
SecureNoC: Enhancing On-Chip Network Security
for Many Integrated Core Systems

Xiaoming Guo, Sijia He, Amlan Nayak, and Jay Zhang
Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI
EECS 578 Fall 2015 Final Report

Abstract—With the unimpeded scaling of transistor technology,
multiprocessors with a large number of integrated cores on a
single die are emerging as efficient and practical solutions for
the warehouse-scale computing and datacenter markets. Enabling
scalable data communication between such cores is a challenge.
Networks on Chip (NoCs) have emerged as the most promising
and readily implementable solution. Architected with a blueprint
that shares many similar design aspects with existing macro-
scale networks such as the Internet, NoCs face similar security
vulnerabilities. In this paper, we address two such vulnerabilities,
namely Denial of Service (DoS) attacks and unauthorized secret-
information extraction. In order to detect and recover from DoS
attacks, we implement an anomalous high-packet injection rate
detector and node-blocking mechanism to detect and recover
from single or multi-node based DoS attacks. Secondly, we
introduce the Secure Packet ExchAngeR (SPEAR) system which
enables a foolproof method for a pair of nodes in an NoC to send
and receive privileged data-packets by eliminating the possibility
of intermediate nodes from eavesdropping on the communication.
We demonstrate that these enhancements can be implemented
as simple extensions of existing NoC architectures without any
significant drawbacks in performance or area.

I. INTRODUCTION

With the advent of chip multiprocessors with as many as 72
integrated physical cores [1], the architecture of efficient on-
chip communication networks is becoming a primary design
concern both in academia and in industry [2]. Increasing
core counts have engendered an evolution of these networks
from simple indirect links and uni-directional buses to com-
plex point-to-point packet-switched networks with a variety
of topologies and flow-control mechanisms [3]. Increasingly,
these Networks-on-Chips (NoCs) are beginning to resemble
macro-scale networks such as the Internet, with dedicated
routers and layered communication protocols. While such
complex infrastructures facilitate efficient communication and
improve quality of service (QoS), they also introduce new
vulnerabilities that can be exploited by hostile agents to carry
out a variety of attacks [4].

Network-oriented attacks are particularly harmful as they
are not isolated to a single node, but are prone to spreading
across a multitude of nodes and possibly rendering the entire
network inoperable [5]. In this paper, we address two particular
categories of attacks: software-based Denial of service (DoS)
attacks and extraction of secret-information attacks. DoS at-
tacks can cripple a network by saturating it with a torrent of
packets issued from either one or a number of compromised

nodes. As a network becomes congested, data can no longer
be exchanged between nodes, leading to a severe reduction in
the QoS.

Secret-information extraction is a form of attack that seeks
to read sensitive in-flight data while it is passing through
a compromised node in a network. With the introduction
of secured computing frameworks such as Intel’s SGX [6]
and ARM’s TrustZone [7], applications can create protected
“enclaves” in memory to store sensitive information which
are protected even from malicious operating systems. Such
sensitive data is encrypted before it is sent to off-chip DRAM
memory. However, in a many-integrated core system, the data
packets must be shuttled around the NoC in order to reach the
memory interface. Intermediate nodes along this path have the
potential to quietly ingest these packets and re-transmit them,
unbeknownst to the source node. This form of eavesdropping
can be broadly categorized as a small-scale man-in-the-middle
attack. To the best of our knowledge, such attacks have not
been addressed at the hardware level in NoCs. In this work,
we present security infrastructures that can provide complete
protection against both DoS and eavesdropping attacks.

The paper is organized as follows. Section II provides a brief
overview of selected work that has already been published
in the area of NoC security. Section III outlines in detail the
design of the proposed mechanisms. Sections IV and V present
the experimental setup and simulation results, respectively.
This is followed by a short overview of the potential for
future improvements of the presented work in section VI. We
summarize and conclude in section VII.

II. RELATED WORK

The work presented in this paper addresses NoC security
issues that have been recognized as important vulnerabilities
in the literature. Porquet, Greiner, and Schwarz propose a
dedicated Memory Protection Unit to permit the co-hosting
of a number of software stacks which can execute in a variety
of security domains [8]. Their approach is a hardware/software
codesign which can incur significant area and power penalties
which is of particular concern in small, embedded systems,
such as those being targeted by the authors. Further, they
introduce an virtualization scheme that can lead to additional
latency due to the added step of address translations. Lukovic
and Christianos [9] direct their effort towards protecting NoCs
against buffer-overflow attacks by embedding data protection

1



Fig. 1. An input-queued virtual channel router

modules into the network interfaces connecting cores with
routers. Their mechanism prevents the propagation of a buffer-
overflow attack to other nodes in the system. Similar to [8],
this solutions also results in unavoidable area and performance
overheads that may not be acceptable in a commercial setting.
The security mechanisms demonstrated in this paper incur
negligible hardware overheads while simultaneously providing
absolute protection from DoS and eavesdropping attacks.
Moreover, unlike [8] no modifications need to be made to
existing software stacks in order to implement the proposed
infrastructure.

