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Existing test generation solutions rely on random or directed
tests that blindly explore the design space, which are inefficient.

If testing is not limited to a relevant pool of scenarios, resources
spent on verifying complex systems in the future will grow without
bound.

Motivation
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Goals:
• Characterize the execution space of the target application.
• Generate tests that exercise the same execution space as the 

target application.
• Speedup the validation process by generating tests with 

significantly less overhead than original program.
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saveCHIMP (save CHIp Multi-Processor)

Test generation platform that generates tests based on the behavior 
of applications that are to run on the multiprocessor system
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saveCHIMP Overview

Memory Address
Read/Write

# of ALU Instr.
Dest. Register

Instruction Trace

00: CPU0 ldr $r0 [$r1 #50]

00: CPU1 str $r3 [$r2 #a8]

1b: CPU1 add $r8 $r2 $r1

1c: CPU0 beq $r3 start

20: CPU1 ldr $r0 [$r8 #00]

24: CPU1 add $r1 $r1 $r0

2d: CPU0 str $r0 [$r2 #08]

30: CPU1 str $r8 [r0 #10] …

CPU0 CPU1

102
387

232

477
821

… …

Hash Function

Extract the frequently occurring 
sequence of states (transactions)

Start Length Freq.

7 143102

13 138798 …

Test Vectors

Step (1)

Step (2)

Filter 
Uncommon 
Sequences

Primary Transactions

Step (3)

Convert State 
Sequences to 

Instruction Streams
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A sample trace: 
270 -> 370 -> 470 -> 578
270 -> 370 -> 478 -> 578
… (the rest of Window0)
312 -> 320 -> 370 -> 373 -> 427 -> 527 ->627
312 -> 101 -> 270 -> 215 -> 311 -> 427 ->627
… (the rest of Window1)

Characterization and Filtering

Instruction Trace

00: CPU0 ldr $r0 [$r1 #50]

00: CPU1 str $r3 [$r2 #a8]

1b: CPU1 add $r8 $r2 $r1

1c: CPU0 beq $r3 start

20: CPU1 ldr $r0 [$r8 #00]

24: CPU1 add $r1 $r1 $r0

2d: CPU0 str $r0 [$r2 #08]

30: CPU1 str $r8 [r0 #10] …

Window Most Common State

0 578

1 627

… …

Source Length Freq.

270 4 852

312 7 734

… … …

Filter identical 
sequences 

A set of reduced patterns
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Experimental Setup

4x4 mesh network

CPU ARM, TimingSimple

Topology 4x4 Mesh

Coherency Protocol MOESI CMP Directory

L1 Instruction Cache 4-way 32 KB

L1 Data Cache 4-way 32 KB

L2 Cache 8-way 1024 KB

DRAM DDR3 1600MHz 4GB

Gem 5 Simulation Configuration

Target Application: Parsec’s Blackscholes benchmark.

Random: Randomly generated stream of memory and ALU instructions.

Step (1): Tests based only on hashing data.

Step (1) + (2): Tests from hashing and characterization, but without filtering.

Step (1) + (2) + (3): Tests from full saveCHIMP process.
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Our Bug Model:

A specific sequence of source-destination network traffic.

Bug Injection Model

Ex) Traffic History

0 3

7 2

4 1

2 0

…

!!

BUG

Random Bug Injection
• At each iteration, we inject 10 

bugs of length 3 into the gem5 
simulation platform.

• Whenever gem5 detects a 
sequence of traffic that matches 
one of the injected bugs, it flags 
that a bug has been triggered.

Goal of Our Bug Model:

To detect that two programs exercised similar sequence 
of network behaviors.
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Experimental Results – Coverage  
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• Randomly generated testvectors act as the baseline to assess how well tests 
generated from saveCHIMP reflects the behavior of target program.

• Impact of applying each step of the saveCHIMP solution is shown.

• Final solution achieves 93% accuracy, due to its high true negative rate.

• Sensitivity and Precision are two areas that need to be improved upon.
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Experimental Results – Overhead
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Bug Detection Latency Speedup
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Instruction Footprint
122.3

• Tests generated from saveCHIMP is able to detect bugs more quickly 
with a smaller instruction footprint.

• Transaction characterization and filtering steps of saveCHIMP
significantly reduce the bug detection latency.

• Transaction filtering help reduce the size of the testvectors by more than 
70%.
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• Improve on sensitivity and precision of test generation process, 
while maintaining accuracy.

• Incorporate network traffic behavior into state characterization

• Expand saveCHIMP to analyze and compare behaviors of 
multiple applications.

• Apply saveCHIMP to heterogeneous systems.

Conclusion/Future Work
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