
saveCHIMP: Application-aware Testbench

for Chip Multi-Processors

Arjun Khurana, Dong-hyeon Park, Timothy Wong

EECS 578

University of Michigan

Ann Arbor, MI

khuranaa@umich.edu, dohypark@umich.edu, tphwong@umich.edu

Abstract—As computing platforms become more complex,

the amount of time and effort spent on verification is

increasing at a staggering rate. Despite advanced

verification and validation techniques that emerged in

recent years, design bugs still manage to escape into tape-

out. Thus, there is heavy demand for fast, efficient validation

of complex network-on-chip platforms. However, existing

test generation techniques rely on random or directed test

generation that blindly explore the design space, which is

inefficient. To remedy this issue, we developed saveCHIMP,

an application-aware testbench that target chip multi-

processor platforms. Our technique seek to generate quick

and efficient testvectors by incorporating information about

the applications that are to be run on the system. The

testvectors generated by saveCHIMP help improve the

quality of the validation process by focusing on exercising

the behaviors that are most important to the system when it

is deployed on the field. Overall, saveCHIMP was able to

provide tests that matched the target application quite

closely, while keeping the test small and efficient.

Keywords—chip-multi-processors, verification, test generation,

characterization, testvectors

I. INTRODUCTION

Modern semiconductor systems are increasing in complexity at

an unfathomable rate. In the past few decades, commercial

processors went from single cores to chip-multiprocessors, and

even network-on-chips. Intel and IBM have worked on

developing processors with as many as 80 cores, and the number

of cores that are expected to be packed into a single die of silicon

is increasing every year. Along with the electrical challenges

that come with aggressive transistor scaling, the complexity of

these systems are increasing at an alarming rate, making

verification of these chips more and more difficult.

Despite various state-of-the-art verification techniques that

emerged in recent years, such as hardware emulation and formal

verification techniques, it is impossible to eliminate all design

bugs before fabrication. With the shrinking time to market, it is

of the greatest importance to implement efficient and

accelerated tests. Reducing errors as early as possible will

reduce the cost of fixing them later. For example, Intel dealt with

many repercussions because of transactional synchronization

issues in the Haswell processor. When facing tight schedules

and aggressive time-to-market, companies need to make a

compromise on their verification plans by limiting their testing

scope to focus on the areas of the system that are most likely to

be exercised by the user. Unfortunately, existing test generation

methods do not take into account the software side of the system,

as most techniques focus on test generation based on hardware

specification.

There is a need to find a way to limit the amount of testing to

cases that are actually relevant to everyday operation. Designers

can take advantage of common interactions that occur over chip

multiprocessors. Therefore, we propose saveCHIMP, an

application-aware testbench that target chip multi-processor

platforms. The saveCHIMP testbench analyze the target

application by extracting common patterns and transactions that

are observed in the multithreaded program. Once saveCHIMP

analyze the traces, and identifies the key behaviors that are

present in the program, saveCHIMP generate testvectors that

correspond to those hot patterns of the code. Using these

characterizations, our team was able to develop concise,

randomized tests that cover the common instances, which

drastically reduced the number of instructions executed with

similar results to the original programs.

II. RELATED WORKS

Developing more concise and superior techniques for

verification of chip multiprocessor systems has been a major

focus in both industry and academia. Genesys-Pro [1] is IBM’s

random test program generator currently used for functional

verification. Rambo et.al. [2] generates random instruction tests

to specifically address memory consistency. Inferno [3]

specifically looks at characterizing correct design behavior via

traces. As of now, these tests and ideas are still not efficient

enough, and are a platform to build upon.

mailto:khuranaa@umich.edu
mailto:dohypark@umich.edu
mailto:tphwong@umich.edu

Figure 1: Pipeline of saveCHIMP technique. Step(1): Convert instruction trace into state sequences. Step(2): Breakdown state sequences into

transactions. Step(3): Identify the primary transactions. Generate test vectors based on the transactions.

