Hardware Implementation of Secure
Communication in a Bus-Based Multi-Core
System Using Tiny Encryption Algorithm

Team Dja Dja
Problem Statement

There is a always a need of communicating between two individual cores which are a part of a
multicore system. In the case of one core being hacked into, this compromised core can be
used to snoop upon the communication between the other individual cores, owing to the bus
topology used to tie the cores together. The idea of this project is to alleviate such a scenario by
securing the flow of data from one core to another, by using an encryption scheme, thereby
preventing unwanted snooping of data.

Need for Solution

The most straightforward issue arising from the problem is lack of security of the data. This
issue holds paramount importance while sensitive data is being transmitted/received between
the cores.

Also, one compromised core can be used to alter the behaviour of the system, in many ways.
Trojan activity in one of the cores can also give rise to unwanted operations in the system.
In-order to prevent this unusual source of activity, it is essential to secure the communication
paths within the system.

Idea Abstraction

We propose to solve this problem by using an hardware encryption method to encrypt data
which is transmitted via the bus. Each time a core requests to read contents the of memory
from other any other core, the data will be encrypted and then transmitted on the bus.

TEA (Tiny Encryption Algorithm) is a simple and fast symmetric encryption method. In the
process of encryption and decryption, only addition, subtraction and XOR are involved, which
make it a good hardware encryption method. In all, 16 rounds of encryptions will be executed (we
can run multiple rounds in one clock cycle if core clock is slow enough compared to the
computation latency). The algorithm has been show below in detail.

#include <stdint.h>

void encrypt (uint32 t* v, uint32_t* k) {

uint32_t ve=v[e], vi=v[1], sum=8, i; /¥ set up */

uint32_t delta=8x9e3779b9; /% a key schedule constant */
uint32_t ke=k[@], ki=k[1], k2=k[2], k3=k[3]; /* cache key */

for (i=0; i < 32; i++) { /* basic cycle start */

sum += delta;
ve += ((v1<<4) + k@) ~ (vl + sum) ~ (({vi>>5) + k1);
vl += ((vB<<4) + k2)} ~ (v@ + sum) ~ ((v8>>5) + k3);
} /* end cycle */
v[e]=ve; w[1]=v1;
}

void decrypt (uint32_t* v, uint32_t* k) {
uint32_t ve=v[e], vi=v[1], sum=BxC6EF3728, i; /* set up */

uint32_t delta=8x9e3779bg; /* a key schedule constant */
uint32_t ke=k[®], ki=k[1], k2=k[2], k3=k[3]; /* cache key */
for (i=0; i<32; i++) { /* basic cycle start */

vl -= ((ve<<4) + k2) ~ (v@ + sum) ~ ((ve»>5) + k3);

vl -= ((vl<<4) + k@) "~ (vl + sum) ~ ((v1i»>5) + k1);

sum -= delta;
T /* end cycle */
v[e]=vd; v[1]=v1;

Fig 1: Simple implementation of TEA algorithm

Since TEA is quite simple to implement, it may not take very long to use brutal force to hack into
the bus and snoop on the data. So the target here is to renew the keys periodically to avoid
hacking using brute force. We will use a centralized key generator & distributor to implement
this. The generator will use random numbers to generate random new keys.We can estimate
the number of cycles required using the brute force method to hack into the system, using this
data, set the refresh period of the key-generator smaller than this time period.

The overall architecture has been shown below.

Rand_Gen

Key Generator

Isolated key distribution

Lookup Table Lookup Table Lookup Table Lookup Tahble
Key 01 IEAs Key 0 1 TEnD Key 0_2 Lizss Key 0.3 ligss
Key_0_2 Encrytption Key_1_2 Encrytption Key_1_2 Encrytption Key_1_3 Encrytption
Key 0 3 Module Key 2 3 Module Key 2 _3 Module Key 2 3 Module
Core_0O Core_1 Core_2 Core_3
|
Arbiter
BUS

Bi-direction bus
communication

Fig 2: Architecture of the proposed system

Project Development

First, we aim to implement the encryption/decryption as well as key generation/distribution
modules ie. the architecture shown in Fig 2, in Verilog. This is the most important part of the
project.

Once the blocks are ready, we aim to integrate the modules with existing open-source cores
(from OpenCores, e.g. OR1200) and bus (also from OpenCores, e.g. Wishbone; or a custom
made bus); and use VCS to run the required simulations.

Evaluation

First, we will compare our algorithm with several popular encryption algorithms in terms of
security and implementation complexity (statistically). We expect to see our algorithm achieving
relatively higher level of security but taking far less time (lesser number of cycles) to compute
the results.

In the next step we will develop test programs (or using existing multithreaded benchmarks) to
compute the time overhead because of the integrated encryption logic. We expect to see a small
percentage of increase in execution time (If we use C++ to build a functional model, we might
need to inject bus traffic based on traces. Traces can either acquired from Doowon, or
generated by ourselves)

We plan to run the same program (or inject the same traffic pattern), and then compare the
execution time with and without encryption.

Timeline

10/23 checkpoint 1 Hardware module finished
Timing estimation finished
System integration started

11/13 checkpoint 2 System Integration finished
Debug phase Completed

12/04 checkpoint 3 Data gathering phase
Ideas and implementations checked with professor and GSI

12/10 checkpoint 4 Everything done

