
Xiangfei Kong, Zeyu Bu, Yao Jiang, Chenxi Lou

Fall 15 : Robust Cache Coherence Protocol Verification with Inferno

Overview

Topology

Robust Design

Core Debug with Inferno

Directory Debug with Inferno

Debug Log

Experimental Results

Inferno User Experience

Conclusion

 The growing complexity of modern digital hardware design exacerbates the
challenges of verification.

 Current waveform viewer based debugging tools do not provide an efficient way of
detecting and locating potential design bugs.

 Our project aims to provide a verification example where a transaction-based
verification tool (Inferno) is used to verify system-level designs.

 A multi-core system with robust MESI cache coherence protocol is implemented
and used as our Design Under Verification (DUV).

 Debugging efforts with Inferno are documented in a log file and compared with the
debugging case where Inferno is not applied.

 Inferno user experience and suggestions are proposed for further improvement.

 Cores: Single-thread blocking
processor design from EECS 470
project

 Routers: Wormhole-based RTL
design from BookSim with 4 virtual
channels specified

 Directory: Developed to implement
the baseline MESI protocol first.

The overall topology is a 2x2 mesh router network where 3 cores are attached to a
router respectively and the last router is reserved for directory which is the central
control unit linked to data memory to ensure the memory coherence. In this design,
each core has its own L1 data cache, instruction cache & memory. All 3 core share the
data memory via the directory.

The implementation of robust design follows 3
properties:

 Initiating node must remain transient
throughout the transaction.

 Previously transmitted message can
be regenerated.

 Nodes can tolerate duplicate
message and produce the same
outcome.

One special case when implementing the robust design is that when the directory is
currently in exclusive state (E), and one core sends getS message, the core with E state
is supposed to transit to a transient state after providing the data for robust purpose.
To guarantee the robustness under this circumstance, the state machine is modified as
the figure shown above.

Core 0 Core 1 Core 2

load 0x20 ● ●

load 0x20 ●

store 0x20

Expected message sent & received by Core 2 :

 Send GetM
 Receive Data
 Receive Inv_Ack from Core 0 & Core 1
 Send Unblock
 Receive Done

Before Debugging:

Core sends Unblock to Directory

right after receiving only one
Inv_Ack

After Debugging:

Core sends Unblock message to

Directory after receiving all
expected Inv_Ack

Core 0 Core 1 Core 2

store 0x20 ● ●

store 0x20 ●

●

Before debugging:

Directory doesn’t

receive Unblock

from Core 1, stuck

in the loop
After Debugging:

Directory receives

Unblock from

Core 1 eventually

Expected message sent & received by Dir :

 Receive GetM
 Send Fwd_GetM to Owner
 Receive Unblock
 Send Done

We documented major design bugs we found during the verification process. Following
is the example format of our debug log.

With
Inferno

Date Time Problem
Debug
Person

Time
taken

Bug
Source

Bug Description

No 11/7/2015
12:30

PM

Only head flit, lost

body and tail flit
Xiangfei 20 min Router

Should include vc info

in the flits as well

Yes 11/15/2015
6:17

PM

proc2router_dest

signal sends XX

to router

Zeyu 3 min
Cache

Controller

The stall signal for FIFO

is not set to 1

Yes 12/4/2015
3:45

PM

When directory

receives a

repeated GetS, it

sends a inalid

Data back

Yao 11min Directory

Directory does not

retain the data gotten

from memory

6

5

17

10

13

11

0 5 10 15 20

With Inferno

Without
Inferno

of bugs documented in different
design subsystems

Directory Core Router

26.4

17.5

27.3

11.2

24.6

11.4

0

5

10

15

20

25

30

Without Inferno With Inferno

M
in

/p
er

so
n

Average effort made to locate a bug in
different design subsystems

Router Core Directory

 # of bugs found in router design were
less than those found in core &
directory

More bugs were found when
developing robust design & debugging
with Inferno

Debug effort: Time per person taken
to detect and locate a design bug
(measured in minutes)

 Inferno accelerates the process of
detecting and locating a bug in all
three design subsystems

 Inferno characterizes the design
behavior better than a traditional
waveform viewer based approach

 Inferno Usage

 Inferno Suggestion

Current a 2 2 0 0 0

Expect Data 2 CMD_IDLE 0 CMD_IDLE 0

Current a 2 2 0 0 0

Expect Data 2 CMD_IDLE 0 CMD_IDLE 0

Support Enumeration

• Instead of showing coherence
messages as digits, displaying in
enumeration can provide better
understanding.

Support Signal Highlight

• Typical signals have higher priorities
than other listed signals in diagram

Signal Selection

• Monitor signals at router interface
• Monitor interfaces separately
• Monitor only messages, dest & src

Inferno Configuration

• Don’t care signal masking
• Show states in hexadecimal
• Ignore idle messages

 Debugging process with Inferno is presented. The effectiveness and potential of
Inferno to be used in future debugging process is evaluated.

 From the experimental results, Inferno accelerates the debugging process and
reduces the efforts that users need to pay to detect & locate bugs.

 A multi-core system with robust MESI cache coherence protocol is implemented.

 Other Inferno configuration options to generate a clear transaction are discussed.
Suggestions based on our user experience are raised for future improvement.

0000a3

000000

Data
from Dir

0000b0

000000

Inv_Ack
from Core 0

c30000

c300b2

Unblock
to Dir

0000b0

000000

Inv_Ack
from Core 0

0000b2

000000

Inv_Ack
from Core 1

c30000

000000

Unblock
to Dir

d02200

702000

702200

45 – 1 times 45 – 1 times

GetM from
core 1

GetM from
core 1

Fwd_GetM
to core 0

d02200

702000

70c200

Send Done

GetM from
core 1

Fwd_GetM
to core 0

d2c000

Receive
Unblock

I

IS

Request

Sd1

Data
from Core Inv_Perm

Sd

Inv_Conf Unblock

S

D. from Dir
&& Ack != 0 Unblock

Ed

D. from Dir
&& Ack == 0 Unblock

E

Done Done

Requester

E

lpS

Data

S

Inv_Per
m

Inv_Conv

Request

Exclusive
Sharer

Directory

Router

DMEM

Router

Router

Router

Processor

L1 Cache

Processor

L1 Cache

Processor

L1 Cache

EECS 578 Course Project

