithm for the escape path should be deadlock-free.

Thus, when a packet is checked to be stuck in deadlock, we can

send it on to the escape path and then the packet can use this

deadlock-free path to its destination.

A. How escape virtual channel works:

The approach to dealing with deadlock is not to avoid it, but

rather to recover from it. There are two key phases to any

deadlock recovery algorithm: detection and recovery [1]. And

in our algorithm, we’d like to separate it into three stages:

Detection, Filtering and Recovery.

1. Detection:

In the detection phase, the network must be able to detect

if itself has reached a deadlock situation. Determining

exactly whether the network is in deadlock requires finding

a cycle in resource wait-for graph. It’s difficult and costly, so

we use a conservative detection mechanism - timeout

counters. Each input port of the router will be equipped with

a timeout counter. There are only two cases that we will reset

the counter: (1) when the input port receives a flit, (2) when

we detect the deadlock and allocate an escape virtual channel

for that packet. Except for the two cases above, we just

increase the counter by 1 per step. When the counter gets to

the specified deadlock upper bound, a filtering stage will be

trigger.

2. Filtering:

In this phase, the network needs to figure out whether the

recovery requests are real deadlock or just false positive. The

way we do it is to check the virtual channel’s state. As we

know there are four states for the virtual channel: idle,

routing, virtual channel allocation (vc_alloc) and active. If

there is any virtual channel in idle state or there is a packet

just ready for ejection, we think the deadlock is not true (false

positive), otherwise, we will allocate escape virtual channel

for those virtual channels in vc_alloc states (It means if all

the virtual channels are in their active states, we will not

allocate any escape virtual channel for this input either).

3. Recovery:

In this phase, we have selected those input virtual channels

whose inner packets (head flits) have been waiting for an

available virtual channel for a long time (>deadlock timeout).

We apply a priority selector here to help us determine which

Destination (i) West North East North

Ratio (W) 0.6 0.55 0.4 0 0 0.45 0

Flag received Yes No Yes No

EECS 578 Final Project Report

4

virtual channel should be the first to obtain the escape virtual

channel. After allocating the escape virtual channel, we will

clear the timeout counter on that input port. Using FSM to

describe the process in Figure 3.

Figure 3 Deadlock recovery mechanism: Mainly has three phases:

Detection (D), Filtering (F) and Recovery (R).

B. Up/down deadlock free routing algorithm:

We choose Up/down routing algorithm as our deadlock free

algorithm applying on escape virtual channel. Since our 8x8

mesh network has several permanent faults on it, we cannot use

some simple deadlock free algorithms like x-y dimension order

algorithm for escape path. To take fully advantage of the DAR

table generated for GCA algorithm, we finally choose the

up/down algorithm.

The paper [2] introduces the up/down routing, a deadlock-

free algorithm that can operate on any irregular topology.

Up/down requires each link to be assigned a direction: up or

down. It then disallows those paths that include traversing a

down link followed by an up link. In this way, all cyclic

dependencies are broken. In this paper, we take fully advantage

of our GCA algorithm to generate a pseudo-up/down algorithm

which can work correctly but may lose a little performance.

Instead of choosing the root node when coming across a fault,

we simply fix our root at a certain node at the very beginning.

And then based on this root node we can use the GCA algorithm

directly to realize the deadlock-free algorithm. Now, let’s see

how this pseudo-up/down routing algorithm works.

Figure 4 Up/down routing algorithm based on GCA: ‘Cur’ represents

the ID of the current router. After the packet has passed through the

root node (root arrived bit has been set 1), we will just use GCA table

to find the head flit’s next direction to its destination. If it is on the root

node, we will set the root arrived bit to be 1 and use GCA table to find

an output port from root to its destination. If it hasn’t gone through the

root node (root arrived bit is 0), we will set this packet’s destination to

be the root node and use GCA table to find the next output port

In order to implement this algorithm, we need firstly add a

bit (named root_arrived) in flit which indicates whether the flit

has passed through the root node.