III. METHODOLOGY

A. Overview

The overall execution flow of saveCHIMP is as illustrated in

Figure 2. The target application is first executed on a system

simulator to generate the instruction traces for the particular

application. The generated trace is then sent to the saveCHIMP

platform to be modeled into sequences of state transitions that

characterize the system behavior that were observed from the

application. Next, those state sequences are broken down into

subsequences, or “transactions”, for identifying key set of

behaviors that were observed in the program. Once all the

observed transactions are extracted, saveCHIMP filters out any

overlapping or non-significant transactions, to create a set of

most important behaviors that we want to focus on. Lastly, these

key transactions are used to generate test vectors that focus

primarily on re-creating these key behaviors. The primary goal

of saveCHIMP is to make sure the tests generated are a

comparable and efficient representation of the application that

was analyzed, and not necessary being able to detect more bugs

than the original application. In fact, for our current

implementation of saveCHIMP, we try to make sure that the

synthesized tests will not only detect the same bugs detected by

the original application, but also not trigger bugs that were not

detected by the original application.

Figure 2: saveCHIMP architecture overview

The detailed procedures of saveCHIMP technique is illustrated

in Error! Reference source not found.. In Step (1), the

instruction traces are converted into states, then passed through

a hash function for simplification. In Step (2), the state

sequences are broken down into transactions, which are the

subsequences, and the frequency of each transaction is

recorded. In Step (3), the transactions are filtered out to identify

the most important set of transactions that represent the key

behaviors of the application. Lastly, the test vectors are

generated based on these filtered transactions. The saveCHIMP

testbench was developed in C++, and works on traces generated

from gem5 simulation.

B. Step (1): State generation

Given a trace of instructions executed by each core of the

system, saveCHIMP converts the trace to a stream of states for

each core. A state is defined as a read or write memory

instruction and the number of ALU instructions that were

executed in between the memory operations. Each state consists

of: the type of memory operation, the memory address, the data

read or written, the primary register address, and the number of

ALU instructions that were executed prior to the memory

operation.

For efficient indexing of the states and modeling of the

execution space of an application, we constructed a custom

hash function to convert the state into a single value. Our

function simply maps each bits of the value to correspond to

each component of the state as shown below:

𝐼𝑑𝑥 = [𝑀𝑒𝑚𝑇𝑦𝑝𝑒]9[𝐴𝐿𝑈𝐶𝑁𝑇]8:7[𝐴𝐷𝐷𝑅]6:2[𝑅𝐸𝐺]1:0

The hashing allow for quick referencing of the states and

simplify our analysis in subsequent steps. We focus our analysis

on the memory instructions, and abstract away the ALU

operations since majority of bugs in multiprocessors occur due

to the different interleaving of memory operations between

cores.

C. Step (2): Identification of characteristic behaviors

In Step (2) the state sequences from Step (1) are broken down

into subsequences that we define as transactions. First, state

sequences of the entire applications are partitioned into windows

of fixed length. This allows our characterization to focus on

fixed size states and allow local behaviors to be identified more

easily. The most frequently occurring state of each program

window are chosen as the boundary states of the transactions. As

we go through the state sequence of each window, we separate

the sequences anytime the boundary state is observed. To

simplify the behavioral model, we only focused on recording the

initial state of the transaction, and length of that transaction.

Thus, any two transaction that had the same initial state and

same length are considered identical transactions. This

abstraction allows our model to focus only on the high-level

behaviors, and abstract away extraneous paths of a transaction.

Every time a new state transition occurs, it is put into the

corresponding transaction table, and a counter for that transition

is incremented. Subsequent occurrences of the same transition

within the same CPU were not put into the table. This will result

in a set of unique state transitions, each paired with its number

of occurrences. Hence the characteristic patterns were identified

(Figure 3Error! Reference source not found.).

Figure 3: Detailed saveCHIMP technique (Step 3)

It is important to note that the transaction tables established in

Step (2) only contained unique state transactions. Subsequent

occurrences of the same transactions on the same core were not

put in the table. This allowed a minimal set of transactions to be

created, without incurring redundancy. We argue that this

method would not leave out important state transitions by

omitting repeated states, because all transition patterns would at

least contain the transition between two states as an atomic unit,

so if we could accommodate all the unique states in a set, we had

essentially taken into account all the possible transactions on a

core.

