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Abstract—As computing platforms become more complex, 

the amount of time and effort spent on verification is 

increasing at a staggering rate. Despite advanced 

verification and validation techniques that emerged in 

recent years, design bugs still manage to escape into tape-

out. Thus, there is heavy demand for fast, efficient validation 

of complex network-on-chip platforms. However, existing 

test generation techniques rely on random or directed test 

generation that blindly explore the design space, which is 

inefficient. To remedy this issue, we developed saveCHIMP, 

an application-aware testbench that target chip multi-

processor platforms. Our technique seek to generate quick 

and efficient testvectors by incorporating information about 

the applications that are to be run on the system. The 

testvectors generated by saveCHIMP help improve the 

quality of the validation process by focusing on exercising 

the behaviors that are most important to the system when it 

is deployed on the field. Overall, saveCHIMP was able to 

provide tests that matched the target application quite 

closely, while keeping the test small and efficient. 
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I. INTRODUCTION 

Modern semiconductor systems are increasing in complexity at 

an unfathomable rate. In the past few decades, commercial 

processors went from single cores to chip-multiprocessors, and 

even network-on-chips. Intel and IBM have worked on 

developing processors with as many as 80 cores, and the number 

of cores that are expected to be packed into a single die of silicon 

is increasing every year. Along with the electrical challenges 

that come with aggressive transistor scaling, the complexity of 

these systems are increasing at an alarming rate, making 

verification of these chips more and more difficult. 

 

Despite various state-of-the-art verification techniques that 

emerged in recent years, such as hardware emulation and formal 

verification techniques, it is impossible to eliminate all design 

bugs before fabrication. With the shrinking time to market, it is 

of the greatest importance to implement efficient and 

accelerated tests. Reducing errors as early as possible will 

reduce the cost of fixing them later. For example, Intel dealt with 

many repercussions because of transactional synchronization 

issues in the Haswell processor. When facing tight schedules 

and aggressive time-to-market, companies need to make a 

compromise on their verification plans by limiting their testing 

scope to focus on the areas of the system that are most likely to 

be exercised by the user. Unfortunately, existing test generation 

methods do not take into account the software side of the system, 

as most techniques focus on test generation based on hardware 

specification. 

 

There is a need to find a way to limit the amount of testing to 

cases that are actually relevant to everyday operation. Designers 

can take advantage of common interactions that occur over chip 

multiprocessors. Therefore, we propose saveCHIMP, an 

application-aware testbench that target chip multi-processor 

platforms. The saveCHIMP testbench analyze the target 

application by extracting common patterns and transactions that 

are observed in the multithreaded program. Once saveCHIMP 

analyze the traces, and identifies the key behaviors that are 

present in the program, saveCHIMP generate testvectors that 

correspond to those hot patterns of the code. Using these 

characterizations, our team was able to develop concise, 

randomized tests that cover the common instances, which 

drastically reduced the number of instructions executed with 

similar results to the original programs. 

II. RELATED WORKS 

Developing more concise and superior techniques for 

verification of chip multiprocessor systems has been a major 

focus in both industry and academia. Genesys-Pro [1] is IBM’s 

random test program generator currently used for functional 

verification. Rambo et.al. [2] generates random instruction tests 

to specifically address memory consistency. Inferno [3] 

specifically looks at characterizing correct design behavior via 

traces. As of now, these tests and ideas are still not efficient 

enough, and are a platform to build upon. 
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Figure 1: Pipeline of saveCHIMP technique. Step(1): Convert instruction trace into state sequences. Step(2): Breakdown state sequences into 

transactions. Step(3): Identify the primary transactions. Generate test vectors based on the transactions. 

III. METHODOLOGY 

A. Overview 

The overall execution flow of saveCHIMP is as illustrated in 

Figure 2. The target application is first executed on a system 

simulator to generate the instruction traces for the particular 

application. The generated trace is then sent to the saveCHIMP 

platform to be modeled into sequences of state transitions that 

characterize the system behavior that were observed from the 

application. Next, those state sequences are broken down into 

subsequences, or “transactions”, for identifying key set of 

behaviors that were observed in the program. Once all the 

observed transactions are extracted, saveCHIMP filters out any 

overlapping or non-significant transactions, to create a set of 

most important behaviors that we want to focus on. Lastly, these 

key transactions are used to generate test vectors that focus 

primarily on re-creating these key behaviors. The primary goal 

of saveCHIMP is to make sure the tests generated are a 

comparable and efficient representation of the application that 

was analyzed, and not necessary being able to detect more bugs 

than the original application. In fact, for our current 

implementation of saveCHIMP, we try to make sure that the 

synthesized tests will not only detect the same bugs detected by 

the original application, but also not trigger bugs that were not 

detected by the original application. 

