
Hardware Implementation of Secure

Communication in a Bus-Based Multi-Core

System Using Tiny Encryption Algorithm

Jianchao Gao

Department of Electrical

Engineering and Computer Science

University of Michigan

jianchao@umich.edu

Dike Zhou

Department of Electrical

Engineering and Computer Science

University of Michigan

zhoudike@umich.edu

Ameya Rane

Department of Electrical

Engineering and Computer Science

University of Michigan

arane@umich.edu

Abstract—Security attacks are the most common way of

phishing in today’s internet driven world. Secure communication

between multiple cores in a multi-core system is of utmost

importance, especially if secure data is being translated. Various

methods have been proposed to make this communication secure,

either by encrypting the data being translated, by encrypting the

bus etc. This project implements the bus based encryption

technique using Tiny Encryption Algorithm, a simple, yet secure

commonly used encryption algorithm. The security of this module

is tested using analysis specified in this report, with substantial

enhancements outlined, thereby giving our work an upper-hand

over existing similar work.

Keywords—TEA, security, bus encryption, bus-based multicore

I. INTRODUCTION

Owing to the inherently diffused nature of communication
systems today, there is a flow of data to and fro from the
servers/nodes/transceivers etc. in a communication network.
Understandably, there are lot of ports which can be tapped into,
and snooped upon, to read or observe the data being sent across.
Shared resources, like a communication channel, appear to be
the hotspot for data translation. Compromising the security of
such a channel (a bus in this case) can expose the entire system
to unauthenticated nodes, thereby permitting unsecure data
transfer. This is a very serious issue if important/classified data
is being moved around, and has the potential to cripple the
financial sector, military communication etc. Hence, secure
communication between different nodes in a communication
channel is of paramount importance, especially in today’s
information technology driven world.

System security can be enhanced by numerous means, with
solutions ranging from architectural reinforcement, to software
solutions. At the micro architectural level, we propose to solve
the above mentioned problem plaguing inter-core
communication by using a hardware encryption method to
encrypt data which is transmitted via the bus. The security of
this bus encryption scheme is dependent on the inherent security
of the encryption algorithm being implemented. A simple, fast
and secure encryption would be to use any block encryption
algorithm, with the Tiny Encryption Algorithm (TEA) being the
simplest option. [1]

Along with the inherent secure behavior of the encryption
algorithm, additional security features are provided by the
micro-architectural changes implemented in this project. Also,
frequent refreshing of the keys used for encryption/decryption is
one way of enhancing the security of the already secure system.
A system almost entirely immune to timing attacks, brute force
and some smart attack techniques is developed, with an average
performance overhead of 13%, which is much lower than those
designed for the same purpose, thereby giving substance to our
claim of building a better system.

Fig. 1. Data Flow of Tiny Encryption Algorithm

<< 4ADD

ADD

ADD

XOR

>> 5

ADD

<< 4 ADD

ADD

ADD

ADD

>> 5

XOR

Data[31:0] Data[63:32]

Key[127:96]

Sum(i)

Sum(i)

Enc(i)[31:0] Enc(i)[63:32]

Key[95:64]Key[63:32]

Key[31:0]

R
e
p
e
a
t
e
d

1
6

T
i
m
e
s

R
e
p
e
a
t
e
d

1
6

T
i
m
e
s

Fig. 2. Reference C code of Encryption Module

void encrypt (uint32_t* v, uint32_t* k) {

 /* set up */

 uint32_t v0 = v[0], v1 = v[1],

 sum = 0, i;

 /* a key schedule constant */

 uint32_t delta = 0x9e3779b9;

 /* cache key */

 uint32_t k0 = k[0], k1 = k[1],

 k2 = k[2], k3 = k[3];

 /* basic cycle start */

 for (i = 0; i < 32; i++) {

 sum += delta;

 v0 += ((v1 << 4) + k0) ^ (v1 + sum) ^

 ((v1 >> 5) + k1);

 v1 += ((v0 << 4) + k2) ^ (v0 + sum) ^

 ((v0 >> 5) + k3);

 }

 v[0] = v0; v[1] = v1;

}

II. BACKGROUND

Tiny Encryption Algorithm (TEA) [1] is the encryption
method applied in the proposed design. This is a simple, yet
secure algorithm, hence commonly used for simple
implementation of secure communication systems. It is a
symmetric encryption algorithm with characteristics of being
very fast, simple (only shifting, adding, subtracting and XOR),
and easy to understand. The data flow of one round of
computing has been showed in Fig. 1. In order to perform an
encryption effectively, a minimum of 16 rounds of computing
need to be performed. To decrypt a message, an module with
similar structure of encryption one can be used. The encryption
and decryption modules’ pseudo-codes are shown below in C in
Fig. 2 and Fig. 3.