D. Step (3): Filtering of transactions

In each window of operations within a given CPU, the most

common state is determined from the frequency of its

occurrence. The source states and lengths of the transitions to

the most common state were recorded as separate entries within

the same window. Identical patterns in subsequent windows

were omitted, hence saving resources used in generating tests on

patterns that were already covered in some previous window.

Depending on the test plan and extent of testing, the user could

specify a fraction of the total number of transitions to test on.

This approach helped the test generation method become more

streamlined, while giving the user a certain degree of flexibility

to decide to what extent the verification was carried out. This

method resulted in a reduced set of operations on which tests

were generated.

E. Generating tests from the transactions

The test generation process is illustrated in Figure 4. Because

the transactions only contain the initial state and the length, we

need to convert the transactions back into state sequences. This

is done by using state transition table of the application. This is

a table that lists the most likely common state transition from

one state to another, based on the state sequence of the

application. From the state transition table, we can derive the

most likely state sequence of a transaction, given the initial state

and the length. Once the transaction is converted into state

sequences, each individual states are now used to generate

assembly instructions. First, the ALU count of the state is used

to generate the corresponding number ALU instructions, with

randomly chosen source and destination registers. Then, the

memory operation is generated to match the type, address and

source or destination register of the state. In order to ensure that

the address references a data region safe for user access while

maintaining the data consistencies, we pass the memory address

to a built-in hash function of C++.

Figure 4: Test Generation Flow: Transaction is converted to state

sequence, then the individual states in the sequence is converted into

assembly instructions.

IV. EXPERIMENTAL SETUP

A. Gem5 Simulation

To analyze the effectiveness of saveCHIMP framework, we

applied the technique on a 4x4 mesh network in gem5. The

system consists of 16 ARM cores with directory-based MOESI

cache coherency. The network interconnect was simulated by

the Garnet network simulator, using dimension order routing on

a fixed 5-stage virtual channel router. The detailed specification

of the system are listed in Table 1. The streams of ARM

assembly instructions that were generated by saveCHIMP were

injected to each core of the system by having each thread of the

testbench program call the assembly function that corresponds

to its core ID.

CPU ARM, TimingSimple

Topology 4x4 Mesh

Coherency Protocol MOESI CMP Directory

L1 Instruction Cache 4-way 32 KB

L1 Data Cache 4-way 32 KB

L2 Cache 8-way 1024 KB

DRAM DDR3 1600MHz 4GB

Routing Function XY-routing

Router Pipeline Fixed 5-stage

Table 1: Gem5 Simulation System Configuration

B. Testvectors

The baseline program used in our analysis was PARSEC

benchmark’s Blackscholes application. The original

application was executed in a normal gem5 system to collect

the instruction traces for saveCHIMP. The application was also

executed on a buggy system, and it recorded the bugs that were

triggered by the application, along with the simulation time for

when the bug was exercised. This bug data was then compared

with the bug data collected from executing each of the

following four testvectors:

 Random: randomly generated streams of instructions

 Step (1): tests generated from hashing step.

 Step (1) + (2): tests generated from hashing and

characterization steps.

 Step (1) + (2) + (3): tests generated from full saveCHIMP

procedure.

The “Random” test serve as the baseline in assessing how

effective saveCHIMP is in comparison to the traditional

technique of random test generation.

Bug Injection

C.

We quantified the performance of our solution through

injection of network traffic bugs into the system. In our bug

model, we trigger that a bug has been detected if the network

interconnect of gem5 observes a certain sequence of traffic

being injected into the network (Figure 5: Bug Injection

Example – Flags a bug when gem5 detects a specific sequence

of states. We focus on bugs in the high-level network behavior,

because those are the type of bugs that are most difficult to

target in validating multi-core systems. In our analysis, injected

10 randomly generated bugs of length three, so that the system

will trigger a bug whenever it observes one of the ten sequence

of source-destination traffic. Because the goal of saveCHIMP

is to be able to recreate the behavior of the target program, the

evaluation focused on how closely the detected and undetected

bugs from the synthesized tests matched those of the baseline

program.