 
Figure 2: saveCHIMP architecture overview 

The detailed procedures of saveCHIMP technique is illustrated 

in Error! Reference source not found.. In Step (1), the 

instruction traces are converted into states, then passed through 

a hash function for simplification. In Step (2), the state 

sequences are broken down into transactions, which are the 

subsequences, and the frequency of each transaction is 

recorded. In Step (3), the transactions are filtered out to identify 

the most important set of transactions that represent the key 

behaviors of the application. Lastly, the test vectors are 

generated based on these filtered transactions. The saveCHIMP 

testbench was developed in C++, and works on traces generated 

from gem5 simulation. 

B. Step (1): State generation 

Given a trace of instructions executed by each core of the 

system, saveCHIMP converts the trace to a stream of states for 

each core. A state is defined as a read or write memory 

instruction and the number of ALU instructions that were 

executed in between the memory operations. Each state consists 

of: the type of memory operation, the memory address, the data 

read or written, the primary register address, and the number of 

ALU instructions that were executed prior to the memory 

operation.  

For efficient indexing of the states and modeling of the 

execution space of an application, we constructed a custom 

hash function to convert the state into a single value. Our 

function simply maps each bits of the value to correspond to 

each component of the state as shown below: 

𝐼𝑑𝑥 = [𝑀𝑒𝑚𝑇𝑦𝑝𝑒]9[𝐴𝐿𝑈𝐶𝑁𝑇]8:7[𝐴𝐷𝐷𝑅]6:2[𝑅𝐸𝐺]1:0 

The hashing allow for quick referencing of the states and 

simplify our analysis in subsequent steps. We focus our analysis 

on the memory instructions, and abstract away the ALU 

operations since majority of bugs in multiprocessors occur due 

to the different interleaving of memory operations between 

cores. 

C. Step (2): Identification of characteristic behaviors 

In Step (2) the state sequences from Step (1) are broken down 

into subsequences that we define as transactions. First, state 

sequences of the entire applications are partitioned into windows 



of fixed length. This allows our characterization to focus on 

fixed size states and allow local behaviors to be identified more 

easily. The most frequently occurring state of each program 

window are chosen as the boundary states of the transactions. As 

we go through the state sequence of each window, we separate 

the sequences anytime the boundary state is observed. To 

simplify the behavioral model, we only focused on recording the 

initial state of the transaction, and length of that transaction. 

Thus, any two transaction that had the same initial state and 

same length are considered identical transactions. This 

abstraction allows our model to focus only on the high-level 

behaviors, and abstract away extraneous paths of a transaction. 

Every time a new state transition occurs, it is put into the 

corresponding transaction table, and a counter for that transition 

is incremented. Subsequent occurrences of the same transition 

within the same CPU were not put into the table. This will result 

in a set of unique state transitions, each paired with its number 

of occurrences. Hence the characteristic patterns were identified 

(Figure 3Error! Reference source not found.). 

 

 
Figure 3: Detailed saveCHIMP technique (Step 3)  

It is important to note that the transaction tables established in 

Step (2) only contained unique state transactions. Subsequent 

occurrences of the same transactions on the same core were not 

put in the table. This allowed a minimal set of transactions to be 

created, without incurring redundancy. We argue that this 

method would not leave out important state transitions by 

omitting repeated states, because all transition patterns would at 

least contain the transition between two states as an atomic unit, 

so if we could accommodate all the unique states in a set, we had 

essentially taken into account all the possible transactions on a 

core. 

D. Step (3): Filtering of transactions 

In each window of operations within a given CPU, the most 

common state is determined from the frequency of its 

occurrence. The source states and lengths of the transitions to 

the most common state were recorded as separate entries within 

the same window. Identical patterns in subsequent windows 

were omitted, hence saving resources used in generating tests on 

patterns that were already covered in some previous window. 

Depending on the test plan and extent of testing, the user could 

specify a fraction of the total number of transitions to test on. 

This approach helped the test generation method become more 

streamlined, while giving the user a certain degree of flexibility 

to decide to what extent the verification was carried out. This 

method resulted in a reduced set of operations on which tests 

were generated.  

E. Generating tests from the transactions 

The test generation process is illustrated in Figure 4. Because 

the transactions only contain the initial state and the length, we 

need to convert the transactions back into state sequences. This 

is done by using state transition table of the application. This is 

a table that lists the most likely common state transition from 

one state to another, based on the state sequence of the 

application. From the state transition table, we can derive the 

most likely state sequence of a transaction, given the initial state 

and the length. Once the transaction is converted into state 

sequences, each individual states are now used to generate 

assembly instructions. First, the ALU count of the state is used 

to generate the corresponding number ALU instructions, with 

randomly chosen source and destination registers. Then, the 

memory operation is generated to match the type, address and 

source or destination register of the state. In order to ensure that 

the address references a data region safe for user access while 

maintaining the data consistencies, we pass the memory address 

to a built-in hash function of C++.  