III. PROPOSED ARCHITECTURE

The architecture of proposed design is shown in Fig. 4. The
proposed design is an adaption of a multi-core system designed
for EECS 470, consisting of 2 cores, and one memory module,
integrated together using a simple bus with an added arbiter.
Each of the cores has a LUT(lookup table) used for storing the
keys, used for the encryption and decryption procedure. A
random key generator module, called as “Cloud” is used to
distribute the keys required for filling the LUTs. For each core,
2 set of keys will be stored for functional correctness. E.g. for
core_0, one set is key_0_1, which is used to encrypt/decrypt
messages between core 0 and core 1. The other set is key_0_m,
which is used to encrypt/decrypt messages between core 0 and
memory.

Fig. 3. Reference C code of Decryption Module

void decrypt (uint32_t* v, uint32_t* k) {

 /* set up */

 uint32_t v0 = v[0], v1 = v[1],

 sum = 0xC6EF3720, i;

 /* a key schedule constant */

 uint32_t delta=0x9e3779b9;

 /* cache key */

 uint32_t k0 = k[0], k1 = k[1],

 k2 = k[2], k3 = k[3];

 /* basic cycle start */

 for (i = 0; i < 32; i++) {

 v1 -= ((v0 << 4) + k2) ^ (v0 + sum) ^

 ((v0 >> 5) + k3);

 v0 -= ((v1 << 4) + k0) ^ (v1 + sum) ^

 ((v1 >> 5) + k1);

 sum -= delta;

 }

 v[0] = v0; v[1] = v1;

}

 Each time a core requests to read contents of a memory
cached in any other core, the data will be encrypted and then
transmitted on the bus by the source core. In the process of
encryption and decryption using TEA, only addition, subtraction
and XOR are involved, which make it a simple and good
hardware encryption method. In all, 16 rounds of encryptions
will be executed (we can run multiple rounds in one clock cycle
if core clock is slow enough compared to the computation
latency). Since TEA is quite simple to implement, it may not
take very long to use brute force to hack into the bus and snoop
on the data. So the aim here is to refresh the keys periodically to
avoid brute force attacks. The generator will use a random
number generator module to generate the random new keys
required for the encryption/decryption. We can estimate the
number of cycles required using the brute force method to hack
into the system, and using this data, set the refresh period of the
key-generator smaller than this time period. Basically, the
strength of the encryption algorithm is reinforced to almost
unbreakable levels using the key-refresh mechanism.

Fig. 5 shows the data flow of our design. Here we take the
instance of this scenario: core_0 wants to load the value stored
in memory with an address, and when the operation is done, it
will respond with the requested value. In a conventional
processor design, the flow will be as follows: (1) core puts the
address on the bus together with request; (2) memory captures
the request from the bus; (3) after the latency period, memory
completes its loading and puts the data on the bus together with
response signal; (4) core captures the data from the bus. Since
the data on the bus can be fetch by any other nodes in this
system, the system security is compromised if one core running
any malicious software captures the data translating between
other modules. (In this instance, we can assume core_1 can fetch
the data translating between core_0 and memory, which should
not be touched by core_1) In order to prevent information leaks
to other core through bus, the proposed design will make sure
all data on the bus are encrypted. Take the same scenario as
before, the data flow of our proposed design will be: (1) Source
core sends the address along with the request to encryption
module, which will encrypt the address, together with the
request. After this process is done, the cipher text is put on the
bus (2) Memory sees the request signal and fetches the cipher
text from bus. It will use the decryption module to reveal the

address in plaintext, and then send decrypted address to
memory; (3) after a few cycles, the memory finishes loading and
then send the data to encryption module together with response
signal. This module will convert the data into cipher text and
then put it along with the response signal on the bus; (4) The
requesting core observes the response signal and will fetch the
encrypted data. This data will be decrypted by decryption
module and will be sent to the core. As a result, the
communication on bus is encrypted and only the target module
can decrypt it. So under this scenario, even though core_1 can
fetch the data on the bus, it cannot decrypt it, as it does not have
the corresponding key, thereby preserving the integrity of the
system.