III. DESIGN AND IMPLEMENTATION

A. Network-on-Chip architecture

In this work, we use the input-queued virtual channel router
as described in the textbook by Dally and Towles [10]. As
shown in Figure 1, a typical router consists of input ports,
output ports, route computation logic, virtual channel (VC)
allocator, switch (SW) allocator, and crossbar [11].

Each port in the router consists of virtual channels to
avoid deadlocks and improve network utilization. Packets are
partitioned into flits to enable wormhole routing. The routing
mechanism is pipelined into four distinct stages: input buffer-
ing and route computation, VC allocation, switch allocation,
and crossbar traversal. Incoming flits are stored in the buffers
within the virtual channels, waiting to be transferred. VC
allocation assigns an output VC to the head flit of a packet
and the body flits of that packet inherit the VC assigned to
the head flit. The SW allocator arbitrates the requests of flit
transfers from input ports to output ports. Once an input port
and output port pair is granted, the crossbar will connect them
together to enable data transfer.

We use a mesh network in our paper. Each router consists of
five input ports and five output ports, four of which connect
to neighboring routers, and the remaining one is an ingress
port for the local node. Unless specified otherwise, each port
has four virtual channels, and the buffer size for each virtual
channel is eight.

B. Threshold-based DoS attack detection

We have implemented a threshold-based DoS attack detec-
tion mechanism. Each router within the network is augmented

Fig. 2. DoS attack detection phase 1 (high traffic detection and temporary
blocking of potentially compromised node)

Fig. 3. DoS attack detection phase 2 (local port permanently disabled if high
injection rate is detected again)

with a high packet injection rate detector. As shown in Figure
2, the detector counts the number of flits injected into the
router from the local port during a empirically-determined
number of cycles defined as an epoch. If the number exceeds
the predefined threshold value, the system will temporally stop
accepting more packets from the “potentially compromised”
node for two epochs. In the meantime, the “potentially com-
promised” core is notified by the router to re-schedule the
packet injection process.

Figure 3 shows the second phase of the DoS detection. After
the two-epoch stalling period, the local port is re-enabled, and
if the core continues to inject packets at a rate larger than
the threshold, it will be blocked permanently; otherwise, the
core is allowed to inject packets normally. This second chance
mechanism aids in eliminating false positives.

C. SPEAR

The Secure Packet ExchAngeR (SPEAR) supports the
secure exchange of data between two nodes by ensuring
that other intermediate nodes in the system cannot snoop or
interfere with the transfer of privileged packets. We reserve
Virtual Channel 0 (VC 0) only for privileged packets (indicated
by a bit in the head flit). Non-privileged packets will never be
allocated to VC 0. When privileged packets are in transit, the
switch allocator will prioritize their constituent flits by only
granting to VC 0, which in turn blocks all allocation requests
from non-privileged packets. In addition, the ingress/egress

2



Fig. 4. SPEAR phases of operation

port between the router and the local core is also blocked
during this period to ensure that the core cannot eavesdrop on
the privileged data.

We use Figure 4 to further explain the SPEAR mechanism.
In the presented situation, a privileged packet is being sent
from node 3 (labeled SRC) to node 8 (labeled DST). Assuming
that the network uses deterministic XY routing, we can see that
the packet will traverse the path 3-4-5-8. Privileged packet
propagation through intermediate router 4 is shown in the
second half of the image. After the head flit of the privileged
packet reaches the router, it is allocated to VC 0 at the
appropriate output port. The local port is blocked to prevent
any eavesdropping. During switch allocation (not drawn on
figure), VC 0 has priority over all other VCs, and thus the
privileged head flit will traverse the crossbar immediately. The
body flits will inherit the VC allocation (VC 0) of the head
flit. Again, switch allocation is prioritized for VC 0 as long
as it is occupied. Once the tail flit of the privileged packet
arrives, the local ingress/egress port to the core is unblocked.

To accommodate for the case where multiple privileged
packets arrive at the same router, each router is augmented
with a counter that counts the number of outstanding privileged
packets. When the head flit of a privileged packet reaches the
router, the counter is incremented by one, and when the tail
flit of a privileged packet reaches the router, the counter is
decremented by one. When the counter is not equal to zero, we
cut off the connection between the router and its corresponding
local port because there are outstanding transfers of privileged
packets.

To be compatible with SPEAR mechanism, the head flit
and tail flit of a packet should have one extra bit to indicate
privilege level. The extra bit can be either encoded into the
message, or be calculated using the existing fields if they can
be used to deduce the privilege level. For this paper, we assume
the extra bit is encoded into the message.

