
EECS578 Project Check Point 3 Report Date: Dec 4th 2015

1

Project Title: Robust Cache Coherence Protocol Verification with Inferno

Team Name: FLY-Bee

Team Member: Zeyu Bu, Xiangfei Kong, Chenxi Lou, Yao Jiang

 Problem to be addressed:

Fault-tolerant architectures are emerging to guarantee reliable functionality on vulnerable silicon
devices. For a fault-tolerant architecture, the RTL design is more complex than a normal one and is more
likely to introduce design bugs.

 Why does this problem matter?

Fault-tolerant architectures are popular in current circuits design industry. However, the verification
of such a complex RTL design is a time consuming and costly task that is likely to become a bottleneck in
the release of new architectures. Thus, finding an efficient way for debugging would speed up the
verification process.

 Idea/Solution to be investigated by the project:

This project will focus on the debugging process of a fault-tolerant directory-based ‘MSI’ protocol.
We will also apply Inferno++ in our debugging process and evaluate this novel tool. To start with, the
robust protocol proposed in ‘A Systematic Methodology to Develop Resilient Cache Coherence
Protocols’ can be used to implement the resilient architecture. In the process of implementing the
resilient architecture, we expect to run into several bugs. Both traditional debugging methods and
Inferno++ will be used to locate bugs and their efficiency will be evaluated and compared in a systematic
way. In our case, the efficiency of inferno++ will be evaluated based on its ability of locating bugs. Our
analysis should provide a reference for future verification process of complex designs.

 Progress so far:

We finished the baseline integration before checkpoint 2 and focused on developing a robust

MESI directory based coherence protocol, developing assembly tests and debugging. Also, we put

Inferno into use in this stage. Following are some details about our progress.

 Robust MESI protocol

The idea is mainly based on the first presentation paper in EECS 578 class [1]. We implemented

additional safe states and handshaking mechanism to ensure the design’s ability of resending

packets and tolerating duplicates is unreliable. However, there are a few custom design parts that is

not mentioned or different from the paper we referenced to.

1. In our implementation, if the directory cannot process some coherent messages in a certain

transient state, the directory will drop the coherent messages without sending No-ACKs

back. Since our protocol is resilient, the initiator will resend requests again until the

directory process it.

EECS578 Project Check Point 3 Report Date: Dec 4th 2015

2

2. We implemented the complete state machine the paper does not describe in full detail. For

example, if the directory in state M and one core send a GetS request, some transient states

are added to make sure the data can be resent and the protocol is resilient.

 Test development & robustness check

In the design we let each core has its own instruction memory and we feed different assembly

programs to corresponding cores in parallel. Tests developed are divided into two categories: 1)

check the functionality of the design 2) check the robustness of the protocol when suffering from

packet drop or data corruption. These tests mostly involve communication between three cores and

the directory and are quite complex in perspective of message passing.

As discussed in Checkpoint 2 meeting, we implemented ‘drop packet’ control inputs to test the

design’s robustness. The basic idea is to use the control signal to intentionally mask receiving

packets at each node’s ejection channel. We drove these control signals in the test and checked if

the initiator is able to resend the lost packet after timeout and if the receiver can tolerate the

duplicate if it’s just a false positive.

 Inferno

We have put Inferno into our normal debugging process and it turned out that Inferno can give

some help for detecting illegal/unexpected behavior at router-core interfaces. The way how we

utilized Inferno is to monitor signals at each router-core interface and check the send/receive

packets at the interface.

After some trial and error, we found that monitoring signals like the send/receive message type,

destination node address, source node address (possibly some other signals) can provide the

verification engineer sufficient information to understand the behavior at the interface. The

following diagram is an example diagram we got when running Inferno.

 Issues/Showstoppers:

In general, Inferno is helpful when the trace signals are carefully selected and limited in a small

number. Therefore, monitoring interfaces separately is a better idea. Also, for our project, we keep

documenting bugs and debug efforts we put in our ‘debug log’.

EECS578 Project Check Point 3 Report Date: Dec 4th 2015

3

In next week, we will collect results from our design and analyze the debug efforts we put with

and without Inferno. This will be finalized into the evaluation of the tool. We will also try to

regenerate erroneous Inferno diagrams that helped us to find design bugs. The example use in our

project can give inspirations to people who would like to use Inferno in future.

Reference
[1] K. Aisopos and L.-S. Peh, "A Systematic Methodology to Develop Resilient Cache Coherance

Protcols," MICRO'11, 2011.