IV. DESIGN ANALISYS

The first half of this section is based on the implementation
of encryption/decryption modules. In order to hide the latency
due to encryption/decryption, these encryption/decryption
modules are pipelined into multiple cycles. However,
partitioning this module into different number of stages result
into different impact on area and performance overhead.
Generally, the more cycles to partition the module, the lesser the
combinational delay required to run each cycle, but the more the
total area. Also if the combinational delay is smaller than the
latency of the core, it is negligible for further pipeline stages.

A. Area & Performance Overhead

The base core we used has an area of 12538496.545692 um2.
Table I mentions the area of each individual module that have
been used in this design, as well as the total area and delays. The
area overhead is calculated as

 𝐴𝑟𝑒𝑎 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = (
𝐴𝑟𝑒𝑎𝑑𝑒𝑠𝑖𝑔𝑛

𝐴𝑟𝑒𝑎𝑏𝑎𝑠𝑒
) − 1

The performance overhead in terms of delays is calculated
as follows:

 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = (
𝐶𝑃𝐼𝑑𝑒𝑠𝑖𝑔𝑛

𝐶𝑃𝐼𝑏𝑎𝑠𝑒
) − 1

Fig. 4. Architecture of Proposed Design

Fig. 5. Data Flow in Proposed Design

Core_0

Encryption
Module

Bus

Mem

Encryption
Module

Decryption
Module

Decryption
Module

Communication & Operation in Ciphertext

Communication & Operation in Plaintext

(2)
Decrypting

Request(1)
Encrypting

Request

(3)
Encrypting
Response

(4)
Decrypting
Response

TABLE I. SUMMARY OF AREA AND PERFORMANCE OVERHEAD

Module Total Area

(um2)

Latenc

y (ns)

Area

Overhead

Performance

Overhead

Base Core 12538496.54

5692

6.0 N/A N/A

Enc/Dec_

Mod 1 Cyc

9917197.113 7.0 81.01% 81.01% /

7.05 %

Enc/Dec_

Mod 2 Cyc

10128505.18 5.5 82.69% 0.8269/0.139

3

Enc_Dec_

Mod 4 Cyc

11215335.24 4.0 91.36% 0.9136/0.269

0

Enc/Dec_

Mod 8 Cyc

12137623.71 2.5 98.72% 0.9872/0.517

2

Lookup

Table

118469.0638 N/A N/A N/A

Key

Generator

121309.1226

75

N/A N/A N/A

The area overhead of encryption/decryption modules are
quite significant, as compared to other components in the design.
The relationship between area overhead and cycles is shown in
the below plot. However, it is worth noting that the baseline core
adopted has only 0.5KB L1 Cache on each core. Since in any
modern processor, the majority of area is occupied by L2 and L3
cache, and the cache size is usually in MB level, the area
overhead will not be very significant as compared to other
modules in the design.

Alternatively, we can use a sequential and blocking
encryption/decryption module to do the same work. This
sequential module can better utilize existing hardware and
significantly reduce the area overhead. This comes at the cost of
reduced throughput. For programs with low bus throughput, this
can be a good and cheap alternative.

The base core we used has a clock cycle of 6ns. This table
also shows the delays of encryption/decryption modules
comparing with different computing cycles, in a precision of
0.5ns. From the above table it can be seen that, if the

Core_0 Core_1 Memory

TEA
Module

TEA
Module

TEA
Module

BUS

Key_0_m

Key_0_1

Key_1_m

Key_0_1

Lookup
Table

Lookup
Table

Key_1_m

Key_0_m

Lookup
Table

Key_Generator

Rand_Gen

Isolated key distribution

Core to bus: Encrypt with TEA encryption module
Bus to core: Decrypt with TEA decrypt module

Newly Added Module

Base Module

encryption/decryption module takes more than 2 cycles, these
added modules will not affect the baseline frequency of the core.
For two-cycle encryption/decryption scenario, a mean CPI of
1.14 (normalized to baseline machine) was obtained for the
EECS 470 test-cases. This value further drops to 1.07 using a
single-cycle implementation.

Fig. 6, 7, and 8 are summaries of latency, area and
performance overhead comparing with different number of
cycles implemented for encryption/decryption modules.

B. Experiment Setup & Results

Our baseline reference is a R10K style Out-of-Order, two
core system with snooping bus and MESI cache coherence
protocol. A clock period of 6ns is achieved using this system.
More detailed configuration can be found in [8].