IV. EXPERIMENTAL SETUP

The two security mechanisms were implemented both in
simulation and hardware. Booksim, a cycle-accurate NoC
simulator [11] was used to test the design functionality and to

Fig. 5. Node 0 DoS attack detection and recovery

obtain high-level performance results such as packet latency.
The designs were then ported to Verilog in order to determine
area and delay penalties. We used the RTL code implemented
by Becker in his dissertation [12] as the baseline Verilog code.

For BookSim simulation, unless stated otherwise, we sim-
ulated a 3x3 mesh network, with number of VCs set to 4
and the buffer size for each VC set to 8. The packet size is
randomized from 3 to 6. We used the packet latency as the
measurement of performance. The switch allocator type is set
to select to allow prioritizing switch allocation for VC 0.

We chose ROUTER TYPE VC as the router type in the
Verilog implementation. Again the number of VCs is set to
4 and the buffer size is set to 8 for consistency between the
Verilog implementation and BookSim simulation.

V. RESULTS

A. Experimental results for BookSim simulation

We simulated single node and multiple nodes conducting
DoS attacks in BookSim. In Figure 5, the flit counter for
Node 0 exceeds threshold during epoch 0. As a result, Node
0 is temporally shut down during epoch 1 & 2 and notified
to reschedule its injection process. After epoch 3, Node 0
still has a counter number over threshold, which shows that it
is truly compromised. Therefore, the network stops receiving
packets from node 0 permanently. Figure 6 shows that our
mechanism is able to successfully detect and stop multiple
nodes conducting DoS attacks. Both Node 0 and Node 1 are
stopped from injecting packets into the network for two epochs
after their abnormally high injection rates are first detected.
Two epochs afterwards, the second phase of detection confirms
both Node 0 and Node 1 are truly conducting DoS attacks. As
a result, the network stops receiving packets from both nodes.

Figure 7 demonstrates how DoS attack detection mechanism
is able to avoid false positives. During epoch 0, Node 0 has
an injection rate above the threshold due to high traffic in
the network although it is not conducting DoS attack. The
network temporarily cuts off injection from Node 0 and send
it a notification to reschedule. Node 0 receives the notification
and slows down its injection process. In epoch 3, phase two
of the detection mechanism observes a normal injection rate
from Node 0. Therefore, Node 0 resumes to inject packets into
the network normally afterwards.

3



Fig. 6. Node 0 & 1 DoS attack detection and recovery

Fig. 7. High traffic at Node 0 but no DoS attack

We also investigated the effect of uncompromised nodes’
injection rates on average packet latency in the network. Figure
8 simulates one node conducting DoS attack with other nodes
injecting packets at five different rates. The packet size is set
to 4 for this case. It is shown that for all normal injections
rates the network latency increases significantly when com-
promised node’s injection rate reaches 0.33 packets/cycle. We
also verified that this inflection point where network latency
experiences an exponential increase is also independent of
other factors such as number of VCs. Therefore, our method
of choosing a static threshold for DoS detection is justified.

We evaluated the performance overhead of SPEAR with
different privileged packet injection frequencies under various
conditions in 3x3 and 8x8 mesh network configurations. When
privileged packet injection frequency is 1%, the packet latency
is even smaller than the case with no privileged packets. This
is likely due to the fact that privileged packets are routed im-
mediately instead of having to wait for arbitration, leading to a
smaller overall latency for all packets. However, as privileged
packet injection frequency increases, the routers must block
their VCs more frequently, resulting in a slow down of the
non-privileged packets, which increases the average packet
latency in the network. In real applications, we expect the
ratio of privileged packets to be around 5-10%. We tested 20%
privileged packet injection frequency as worst-case scenario.
The following section explains SPEAR’s performance impact
when varying different network parameters such as traffic
pattern, number of VCs, and packet injection rate.

We ran simulation with different traffic patterns including
Uniform, Neighbor, and Hotspot. The results are shown in Fig-
ure 9. In 8x8 mesh network, there is no significant performance

Fig. 8. DoS attack anomalous packet injection rate threshold

Fig. 9. Packet latency variation with different traffic patterns

overhead for all privileged packet injection frequencies. In 3x3
mesh network, there is only significant performance impact
with Hotspot traffic and 20% privileged packet frequency.

Figure 10 shows that performance impact is not signif-
icant in 8x8 mesh network with 2, 3 or 4 VCs for all
privileged packet injection frequencies. In 3x3 mesh network,
performance impact is only noticeable when privileged packet
injection frequency reaches 20%.

Lastly, we analyzed performance impact with 0.05, 0.10,
0.15 and 0.16 packets/cycle injection rate. Similar to the pre-
vious two figures, Figure 11 shows that performance overhead
is negligible in 8x8 mesh network. In 3x3 mesh network,
significant performance overhead can only be observed with
privileged packet frequency of 20% and injection rate of 0.16
packets/cycle.

