
Hardware Implementation of Secure Communication in 

a Bus-Based Multi-Core System Using Tiny Encryption 

Algorithm 

 

Team Dja Dja 

 

Proposed Solution to Unsecure inter-core communication: 
 
We propose to solve the problem of unsecure inter-core communication by using a hardware encryption 

method to encrypt data which is transmitted via the bus. Each time a core requests to read contents of the 

memory from other any other core, the data will be encrypted and then transmitted on the bus.  
TEA (Tiny Encryption Algorithm) is a simple and fast symmetric encryption method. In the process of 

encryption and decryption, only addition, subtraction and XOR are involved, which make it a good 

hardware encryption method. In all, 16 rounds of encryptions will be executed (we can run multiple rounds 

in one clock cycle if core clock is slow enough compared to the computation latency). The algorithm has 

been show below in detail. 

 
Fig 1: Simple implementation of TEA algorithm 

 
Since TEA is quite simple to implement, it may not take very long to use brutal force to hack into the bus 

and snoop on the data. So the target here is to renew the keys periodically to avoid hacking using brute 

force. We will use a centralized key generator & distributor to implement this. The generator will use 

random numbers to generate random new keys. We can estimate the number of cycles required using the 

brute force method to hack into the system, using this data, set the refresh period of the key-generator 

smaller than this time period. 

 



The overall architecture has been shown below: 

 

 
 

Fig 2: Architecture of the proposed system 

 

 

 

 

 

 

 

 

 

 



Progress: 

Key generator: 

The key generator module will generate random keys and distribute to all cores once in a specified time 

interval. A local timer is used to decide the distribution of these keys. For 4 cores scenario, (4 choose 2) = 

6 keys will be generated each time. We use $random() function provided by Verilog instead of an explicit 

random number generator hardware for simplicity. 16 cycles “pseudo latency” was introduced when 

generating one random number in order to mimic hardware functionality. A simple selection FSM is used 

to decide which pair of cores the newly generated key will get assigned to. This module was designed in 

Verilog and its functionality was tested using VCS. 

 

Encryption & Decryption Module: 

The original algorithm suggests that at-least 16 rounds of computation for the encryption/decryption 

process. In this design, 2 rounds of computation were done per one cycle, and totally 8 cycles to finish an 

encryption/decryption cycle. A pipeline structure was introduced here to maximize the throughput of the 

key-generator system.  

Besides the computation module, there is a lookup table to hold the keys generated from key generator. 

This table holds two sets of keys; one, the present set, and the other one, the previous key set, just in case 

the message was encrypted by the old key. Every time a new set of keys reach this queue, the previously 

used keys are moved to old-key table, the ones currently in the old-key table are kick out, and write the new 

keys are then written into the new-key table. 

This module was modeled in Verilog and the functionality was tested using VCS. 

 

Cores And Wishbone bus model: 

The 32-bit open-source core OpenRISC 1200 is used in this project. The RTL for this core was obtained 

from opencores.org. A salient feature of this core is the inbuilt interface for a 32-bit Wishbone bridge, 

somewhat simplifying the tedious upcoming task of integration. 

The open-source Wishbone bus was selected for this application owing to its simplicity and ease of 

implementation. The Wishbone-bus builder was obtained from opencores.org, understood, and modified to 

generate a 32-bit ‘shared-bus configuration’ as per our requirement. The RTL generated by the builder can 

be easily integrated with the obtained core. 

 

 

 

 

 

 



Challenges: 

The main aim here is to figure out an optimal time-interval to update and distribute keys to cores, as a lot 

of tradeoffs are involved here. Also, in order to achieve the highest possible level of security with the 

algorithm, the absolutely random nature of the key generator should be exploited, which is quite challenging 

to develop.      

The open-source Wishbone-bus builder script generates a VHDL version of the bus. Trying to simulate the 

same using VCS was time-consuming owing to limited experience with the same. The idea of converting 

the VHDL to Verilog was not successful owing to fundamental limitations in the generator script. 

Also, the next step, ie integrating the modules together is expected to cumbersome owing to the auto-

generated, as well as custom blocks used in the design. 