After analyzing the overhead for different number of cycles,
we decided to use modules with 2-cycle delay, as the clock
period is not significantly affected by this value. The benchmark
suite we used were adopted from EECS470 final project. We ran
the same benchmark suite both on our modified machine and
baseline model and then compare the performance.

As shown in Fig. 9, among the 21 programs, we have
achieved a best case performance overhead of 0.9% and a
geometric mean of 13.9%, which we believe is acceptable in
most systems considering the security improvement. We will
cover security analysis in section V Security Analysis.

Fig. 6. Encryption Module Latency VS. Cycles of Implementation

Fig. 7. Area Overhead VS. Cycles of Implementation

Fig. 8. Performance Overhead VS. Cycles of Implementation

C. Discussion

To better understand and explain the performance overhead,
we further examine the results obtained from the benchmark
suite. The overhead is mainly caused by extra memory access
latency in order to encrypt/decrypt the data. A store instruction
would not expose any extra latency due to the nature of
unblocking memory access and Load-Store-Queue. However, a
load request, either issued by I-Cache or D-Cache, has to wait
for its data to be successfully fetched. During this time, if no
instruction can be executed, the entire pipeline can be stalled and
therefore cause a performance penalty. These load requests can
be further divided into two groups: 1) load requests from D-
Cache, and 2) load requests from I-Cache caused by
mispredicted branch instructions. Load requests from I-Cache
during normal execution situation would usually not cause
noticeable performance degrade since they are usually issued by
the prefetcher. To examine the two different troublesome load
requests, we introduce D-Cache miss per instruction (DMPI)
and branch misprediction per instruction (BMPI) as a
quantitative representation for these abstract terms. As a load
miss in I-Cache and in D-Cache would cause roughly the same
number of stalls, we can simply add them up and get a new
metric. We then compare the performance overhead and
(BMPI+DMPI) of each program. As shown in Fig. 10, it turns
out that the performance overhead and (BMPI+DMPI) have a
Pearson product-moment correlation coefficient of 0.804, which
means (BMPI+DMPI) itself can be a good indicator of
performance overhead.

Fig. 9. Performance Overhead vs Benchmarks

7

5.5

4

2.5

0

1

2

3

4

5

6

7

8

1 Cycle 2 Cycles 4 Cycles 8 Cycles

81.01% 82.69%
91.36% 98.72%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

1 Cycle 2 Cycles 4 Cycles 8 Cycles

7.05%

13.93%

26.90%

51.72%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1 Cycle 2 Cycles 4 Cycles 8 Cycles

0%

10%

20%

30%

40%

50%

b
te

st
1

b
te

st
2

b
u

b
b

le
_s

o
rt

_t
es

t_
W

O
R

K
S

b
u

b
b

le
so

rt

co
p

y

co
p

y_
lo

n
g

ev
en

s_
lo

n
g

fa
ct

o
ri

al
_W

O
R

K
S

fi
b

fi
b

_l
o

n
g

fi
b

_r
ec

in
se

rt
io

n

m
er

ge
_

so
rt

_t
es

t_
W

O
R

K
S

m
u

lt

m
u

lt
_n

o
_l

sq

o
b

js
o

rt

p
ar

al
le

l

p
ar

al
le

l_
lo

n
g

p
ar

so
rt

p
ri

m
e

st
rc

p
y_

te
st

_W
O

R
K

S

m
ea

n

Latency of base processor: 6ns

Fig. 10. Correlating BMPI+DMPI to Performance Overhead

As a result, programs with higher branch misprediction rate
and higher L1 D-Cache miss rate are more likely to suffer the
extra penalty of this new design. However, this result also
provides us with a direction to optimize the performance with
such encryption design. A better branch predictor will help to
reduce the BMPI, and a better L1 D-Cache can help reduce the
DMPI. In this way, the performance penalty because of having
this encryption is likely to be further covered up.