The reason why this algorithm is deadlock free is that we are

based on GCA table which will always give us a closer-to-dest

direction even when there are permanent faults in NoC. So

when we use GCA to send flit from source to root and then from

root to destination, we actually disallow those paths that include

traversing a down link followed by an up link. In this way, the

algorithm implemented is deadlock-free.

IV. HARDWARE IMPLEMENTATION

Figure 5 Delay Measurement and Propagation Logic

We implemented logics needed by the router in Verilog HDL

to measure the storage overhead of our routing algorithm. In the

DAR [1], they achieve 4.5% storage overhead over baseline

router. In our design, we prove that the fault-tolerant feature

cost is also reasonable, which leads to 6.1% overall storage

overhead compared to baseline router. Here is some major

logics we added to the router.

A. Port Pre-Selection

Because our router is designed for 2D mesh network,

minimal adaptive routing is used to pre-select outputs ports. A

packet arriving at an input port can have a choice of at most two

output ports which maps to one of the four quadrants. As one

hot port representation used, the Port Pre-Selection part

introduced 10 bits storage for each destination including the

current node itself.

B. Delay Measurement and Propagation Logic

Seen from Figure 5, delay measurement contains two parts:

local queuing delay count and average delay calculation. Since

we are mainly interested in the relative delays to destination

node through the candidate output ports, the local queuing delay

for output port p is approximated by the number of flits in the

input buffers that have already acquired a VC at the next-hop

router connected to port p.

Since port pre-selection logic has selected at most two output

ports for each destination node, Average delay from

corresponding downstream node will be used to compute delay

to destination node through pre-selected ports. Then traffic split

ratio will be used to compute weighted average delay from

current node to destination node. Then computed average delay

can be propagated to upstream node. Local queuing delay and

average delay both have 6 bits, and every router have to store 2

local delay and one average delay for each destination node.

In order to reduce storage overhead, we only store one 5-bit

traffic split ratio for each destination node since a packet at an

EECS 578 Final Project Report

5

input buffer can have a choice of at most two output ports which

maps to one of the four quadrants, and split ratios are

normalized such that they always add up to one.

C. Adapt Split Ratio

The computations involved with adaptation of split ratios are

given as follows:

 ()

To simplify the implementation of these computations in

hardware we always assume λ = 0.25 which reduces the

multiplication to a shift operation. The division is also avoided

by extracting only the most significant bit of L[ph][j] that is set

and ignoring the remaining less significant bits. This reduces

division to a shift operation.

Figure 6 Logic for Adaption of Weights

D. Reconfiguration flag forwarding unit

 For proposed fault tolerant algorithm, additional hardware

unit is needed to receive and forward the flag signal where the

calculation and the updates of traffic split ratio could be done

using the hardware sources introduced in IV (B) and (C).

 The reconfiguration flag forwarding unit is consisted of two

major parts: an arbiter combination logic and a 𝑁2 size buffer

for an N x N mesh network. Thus the area overhead for this unit

is quite small compared to the modern router architecture.

The arbiter identifies the id (indicate the destination router)

of routers which have link errors and send signals to trigger the

split ratios updates of the corresponding routing table. Besides,

the arbiter selects the ports to forward the reconfiguration flag

and send to the output buffer.

The buffer is used to indicate whether the reconfiguration has

been done or not for a specific root node. Upon the router

receive a reconfiguration flag of a specific root node at the first

time, the corresponding buffer set high and the reconfiguration

will not be trigger again if the router receives that flag signal

again in the future. This mechanism avoids redundant

reconfigurations as well as the potential livelock to some

degree.

V. EVALUATION

We evaluated our GCA algorithm with a cycle-accurate NoC

simulator, BookSim. An 8x8 mesh network is utilized for

evaluation with several different traffic patterns considered.