B. Hardware overhead

We ported our design to Verilog and synthesized the single
router to get the performance and area overhead. The result
is given Table I. Since the additional hardware is not on the

4



Fig. 10. Packet latency variation with increasing VCs

Fig. 11. Packet latency variation with increasing injection rate

critical path of the router, there is no clock speed penalty. The
area overhead is also negligible, with only 0.66% for DoS
detection mechanism, and 1.1% for both DoS detection and
SPEAR.

Our mechanism requires minimal change to the existing
architecture of the router. To ensure privileged packets are
allocated to VC 0 and non-privileged packets are allocated
to other VCs, we only need to add masks bit to the VCs
that are eligible during allocation. In other words, privileged
packets are only eligible to choose from VC 0, and non-
privileged packets are only eligible to choose from VCs other
than VC 0. In addition, many router supports priority-based
switch allocator. Therefore, we only need to assign VC 0 with
a privileged level higher than other VCs to block the allocation
of non-privileged packets during the transfer of privileged
packets. We do need to add counters to the router for both
DoS detection mechanism and SPEAR mechanism, but it does
not involve any change to the existing hardware component.

VI. FUTURE WORK

In order to improve VC allocation performance, instead of
starving non-privileged VCs during secure packet exchange,
the SPEAR mechanism can be augmented with a time-division

TABLE I
HARDWARE OVERHEAD

clock speed slowdown area overhead
DoS 0 0.66%

DoS + SPEAR 0 1.1%

multiplexing scheme. The credit-return policy of the router
can be modified to achieve a finer grain control over the local
cores packet injection rate. This would improve the efficiency
of the DoS recovery mechanism. These are microarchitectural
modifications, which, if implemented, will yield performance
and QoS improvements.

VII. CONCLUSION

As the complexity of NoC designs increases, security vul-
nerabilities arise that need to be addressed. Through large-
scale network security is a well-studied topic, little atten-
tion has been paid to on-chip networks. In this work, we
designed and evaluated mechanisms to protect NoCs from
two major forms of attacks, namely DoS and unauthorized
secure information extraction. Further, we demonstrated that
these mechanisms can be readily implemented with minimal
changes to existing NoC infrastructures and with negligible
performance and area overheads.

ACKNOWLEDGMENT

The authors would like to thank Doowon Lee and Professor
Valeria Bertacco for their exceptional support and guidance in
the design and evaluation of this project.

REFERENCES

[1] S. Anthony, “Intel unveils 72-core x86 knights landing cpu for exascale
supercomputing,” 2013.

[2] T. Bjerregaard and S. Mahadevan, “A survey of research and practices
of network-on-chip,” ACM Computing Surveys (CSUR), vol. 38, no. 1,
p. 1, 2006.

[3] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Öberg,
K. Tiensyrjä, and A. Hemani, “A network on chip architecture and design
methodology,” in VLSI, 2002. Proceedings. IEEE Computer Society
Annual Symposium on. IEEE, 2002, pp. 105–112.

[4] S. Evain and J.-P. Diguet, “From noc security analysis to design
solutions,” in Signal Processing Systems Design and Implementation,
2005. IEEE Workshop on. IEEE, 2005, pp. 166–171.

[5] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw,
“A highly resilient routing algorithm for fault-tolerant nocs,” in Pro-
ceedings of the Conference on Design, Automation and Test in Europe.
European Design and Automation Association, 2009, pp. 21–26.

[6] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology
for cpu based attestation and sealing,” in Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy, 2013, p. 10.

[7] ARM, “Trustzone,” http://www.arm.com/products/processors/
technologies/trustzone/, [Online; accessed 14-Dec-2015].

[8] A. G. J. Porquet and C. Schwarz, “Noc-mpu: A secure architecture for
flexible co-hosting on shared memory mpsocs.” in Design, Automation
Test in Europe Conferene Exhibition (DATE), 2011, pp. 1–4.

[9] S. Lokovic and N. Christianos, “Enhancing network-on-chip components
to support security of processing elements,” in Proceedings of the 5th
Workshop on Embedded Systems Security, WESS ’10, 2010. ACM., pp.
12:1–12:9, New Yorkm NY, USA.

[10] W. J. Dally and B. P. Towles, Principles and practices of interconnection
networks. Elsevier, 2004.

5



[11] J. Kim, N. Jiang, D. Becker, G. Michelogiannakis, J. Balfour, B. Towles,
and W. Dally, “A detailed and flexible cycle-accurate network-on-chip
simulator,” 2013.

[12] D. U. Becker, “Efficient microarchitecture for network-on-chip routers,”
Ph.D. dissertation, Stanford University, 2012.

6