Figure 5: Bug Injection Example – Flags a bug when gem5 detects a

specific sequence of states

V. RESULTS

A. Evaluation Metrics

We used the following four statistics to analyze how closely a

testvector match the behavior of the baseline application:

 Sensitivity:
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 Specificity:
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 Precision:
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 Accuracy:
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

The sensitivity is the true positive rate, which quantifies the

likelihood of the bug detected by the test program to have also

manifested in the baseline application. The specificity is the

true negative rate, which measures the likelihood of a bug that

was not detected by the test program to have not been triggered

by the original program. The precision is the proportion of the

bugs that was triggered by the original program that gets

identified by the synthetic test. The accuracy is how closely the

result of the testvector matches the result from the original

application, in both bugs triggered and bugs not triggered.

B. Modeling Results

The sensitivity, specificity, precision, and accuracy of the four

different synthetic test generation methods are shown in Figure

1.Figure 6. The test generated from Step (1) that only applied

the state generation through hashing had the best sensitivity

with 52%, thanks to its large code size detecting a large number

of bugs. However, it had lot of false positives which caused

other metrics to be low. Each additional step of saveCHIMP

was able to improve the accuracy of mirroring the original

application and performed better than the randomly generated

tests, but at the cost of sensitivity. While the tests were able to

fit the behavior of the baseline program, at the cost of narrowing

down the scope of its models. The data shows that the

transaction characterization and filtering steps were effective in

simplifying the program behavior to few key features, but may

have truncated the application too much.

Figure 6: Modeling Results for each Technique. The tests generated

at Step (1) has the best sensitivity, but suffers from high false positive

rate, which cause the accuracy to be low. While the final testvector of

saveCHIMP have low sensitivity, it manages to maintain high true

negative rate which contributes to its high accuracy.

C. Overhead Results

The speedup of the bug detection latency from the original

application to each of the synthesized tests is shown in 7.Figure

7. The hashing step of saveCHIMP greatly increased the

detection latency, but each subsequent steps of saveCHIMP

succeeds in achieving the main goals of the characterization and

filtering by significantly reducing the latency. We observe a

similar trend in the instruction footprint of each technique, as

shown in Figure 8.Figure 8. The hashing step dramatically

increases the instruction size as expected, but saveCHIMP

manages to reduce the size of the testvectors through the

characterization and filtering procedures. Overall, the speedup

and instruction footprint results show that saveCHIMP is quite

efficient in modeling the original application behavior, and

performs better than random test generation.

Figure 7: Speedup of Bug Detection Latency for each Technique.

The tests from Step (1) has the largest bug detection latency, and

performs worse than the original. The final test vector of saveCHIMP

is significantly faster at detecting bugs.

Figure 8: Instruction Footprint of Each Technique. The instruction

footprint for Step (1) is the largest with 122.3 million instructions

(outside the bound of Y-axis). The final testvector of saveCHIMP

manage to reduce the instruction size significantly.

D. Impact of increasing the Filtering Window

The impact of varying the filtering window in Step (3) was

explored by comparing the results of changing the threshold

from 10% of the window size to 80%, with an increment of

10%. We observed that while there were some minor deviations

in instruction footprint generated by the testbench, there were

no measurable difference in the performance of the testvectors

at different filtering levels. This may be due to the transactions

beyond 10% not having significant activity to be triggered by

our bug models.

VI. LIMITATIONS

While the results obtained from saveCHIMP showed promising

results for a proof-of-concept prototype, there are several

limitations to the current algorithm and the experimental

evaluation that needs to be address.

First, the implementation does not take advantage of the

potential of the hashing algorithm in mapping the states to a

bounded search space. The current technique merely treats the

hashed values as simple indices for looking up the state from

the table. However, the hashing function could be used more

effectively by identifying similarities between states at a high

level, if the function manages to maintain some locality of its

content. This is retained by the bit-partitioning nature of the

current function, but the function could be developed further for

better mapping of the states to the search space.