And for the evaluation of faults within network, a random fault

generator is added to the original BookSim for generating

random faulty network without isolating any node by

specifying the number of fault. For this evaluation part, an

evaluation on performance of the GCA algorithm in non-faulty

network is conducted in comparison with some extant routing

algorithms in BookSim, as well as a comparison in saturation

throughput. For evaluation of performance on faulty network,

an increasing number of fault is inserted into network with the

random fault generator at a fixed injection rate, thus fault

tolerance of the proposed routing algorithm is tested.

A. Evaluation of GCA algorithm in non-faulty network

Dimension-order, min-adaptive and xy_yx-adaptive are used

for a comparison with the proposed routing algorithm in non-

faulty network, as they are the typical deterministic/adaptive

routing algorithms on mesh network. For four different traffic

patterns – uniform, shuffle, bitrev and transpose, average packet

latency is measured for the three extant algorithms as well as

the proposed GCA routing algorithm. The result is shown in

Figure 7.

Figure 7 Average Latency vs. Injection Rate

Seen from Figure 7, average latency will increase dramatically

at a certain point for each routing algorithm and each traffic

pattern. Such certain point on injection rate is named as

saturation throughput. GCA algorithm performs best in shuffle

and transpose traffic pattern but worst in uniform, the reason is

that GCA is aimed at keeping the traffic balanced in mesh

network, for shuffle and transpose traffic, GCA algorithm is

always the most efficient one among these algorithms , but for

uniform, GCA loses some performance as a trade-off.

Saturation throughput can be estimated from Figure 7 by

measuring the inject rate at which average latency is triple of

the zero-injection latency. And a comparison in saturation

throughput is illustrated in Figure 8.

Seen from Figure 8, the saturation throughput for GCA is

preferable among all routing algorithms except the uniform

traffic pattern, but in reality, the uniform scenario is rare, in all

for network without fault, GCA is a proper choice for routing

algorithm.

B. Simulation of GCA algorithm in faulty network

Actually we have several choices on the fault-tolerance

solution, the simplest choice is random-walk. After

implementing and evaluation of random-walk routing

algorithm on BookSim, the poor efficiency and deadlock

problem prevent us from research deeper on such topic.

Injection Rate
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
v

er
ag

e
la

te
n
cy

0

100

200

300

400

500
Uniform

GCA
Dimension Order
xy-yx Adaptive
Min Adaptive

Injection Rate
0 0.1 0.2 0.3 0.4 0.5

A
v

er
ag

e
la

te
n
cy

0

100

200

300

400

500
Shuffle

GCA
Dimension Order
xy-yx Adaptive
Min Adaptive

Injection Rate
0 0.1 0.2 0.3 0.4 0.5

A
v

er
ag

e
la

te
n
cy

0

100

200

300

400

500
Transpose

GCA
Dimension Order
xy-yx Adaptive
Min Adaptive

Injection Rate
0 0.1 0.2 0.3 0.4 0.5

A
v

er
ag

e
la

te
n
cy

0

100

200

300

400

500
Bit Reverse

GCA
Dimension Order
xy-yx Adaptive
Min Adaptive

EECS 578 Final Project Report

6

Figure 8 Comparison of saturation throughput

For the Up/Down routing algorithm we have discussed in III.

B, deadlock-free as it is, the comparatively long latency also

prevents us from taking it as a main routing algorithm.

Alternatively, due to its metric in deadlock-free, it can be used

complementarily as the routing algorithm for escape virtual

channel as deadlock situation is rare but indeed exists in

network.

For faulty network, random error generator is utilized for

simulation. Injection rate for this part is fixed to be 0.2. As the

number of fault within network increases from 1 to 10 in 8x8

mesh network, by measuring the average latency for specific

number of fault 10 times, average latency for each scenario can

be obtained as below. Note that four different traffic patterns

are also considered for this part.