V. SECURITY ANALYSIS

A. Attacking Using Brute Force

In-order to analyze the secure behavior of our system,
various methods (attack the underlying cryptographic algorithm,
attack the hardware implementation etc.) are used to try and
hack into the system. For all these analysis, the keys are to be
kept constant, i.e., they aren't refreshed after a fixed number of
cycles. Brute force was one of the methods tried to hack into the
secure multi-core system. As we are changing our key at a very
frequent rate in the actual implementation, brute force does not
make any sense, and is carried out just for analytical purposes,
and finding a higher value for the time period of refreshing the
keys. Since the key is 128 bits long, it takes maximum 1037
cycles for all the combination of keys to be tried out. A point
worth noting here is that the ‘equivalent keys’ weakness[1] has
been considered in the above analysis. Assuming each
encryption/decryption process takes 2 cycles, and considering
that all the encryptions/ decryptions are happening in parallel, it
takes max 1038 computation cycles for the complete brute-force
procedure to finish.

Assuming that the keys are being refreshed after a very
relaxed interval of a million cycles, the probability that brute
force will be able to attack the system decreases even further. In
numbers, the probability that brute force can hack into our
system is of the order of 10-32, and grows linearly as the refresh
interval is increased. Hence, we can conclude that our proposed
technique is resilient to brute force attack.

B. Attacking Using “Impossible Differential Cryptanalysis”

From the above analysis, it is quite clear that using brute
force for attacking our system is not a clever idea, owing to the
extremely large number of cycles required for the iterations. So,

a smarter method is required to actually test our system to its
limits. Impossible Differential Cryptanalysis is one such method
used to smartly hack into our system. [2] provides a detailed
description of the method, and the tools used for analyzing the
effect of the mentioned method on our multi-core system.
Following the mathematical steps mentioned in [3], we can infer
that that the number of cycles required to hack into our system
is much lower than required using Brute Force attack method.

According to [3], 64 bits of the 128 bit will have to be
determined by exhaustive searching, other than the 64 bits which
are generated using Impossible Differential Cryptanalysis in a
few hundred cycles, which is the time required for the warm up
of the differential module. So, assuming the latency is masked
behind the time required for exhaustive search, we can say that
maximum 1018 cycles are required to hack into this system. This
is much less than the values obtained using Brute force, still high
enough to allow us to switch our keys at a very relaxed interval.
Assuming that the keys are being refreshed after an interval of a
million cycles, the probability that brute force will be able to
attack the system decreases to the order of 10-15,with the value
increasing linearly with increase in the refresh interval. This
probability is low enough to validate the security of the
implemented system.

C. Random Number Generator and Key Refreshing

Frequency

In all encryption designs, the quality of keys determine how
secure the scheme is. In order to provide numbers with perfect
randomness, many True Random Number Generator (TRNG)
are proposed based on natural physical phenomenon and are
readily available. In our design, a TRNG is required to provide
concrete keys to make our design secure. For simplicity, we just
assume that there is a perfect TRNGs available in the same
system. Our key generator module (“The Cloud”) will exploit
this hardware and continuously distribute keys to each pair of
nodes on the bus after a fixed number of cycles.

It is quite intuitive that the security would be enhanced if the
keys are refreshed at a frequent interval. However, this
frequency cannot be increased to an infinitely high value. The
throughputs of TRNGs can become a bottleneck for the updated
frequency.

According to Intel [7], the on-chip TRNG can have a
throughput of 70 ~ 200 MB/s. We just take 100 MB/s as the
throughput and the clock of TRNG use the same clock as the rest
of the two-core system, to ease our analysis here. Three nodes
(2 cores, 1 memory) exist in our system so that at least 3 keys
should be generated before sending new keys to each node. After
simple math, we find that our key generator has to wait at least
80 cycles to start a new round of updating keys.

In reality, the TRNG may use a different clock, and this
clock may be slower than the rest of the system, so that it may
take longer than we have here to generate enough keys.

VI. RELATED WORK

Design in [4] proposes a similar bus-encryption mechanism
using OS scratch-pad space for the encryption/decryption, with
a performance slowdown of 40%, much more than the 14%
average obtained using this design. Paper [5] describes an

0%
10%
20%
30%
40%
50%
60%

b
te

st
1

b
te

st
2

b
u

b
b

le
_s

o
rt

_t
es

t_
W
…

b
u

b
b

le
so

rt

co
p

y

co
p

y_
lo

n
g

ev
en

s_
lo

n
g

fa
ct

o
ri

al
_W

O
R

K
S

fi
b

fi
b

_l
o

n
g

fi
b

_r
ec

in
se

rt
io

n

m
er

ge
_

so
rt

_t
es

t_
W
…

m
u

lt

m
u

lt
_n

o
_l

sq

o
b

js
o

rt

p
ar

al
le

l

p
ar

al
le

l_
lo

n
g

p
ar

so
rt

p
ri

m
e

st
rc

p
y_

te
st

_W
O

R
K

S

BMPI+DMPI Performance Overhead

overview of the existing bus encryption techniques, mentioning
that an average performance overhead of 10% is considered as
reasonable for such designs. Similar results are obtained for our
design, albeit with a larger area overhead, making it quite
reasonable for comparisons with state of art designs. Also, [6]
mentions a novel technique for encrypting the data on the bus,
with a performance overhead of 4%, but uses a 32-bit cipher
text, thereby casting doubts on the security of the entire system
in general.