 
Figure 4: Test Generation Flow: Transaction is converted to state 

sequence, then the individual states in the sequence is converted into 

assembly instructions. 



IV. EXPERIMENTAL SETUP 

A. Gem5 Simulation 

To analyze the effectiveness of saveCHIMP framework, we 

applied the technique on a 4x4 mesh network in gem5. The 

system consists of 16 ARM cores with directory-based MOESI 

cache coherency. The network interconnect was simulated by 

the Garnet network simulator, using dimension order routing on 

a fixed 5-stage virtual channel router. The detailed specification 

of the system are listed in Table 1. The streams of ARM 

assembly instructions that were generated by saveCHIMP were 

injected to each core of the system by having each thread of the 

testbench program call the assembly function that corresponds 

to its core ID. 

CPU ARM, TimingSimple 

Topology 4x4 Mesh 

Coherency Protocol MOESI CMP Directory 

L1 Instruction Cache 4-way 32 KB 

L1 Data Cache 4-way 32 KB 

L2 Cache 8-way 1024 KB 

DRAM DDR3 1600MHz 4GB 

Routing Function XY-routing 

Router Pipeline Fixed 5-stage 

Table 1: Gem5 Simulation System Configuration 

B. Testvectors 

The baseline program used in our analysis was PARSEC 

benchmark’s Blackscholes application. The original 

application was executed in a normal gem5 system to collect 

the instruction traces for saveCHIMP. The application was also 

executed on a buggy system, and it recorded the bugs that were 

triggered by the application, along with the simulation time for 

when the bug was exercised. This bug data was then compared 

with the bug data collected from executing each of the 

following four testvectors: 

 Random: randomly generated streams of instructions 

 Step (1): tests generated from hashing step. 

 Step (1) + (2): tests generated from hashing and 

characterization steps. 

 Step (1) + (2) + (3): tests generated from full saveCHIMP 

procedure. 

The “Random” test serve as the baseline in assessing how 

effective saveCHIMP is in comparison to the traditional 

technique of random test generation. 

Bug Injection 

 

C.  

We quantified the performance of our solution through 

injection of network traffic bugs into the system. In our bug 

model, we trigger that a bug has been detected if the network 

interconnect of gem5 observes a certain sequence of traffic 

being injected into the network (Figure 5: Bug Injection 

Example – Flags a bug when gem5 detects a specific sequence 

of states. We focus on bugs in the high-level network behavior, 

because those are the type of bugs that are most difficult to 

target in validating multi-core systems. In our analysis, injected 

10 randomly generated bugs of length three, so that the system 

will trigger a bug whenever it observes one of the ten sequence 

of source-destination traffic. Because the goal of saveCHIMP 

is to be able to recreate the behavior of the target program, the 

evaluation focused on how closely the detected and undetected 

bugs from the synthesized tests matched those of the baseline 

program. 

 

 
Figure 5: Bug Injection Example – Flags a bug when gem5 detects a 

specific sequence of states 

V. RESULTS 

A. Evaluation Metrics 

We used the following four statistics to analyze how closely a 

testvector match the behavior of the baseline application: 

 Sensitivity: 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 Specificity: 
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 Precision: 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 Accuracy: 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 

The sensitivity is the true positive rate, which quantifies the 

likelihood of the bug detected by the test program to have also 

manifested in the baseline application. The specificity is the 

true negative rate, which measures the likelihood of a bug that 

was not detected by the test program to have not been triggered 

by the original program. The precision is the proportion of the 

bugs that was triggered by the original program that gets 

identified by the synthetic test. The accuracy is how closely the 

result of the testvector matches the result from the original 

application, in both bugs triggered and bugs not triggered. 

B. Modeling Results 

The sensitivity, specificity, precision, and accuracy of the four 

different synthetic test generation methods are shown in Figure 

1.Figure 6. The test generated from Step (1) that only applied 

the state generation through hashing had the best sensitivity 

with 52%, thanks to its large code size detecting a large number 

of bugs. However, it had lot of false positives which caused 

other metrics to be low. Each additional step of saveCHIMP 

was able to improve the accuracy of mirroring the original 

application and performed better than the randomly generated 

tests, but at the cost of sensitivity. While the tests were able to 



fit the behavior of the baseline program, at the cost of narrowing 

down the scope of its models. The data shows that the 

transaction characterization and filtering steps were effective in 

simplifying the program behavior to few key features, but may 

have truncated the application too much. 

 

 
Figure 6: Modeling Results for each Technique. The tests generated 

at Step (1) has the best sensitivity, but suffers from high false positive 

rate, which cause the accuracy to be low. While the final testvector of 

saveCHIMP have low sensitivity, it manages to maintain high true 

negative rate which contributes to its high accuracy. 