The processes of converting the state sequences to transactions,

and then from transactions to state sequences discarded many

details of the state transition that may have been crucial to the

behavior of the program. In addition, because there was no way

of maintaining ordering across the cores within the generated

assembly files, the instructions most likely would not have been

executed in the order that was originally intended. For more

accurate assessment of the generated tests, it will be highly

desirable to have a better testing platform where we can control

the flow of the assembly instructions that gets fetched by the

core.

VII. FUTURE WORKS

There are several improvement that can be made to the current

implementation of saveCHIMP. First, the transaction

characterization and filtering algorithms should be enhanced so

they can retain the sensitivity level that is observed at the

hashing stage of the algorithm. This could be done through fine

tuning the filtering parameters, more complex algorithm for

extracting transactions, or incorporating larger pool of

applications. Second, saveCHIMP could be extended to

incorporate multiple application data, so that it will be able to

identify overlapping behaviors and testvectors that can cover

the space exercised by multiple programs. Third, the current

techniques of saveCHIMP only take into account instruction

stream of the program. We can incorporate network traces into

the extraction and characterization of the behaviors, so memory

dependencies can be better modeled by the platform. Lastly, we

can incorporate saveCHIMP to a heterogeneous system to

further expand the outreach of our solution.

VIII. CONCLUSION

With the advent of Network-on-Chips and System-on-Chips,

the complex computing platforms are growing both in demand

and complexity. It is important for companies to release these

highly complex products in a timely manner to be competitive

on the market, but it is also crucial to ensure that correctness of

the design is not compromised. We propose saveCHIMP, a test

generation technique that characterizes relevant behavior of a

system based on its applications, and generates testvectors that

target those behaviors.

The saveCHIMP technique identifies the characteristic

execution patterns, focusing on memory operations in

particular. The framework takes in instruction traces, extracts

the dominant transactions from the traces, and generates a

condensed testvector based on those key transactions.

We show that the tests generated by saveCHIMP had

significantly less bug detection latency and code footprint

compared to traditional randomly generated testvectors. The

technique was reasonably effective in efficiently recreating the

behaviors of the target system. Some future improvements on

saveCHIMP would be to increase sensitivity and precision,

incorporate a wider variety of applications, include network

traffic in the behavior characterization, and further generalize

the technique to accommodate heterogeneous systems.

REFERENCES

[1] Adir, Allon, et al. "Genesys-pro: Innovations in test program generation
for functional processor verification." Design & Test of Computers, IEEE
21.2 (2004): 84-93.

[2] E. Rambo, O. Henschel, and L. dos Santos, “Automatic generation of
memory consistency tests for chip multiprocessing,” in Proc. ICECS,
2011.

[3] DeOrio, Andrew, et al. "Inferno: streamlining verification with inferred
semantics." Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on 28.5 (2009): 728-741.

[4] Foster, Harry D. "Trends in functional verification: a 2014 industry
study."Design Automation Conference (DAC), 2015 52nd
ACM/EDAC/IEEE. IEEE, 2015.

[5] Reinders, James. Kinghts Corner: Your Path to Knights Landing [PDF
document]. Retrieved from Intel Corporation Website:
https://software.intel.com/sites/default/files/managed/e9/b5/Knights-
Corner-is-your-path-to-Knights-Landing.pdf

[6] Binkert, Nathan, et al. "The gem5 simulator." ACM SIGARCH Computer
Architecture News 39.2 (2011): 1-7.

[7] Bienia, Christian, and Kai Li. Benchmarking modern multiprocessors.
USA: Princeton University, 2011.

https://software.intel.com/sites/default/files/managed/e9/b5/Knights-Corner-is-your-path-to-Knights-Landing.pdf
https://software.intel.com/sites/default/files/managed/e9/b5/Knights-Corner-is-your-path-to-Knights-Landing.pdf