VII. CONCLUSIONS AND FUTURE WORK

This project has proposed a design dedicated for secure
communication on a bus based multi-core system, by
introducing Tiny Encryption Algorithm(TEA), a simple
symmetric encryption method to encrypt all data
communications on the bus. In order to avoid the encryption
module from becoming the critical path, the module has been
pipelined into 2 stages. Under this implementation, the proposed
design has achieved a performance overhead of 13.9% and area
overhead of 82.7%. However, since the base system contains
only 1KB size of cache in total, and cache with size of MB level
usually takes the majority of area consuming in modern CPU
design, the relative area overhead will be much more smaller on
a modern CPU die.

Due to constraints on time, there are some ideas that we
came up with, but could not implement. One is to improve the
implementation of the algorithm to have smaller area impact on
hardware. Encryption/decryption modules in one core can be
combined to save area. Second, we can set a mechanism to
encrypt data stored in memory to further secure message. A
lookup table needs to set aside in order to re-encrypt data with
new keys if the keys have been renewed. Third, an information
leakage detection mechanism, along with a dynamic key refresh
mechanism can be added to the design. This function can inform
the key generator if the current key set have been hijacked, and
the direct the key generator to refresh the keys to minimize
information leakage.

VIII. ACKNOLEDGEMENT

We thank Prof. Valeria Bertacco for her guidance and advice
throughout this project. Besides, we would like to specially
thank GSI Doowon Lee for his invaluable help during the entire
semester.

REFERENCES

[1] DJ Wheeler; RM Needham. “TEA, a Tiny Encryption Algorithm”. B.
Preenel, editor, Fast Software Encryption, Second International
Workshop (LNCS 1008), 1995, pp.363-368

[2] Kelsey, John; Schneier, Bruce; Wagner, David. "Key-schedule
cryptanalysis of IDEA, G-DES, GOST, SAFER, and Triple-DES" (PDF).
Lecture Notes in Computer Science, 1996

[3] Moon, Dukjae; Hwang Kyungdeok; Lee, Wonil; Lee, Sangjin; Lim,
Jongin "Impossible Differential Cryptanalysis of reduced Bound TEA and
XTEA". Lecture Notes in Computer Science, 2002, Vol 2365, pp 49-60

[4] Xi Chen; Dick, R.P.; Choudhary, A., "Operating System Controlled
Processor-Memory Bus Encryption," Design, Automation and Test in
Europe, 2008, pp.1154-1159, 10-14

[5] Elbaz, R.; Torres, L.; Sassatelli, G.; Guillemin, P.; Rigaud, J.B.,
"Hardware engines for bus encryption: a survey of existing techniques,"
Design, Automation and Test in Europe, 2005, Proceedings, pp.40-45
Vol. 3, 7-11

[6] Elbaz, R.; Torres, L.; Sassatelli, G.; Guillemin, P.; Bardouillet, M.;
Martinez, A., "A parallelized way to provide data encryption and integrity
checking on a processor-memory bus," in Design Automation
Conference, 2006, 43rd ACM/IEEE , pp.506-509

[7] Intel, “Intel Digital Random Number Generator (DRNG) Software
Implementation Guide”, 2014,
https://software.intel.com/sites/default/files/managed/4d/91/DRNG_Soft
ware_Implementation_Guide_2.0.pdf

[8] Guo, Xiaoming; He, Sijia; Wang, Mengtian; Xu, Bangqi, “EECS 470
Final Report,” 2015

[9] Elbaz, R.; Torres, L.; Sassatelli, G.; Guillemin, P.; Rigaud, J.B.,
"Hardware engines for bus encryption: a survey of existing techniques,",
Design, Automation and Test in Europe, 2005, Proceedings , vol., no.,
pp.40-45 Vol. 3, 7-11