Figure 9 Average delay vs. number of fault

Seen from Figure 9, due to the effective reconfiguration

stage in dealing with faults, the average latency increases

slowly as the number of fault increases.

C. Comparison between proposed work and some published

routing algorithms

At last, a table is presented for a comparison between the

proposed GCA routing algorithm and some published routing

algorithms.

As we can see from Table 2, the proposed routing algorithm

works well even in comparison with some published work.

Table 2 Comparison between proposed work and published work

 This

work

[3] [4] [5] [7]

Algorithm Adaptive Adaptive Deterministic Adaptive Adaptive

Fault

tolerant?

Yes No No No Yes

Saturation Throughput for different traffic pattern

Uniform 0.36 0.35 0.36 0.32 0.34

Shuffle 0.42 - - - -

Transpose 0.37 0.33 0.21 0.27 -

Bit-comp 0.22 0.21 0.22 0.16 -

VI. CONCLUSION

In this paper, the proposed routing algorithm – GCA (Global-

Congestion Adaptive) – is designed based on Destination-based

Adaptive Routing (DAR) with relatively hardware overhead of

6.1%. Besides, a deadlock recovery mechanism using escape

virtual channel which is equipped with a deadlock free up/down

algorithm. Comparing our results with some other algorithms

like improved random walk and original up/down algorithm,

our algorithm has a better for different traffic patterns. In the

future, some research can be taken into explore the possibility

in improving the fault-tolerance performance by bringing in

software-based off-line reconfiguration mechanism.

References

[1] R. Ramanujam and B. Lin, "Destination-based congestion awareness

for adaptive routing in 2D mesh networks", ACM Transactions on

Design Automation of Electronic Systems, vol. 18, no. 4, pp. 1-27,
2013.

[2] K. Aisopos, A. DeOrio, L. Peh, and V. Bertacco, “ARIADNE:

Agnostic Reconfiguration In A Disconnected Network Environment”,
International Conference on Parallel Architectures and Compilation

Techniques (PACT), Galveston Island, TX, October 2011.

[3] P. Gratz, B. Grot and S. Keckler, "Regional Congestion Awareness for

Load Balance in Networks-on-Chip", HPCA, 2008.

[4] D. Seo, A. Ali, W. Lim, N. Rafique and M. Thottethodi, "Near-
Optimal Worst-Case Throughput Routing for Two-Dimensional Mesh

Networks", ACM SIGARCH Computer Architecture News, vol. 33,

no. 2, pp. 432-443, 2005.

[5] A. Singh, W. Dally, B. Towles and A. Gupta, "Globally Adaptive

Load-Balanced Routing on Tori",IEEE Comput. Arch. Lett., vol. 3, no.
1, pp. 2-2, 2004.

[6] S. Jovanovic, C. Tanougast, S. Weber, and C. Bobda, “A new

deadlock-free fault-tolerant routing algorithm for NoC
interconnections”, in Proc. Int. Conf. Field Program. Logic Appl.,

Aug.–Sep. 2009, pp. 326–331.

[7] R. Parikh, V. Bertacco, “ForEVeR: A complementary formal and
runtime verification approach to correct NoC functionality”. ACM

Trans. Embedded Comput. Syst.13(3s): 104:1-104:30 (2014)

Number of faults
0 2 4 6 8 10

A
v

er
ag

e
la

te
n

cy

28

30

32

34

36

38

40
Average delay against number of faults

Uniform
Shuffle
Tranpose
Bitrev

0

0.1

0.2

0.3

0.4

0.5

Unifrom Shuffle Transpose Bit Reverse

GCA Dimension Order xy_yx Adaptive Minimal Adaptive

http://dblp.uni-trier.de/pers/hd/p/Parikh:Ritesh
http://dblp.uni-trier.de/db/journals/tecs/tecs13.html#ParikhB14
http://dblp.uni-trier.de/db/journals/tecs/tecs13.html#ParikhB14