C. Overhead Results 

The speedup of the bug detection latency from the original 

application to each of the synthesized tests is shown in 7.Figure 

7. The hashing step of saveCHIMP greatly increased the 

detection latency, but each subsequent steps of saveCHIMP 

succeeds in achieving the main goals of the characterization and 

filtering by significantly reducing the latency. We observe a 

similar trend in the instruction footprint of each technique, as 

shown in Figure 8.Figure 8. The hashing step dramatically 

increases the instruction size as expected, but saveCHIMP 

manages to reduce the size of the testvectors through the 

characterization and filtering procedures. Overall, the speedup 

and instruction footprint results show that saveCHIMP is quite 

efficient in modeling the original application behavior, and 

performs better than random test generation. 

 

 
Figure 7: Speedup of Bug Detection Latency for each Technique. 

The tests from Step (1) has the largest bug detection latency, and 

performs worse than the original. The final test vector of saveCHIMP 

is significantly faster at detecting bugs. 

 

 
Figure 8: Instruction Footprint of Each Technique. The instruction 

footprint for Step (1) is the largest with 122.3 million instructions 

(outside the bound of Y-axis). The final testvector of saveCHIMP 

manage to reduce the instruction size significantly. 

D. Impact of increasing the Filtering Window 

The impact of varying the filtering window in Step (3) was 

explored by comparing the results of changing the threshold 

from 10% of the window size to 80%, with an increment of 

10%. We observed that while there were some minor deviations 

in instruction footprint generated by the testbench, there were 

no measurable difference in the performance of the testvectors 

at different filtering levels. This may be due to the transactions 

beyond 10% not having significant activity to be triggered by 

our bug models. 

VI. LIMITATIONS 

While the results obtained from saveCHIMP showed promising 

results for a proof-of-concept prototype, there are several 

limitations to the current algorithm and the experimental 

evaluation that needs to be address.  

 

First, the implementation does not take advantage of the 

potential of the hashing algorithm in mapping the states to a 

bounded search space. The current technique merely treats the 

hashed values as simple indices for looking up the state from 

the table. However, the hashing function could be used more 

effectively by identifying similarities between states at a high 

level, if the function manages to maintain some locality of its 

content. This is retained by the bit-partitioning nature of the 

current function, but the function could be developed further for 

better mapping of the states to the search space.  

 

The processes of converting the state sequences to transactions, 

and then from transactions to state sequences discarded many 

details of the state transition that may have been crucial to the 

behavior of the program. In addition, because there was no way 

of maintaining ordering across the cores within the generated 

assembly files, the instructions most likely would not have been 

executed in the order that was originally intended. For more 

accurate assessment of the generated tests, it will be highly 



desirable to have a better testing platform where we can control 

the flow of the assembly instructions that gets fetched by the 

core.  

VII. FUTURE WORKS 

There are several improvement that can be made to the current 

implementation of saveCHIMP. First, the transaction 

characterization and filtering algorithms should be enhanced so 

they can retain the sensitivity level that is observed at the 

hashing stage of the algorithm. This could be done through fine 

tuning the filtering parameters, more complex algorithm for 

extracting transactions, or incorporating larger pool of 

applications. Second, saveCHIMP could be extended to 

incorporate multiple application data, so that it will be able to 

identify overlapping behaviors and testvectors that can cover 

the space exercised by multiple programs. Third, the current 

techniques of saveCHIMP only take into account instruction 

stream of the program. We can incorporate network traces into 

the extraction and characterization of the behaviors, so memory 

dependencies can be better modeled by the platform. Lastly, we 

can incorporate saveCHIMP to a heterogeneous system to 

further expand the outreach of our solution. 

 

VIII. CONCLUSION 

With the advent of Network-on-Chips and System-on-Chips, 

the complex computing platforms are growing both in demand 

and complexity. It is important for companies to release these 

highly complex products in a timely manner to be competitive 

on the market, but it is also crucial to ensure that correctness of 

the design is not compromised. We propose saveCHIMP, a test 

generation technique that characterizes relevant behavior of a 

system based on its applications, and generates testvectors that 

target those behaviors. 

 

The saveCHIMP technique identifies the characteristic 

execution patterns, focusing on memory operations in 

particular. The framework takes in instruction traces, extracts 

the dominant transactions from the traces, and generates a 

condensed testvector based on those key transactions.  

 

We show that the tests generated by saveCHIMP had 

significantly less bug detection latency and code footprint 

compared to traditional randomly generated testvectors. The 

technique was reasonably effective in efficiently recreating the 

behaviors of the target system. Some future improvements on 

saveCHIMP would be to increase sensitivity and precision, 

incorporate a wider variety of applications, include network 

traffic in the behavior characterization, and further generalize 

the technique to accommodate heterogeneous systems. 
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