
SecureNoC

(Team Colonel Panic): Xiaoming Guo, Sijia He, Amlan Nayak, Jay Zhang

December 3, 2015

1 Problem Statement

Networks on Chip (NoCs) have been steadily investigated from reliability, efficiency, and
performance perspectives.However, little effort has been directed towards the security of
complex on-chip networks. These networks are prone to attacks similar to those perpetrated
against large scale networks such as datacenters and the internet. If a single core within an
NoC is compromised, it can be used as a vehicle to contaminate other cores on the network,
or even the entire network itself.

2 Importance

Datacenter security is of utmost importance given the explosive growth of big-data centric
applications. The amount of data that a single user generates on a diurnal rhythm is stag-
gering and thus high performance computing with large numbers of integrated cores are
now a necessity. Since a vast portion of the data being generated needs to remain private,
secure handling of data by data center applications and hardware is paramount. Though
mechanisms exist to thwart attacks on a large scale network of servers, little attention has
been paid to the security of on-die NoCs.

3 Solution

Two important security vulnerabilities of NoCs are Denial of Service (DoS) attacks and
Extraction of Secret Information attacks. Now, in order to ensure secure communication
between cores on an NoC, we propose a novel scheme. We augment each router within the
network with a traffic monitoring unit and a mechanism to block the communication between
local port and router. These modules carry out the following objectives :

• Monitor injection rate in order to detect DoS attacks and halt an attack in progress

• Support secure exchange of priority packets between different routers.

1



4 Progress

• We have implemented a threshold based DoS attack detection mechanism both in
Booksim and in SystemVerilog. The system can detect an abnormally high flit injection
rate from any node in a given epoch. Once this abnormal behavior is detected, the
system will temporally stop accepting more packets from the compromised node for
two epochs. This will allow the “suspiciously compromised” core to re-schedule the
packet injection process. After the stalling period, if the core keeps injecting with high
rate, it will be shut down permanently, as shown in Figure 1; otherwise, we allow the
core to send packets normally, which is illustrated in Figure 2. This mechanism will
help eliminating false positive.

Figure 1: Read attack

Figure 2: False positive handling

2



• We justify the threshold based mechanism from the observation that the average packet
latency will shoot up once the injection rate for a given node goes beyond a certain
threshold value. And this threshold value shows little dependency on the injection
rate of other nodes (as long as they are working normally), number of VCs, etc. This
discovery is shown in Figure 3, where the threshold is around 0.3 for all different
configurations.

Figure 3: Packet latency vs. injection rate

• We augmented the RTL model from Prof. Dally’s group to incorporate our DoS attack
detection mechanism. We synthesized our implementation and compared the data with
the baseline. The results are given in Table 1.

Table 1: Baseline vs. DoS Detection
clock period (min) area

Baseline 2.9ns 1896527.2
DoS Detection 2.9ns 1912835.5

Overhead 0 0.86%

• We came up with SecurePacketExchAngeR (SPEAR), a mechanism that can sup-
port the secure exchange of priority packets between different routers. It can be used
to exchange keys for encryption, private information, etc. Figure 4 shows how this
mechanism works. Secure packets with a high privilege level (indicated by a bit during
packet injection) are assigned strictly to a single VC. VC0 is reserved for such packets.
Once the head filt of a privileged packet arrives at a router, the router blocks all its VCs
except for reserved VC0. In addition, the router cuts off the connection between local
core and the router, effectively preventing the local core from snooping the incoming

3



secured packets. Once the tail flit of a privileged packet has arrived at a router, all
VCs of the router are re-enabled and the connection between local core and the router
is re-established.

Figure 4: Secure Packet ExchAngeR (SPEAR)

• Since we stop the injection of new packets for the routers that are transferring privileged
packets, the whole system tends to inject fewer packets than normal operation. To
study this effect, we set our expected packet injection at 0.15, which is about the
maximum injection rate that our system can hold, and then change the percentage of
privileged packets to see the actual injection rate of the system. Figure 5 shows that
the actual injection rate is not affected as long as the percentage of privileged packets
is smaller than 30%.

Figure 5: Packet injection rate vs. % of privileged packets @ expected injection rate=0.15

4



• We evaluated the performance of our approach by monitoring average packet latency
in the network with different privileged packet injection frequencies, shown below in
Figure 6. When one priority packet appears in every 50 packets or every 100 packets,
packet latency in the network is smaller than packet latency with no priority packets.
This can be attributed to the fact that priority packets are routed immediately and are
able to arrive at their destination without having to wait for allocation. Thus, their
latencies are small, leading to an overall smaller average. However, when one in every 10
packets is privileged, then the routers must block their VCs more frequently, resulting
in a slow down of the non-privileged packets, which increases the average packet latency
in the network. In real applications, we expect the frequency of privileged packets will
be less than 10 percent. Therefore, our SPEAR mechanism will not negatively affect
performance.

Figure 6: Packet latency with increasing injection rate for different priority packet frequencies

• In Figure 7, we can see that router 1 0 tries to retire flit 2922 (requesting output
4, which is the local port). However, since there is a privileged packet on-the-fly, the
switch allocator keeps granting to VC 0 and avoids sending flit 2922 to the local port.
This shows the correct functionality of SPEAR.

5



Figure 7: VC 0 always has priority in switch allocation in privileged mode

5 Issues/Showstoppers

• Does it make sense to measure the average packet latency for only the non-privileged
packets?

• We are still debugging the SystemVerilog implementation of SPEAR.

6


	Problem Statement
	Importance
	Solution
	Progress
	Issues/Showstoppers

