
saveCHIMP: Application-aware Testbench for Chip Multi-Processors

Arjun Khurana, Dong-hyeon Park, Timothy Wong

EECS 578 Correct Operation for Processors and Embedded Systems

Existing test generation solutions rely on random or directed
tests that blindly explore the design space, which are inefficient.

If testing is not limited to a relevant pool of scenarios, resources
spent on verifying complex systems in the future will grow without
bound.

Motivation

1Intel Haswell i7-4700K “Gemini” 3D Torus

Goals:
• Characterize the execution space of the target application.
• Generate tests that exercise the same execution space as the

target application.
• Speedup the validation process by generating tests with

significantly less overhead than original program.

Apps

Behavioral AnalysisApplication Execution Test Generation

Execution
Traces

Transaction
Data

Search Space

Region of
Interest

Testvectors

saveCHIMP (save CHIp Multi-Processor)

Test generation platform that generates tests based on the behavior
of applications that are to run on the multiprocessor system

2

saveCHIMP Overview

Memory Address
Read/Write

of ALU Instr.
Dest. Register

Instruction Trace

00: CPU0 ldr $r0 [$r1 #50]

00: CPU1 str $r3 [$r2 #a8]

1b: CPU1 add $r8 $r2 $r1

1c: CPU0 beq $r3 start

20: CPU1 ldr $r0 [$r8 #00]

24: CPU1 add $r1 $r1 $r0

2d: CPU0 str $r0 [$r2 #08]

30: CPU1 str $r8 [r0 #10] …

CPU0 CPU1

102
387

232

477
821

… …

Hash Function

Extract the frequently occurring
sequence of states (transactions)

Start Length Freq.

7 143102

13 138798 …

Test Vectors

Step (1)

Step (2)

Filter
Uncommon
Sequences

Primary Transactions

Step (3)

Convert State
Sequences to

Instruction Streams

3

A sample trace:
270 -> 370 -> 470 -> 578
270 -> 370 -> 478 -> 578
… (the rest of Window0)
312 -> 320 -> 370 -> 373 -> 427 -> 527 ->627
312 -> 101 -> 270 -> 215 -> 311 -> 427 ->627
… (the rest of Window1)

Characterization and Filtering

Instruction Trace

00: CPU0 ldr $r0 [$r1 #50]

00: CPU1 str $r3 [$r2 #a8]

1b: CPU1 add $r8 $r2 $r1

1c: CPU0 beq $r3 start

20: CPU1 ldr $r0 [$r8 #00]

24: CPU1 add $r1 $r1 $r0

2d: CPU0 str $r0 [$r2 #08]

30: CPU1 str $r8 [r0 #10] …

Window Most Common State

0 578

1 627

… …

Source Length Freq.

270 4 852

312 7 734

… … …

Filter identical
sequences

A set of reduced patterns

4

Experimental Setup

4x4 mesh network

CPU ARM, TimingSimple

Topology 4x4 Mesh

Coherency Protocol MOESI CMP Directory

L1 Instruction Cache 4-way 32 KB

L1 Data Cache 4-way 32 KB

L2 Cache 8-way 1024 KB

DRAM DDR3 1600MHz 4GB

Gem 5 Simulation Configuration

Target Application: Parsec’s Blackscholes benchmark.

Random: Randomly generated stream of memory and ALU instructions.

Step (1): Tests based only on hashing data.

Step (1) + (2): Tests from hashing and characterization, but without filtering.

Step (1) + (2) + (3): Tests from full saveCHIMP process.

5

Our Bug Model:

A specific sequence of source-destination network traffic.

Bug Injection Model

Ex) Traffic History

0 3

7 2

4 1

2 0

…

!!

BUG

Random Bug Injection
• At each iteration, we inject 10

bugs of length 3 into the gem5
simulation platform.

• Whenever gem5 detects a
sequence of traffic that matches
one of the injected bugs, it flags
that a bug has been triggered.

Goal of Our Bug Model:

To detect that two programs exercised similar sequence
of network behaviors.

6

Experimental Results – Coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sensitivity Specificity Precision Accuracy

P
e

rc
e

n
ta

ge
 R

at
e

Random Step (1) Step (1) + (2) Step (1) + (2) + (3)

(True Positive Rate) (True Negative Rate)

• Randomly generated testvectors act as the baseline to assess how well tests
generated from saveCHIMP reflects the behavior of target program.

• Impact of applying each step of the saveCHIMP solution is shown.

• Final solution achieves 93% accuracy, due to its high true negative rate.

• Sensitivity and Precision are two areas that need to be improved upon.

7

Experimental Results – Overhead

0.68
0.41

2.53

3.75

0

0.5

1

1.5

2

2.5

3

3.5

4

Random Step (1) Step (1) + (2) Step (1) + (2) + (3)

Sp
e

e
d

u
p

 o
ve

r
Ta

rg
et

 P
ro

gr
am

Bug Detection Latency Speedup

2.42

4.20

1.23

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Random Step (1) Step (1) + (2) Step (1) + (2) + (3)

o

f
In

st
rc

ti
o

n
s

In
je

ct
e

d
M

ill
io

n
s

Instruction Footprint
122.3

• Tests generated from saveCHIMP is able to detect bugs more quickly
with a smaller instruction footprint.

• Transaction characterization and filtering steps of saveCHIMP
significantly reduce the bug detection latency.

• Transaction filtering help reduce the size of the testvectors by more than
70%.

8

• Improve on sensitivity and precision of test generation process,
while maintaining accuracy.

• Incorporate network traffic behavior into state characterization

• Expand saveCHIMP to analyze and compare behaviors of
multiple applications.

• Apply saveCHIMP to heterogeneous systems.

Conclusion/Future Work

9
Snapdragon 820

good accuracy
good precision

poor accuracy
good precision

good accuracy
poor precision

